
Chapter 8 - VB 2005 by Schneider 1

Sequential Files

November 3, 2006

Chapter 8 - VB 2005 by Schneider 2

Chapter 8 – Sequential Files

8.1 Sequential Files

8.2 Using Sequential Files

Chapter 8 - VB 2005 by Schneider 3

Section 8.1 – Sequential Files

• Creating a Sequential File

• Adding Items to a Sequential File

• Structured Exception Handling

Chapter 8 - VB 2005 by Schneider 4

Sequential Files

• A sequential file consists of data stored
in a text file on disk.

• May be created using Notepad

• May also be created directly from Visual
Basic

Chapter 8 - VB 2005 by Schneider 5

Creating a Sequential File

1. Choose a filename – may contain up to 215
characters

2. Select the path for the folder to contain this
file

3. Execute a statement like the following:
Dim sw As IO.StreamWriter = IO.File.CreateText(filespec)

 (Opens a file for output.)

Chapter 8 - VB 2005 by Schneider 6

Creating a Sequential File…

4. Place lines of data into the file with
statements of the form:

 sw.WriteLine(datum)

5. Close the file:
 sw.Close()

Note: If no path is given for the file, it will

be placed in the Debug subfolder of bin.

Chapter 8 - VB 2005 by Schneider 7

Example
Private Sub btnCreateFile_Click(...) _
 Handles btnCreateFile.Click
 Dim sw As IO.StreamWriter =
 IO.File.CreateText("PAYROLL.TXT")
 sw.WriteLine("Mike Jones") 'Name
 sw.WriteLine(7.35) 'Wage
 sw.WriteLine(35) ‘Hours worked
 sw.WriteLine("John Smith")
 sw.WriteLine(6.75)
 sw.WriteLine(33)
 sw.Close()
End Sub

Chapter 8 - VB 2005 by Schneider 8

File: PAYROLL.TXT

Mike Jones

7.35

35

John Smith

6.75

33

Chapter 8 - VB 2005 by Schneider 9

Caution

• If an existing file is opened for output,
Visual Basic will erase the existing file
and create a new one.

Chapter 8 - VB 2005 by Schneider 10

Adding Items to a Sequential
File

1. Execute the statement
 Dim sw As IO.StreamWriter =
 IO.File.AppendText(filespec)

 where sw is a variable name and filespec
identifies the file.

2. Place data into the file with the WriteLine
method.

3. After all the data have been recorded into the
file, close the file with the statement

 sw.Close()

Chapter 8 - VB 2005 by Schneider 11

IO.File.AppendText

• Will add data to the end of an existing file

• If a file does not exist, it will create it.

Chapter 8 - VB 2005 by Schneider 12

Sequential File Modes

• CreateText – open for output

• OpenText – open for input

• AppendText – open for append

• A file should not be opened in two
different modes at the same time.

Chapter 8 - VB 2005 by Schneider 13

Avoiding Errors

• Attempting to open a non-existent file for
input brings up a message box titled:

 FileNotFoundException

• There is a method to determine if a file
exists before attempting to open it:

 IO.File.Exists(filespec)

 will return a True if the file exists

Chapter 8 - VB 2005 by Schneider 14

Testing for the Existence of a
File
Dim sr As IO.StreamReader
If IO.File.Exists(filespec) Then
 sr = IO.File.OpenText(filespec)
Else
 message = "Either no file has yet been "
 message &= "created or the file named"
 message &= filespec & " is not found."
 MsgBox(message, 0, "File Not Found")
End If

Chapter 8 - VB 2005 by Schneider 15

Deleting Information from a
Sequential File

• An individual item of a file cannot be changed
or deleted directly.

• A new file must be created by reading each
item from the original file and recording it, with
the single item changed or deleted, into the
new file.

• The old file is then erased, and the new file
renamed with the name of the original file.

Chapter 8 - VB 2005 by Schneider 16

Delete and Move Methods

• Delete method:
IO.File.Delete(filespec)

• Move method (to change the filespec
of a file):

IO.File.Move(oldfilespec, newfilespec)

• Note: The IO.File.Delete and IO.File.Move
methods cannot be used with open files.

Chapter 8 - VB 2005 by Schneider 17

Imports System.IO

• Simplifies programs that have extensive file
handling.

• Place the statement
 Imports System.IO

 near the top of the Code window, before the
Class frmName statement. Then, there is no
need to insert the prefix “IO.” before the words
StreamReader, StreamWriter, and File.

Chapter 8 - VB 2005 by Schneider 18

Structured Exception Handling

• Two types of problems in code:
• Bugs – something wrong with the code the

programmer has written
• Exceptions – errors beyond the control of

the programmer

• Programmer can use the debugger to
find bugs; but must anticipate exceptions
in order to be able to keep the program
from terminating abruptly.

Chapter 8 - VB 2005 by Schneider 19

How Visual Basic Handles
Exceptions

• An unexpected problem causes Visual Basic
first to throw an exception then to handle it.

• If the programmer does not explicitly include
exception-handling code in the program, then
Visual Basic handles an exception with a
default handler.

• The default exception handler terminates
execution, displays the exception’s message in
a dialog box and highlights the line of code
where the exception occurred.

Chapter 8 - VB 2005 by Schneider 20

Exception Example
• If the user enters a word or leaves the input

box blank in the following program, an
exception will be thrown:

Dim taxCredit As Double

Private Sub btnComputeCredit_Click(...) _
 Handles btnComputeCredit.Click
 Dim numDependants As Integer
 numDependants = CInt(InputBox(_
 "How many dependants do you have?"))
 taxCredit = 1000 * numDependants
End Sub

Chapter 8 - VB 2005 by Schneider 21

Exception Handled by Visual
Basic

Chapter 8 - VB 2005 by Schneider 22

Try-Catch-Finally Block
Dim taxCredit As Double
Private Sub btnComputeCredit_Click(...)
 Handles btnComputeCredit.Click
 Dim numDependents As Integer, message As String
 Try
 numDependents = CInt(InputBox("How many dependents?"))
 Catch
 message = "You did not answer the question " _
 & " with an integer value. We will " _
 & " assume your answer is zero."
 MsgBox(message)
 numDependents = 0
 Finally
 taxCredit = 1000 * numDependents
 End Try
End Sub

Chapter 8 - VB 2005 by Schneider 23

Catch Blocks
• Visual Basic allows Try-Catch-Finally blocks to

have one or more specialized Catch clauses that
only trap a specific type of exception.

• The general form of a specialized Catch clause is
 Catch exp As ExceptionName
• where the variable exp will be assigned the

name of the exception. The code in this block will
be executed only when the specified exception
occurs.

Chapter 8 - VB 2005 by Schneider 24

Try Catch Block Syntax
Try
 normal code
Catch exc1 As FirstException
 exception-handling code for FirstException
Catch exc2 As SecondException
 exception-handling code for SecondException
.
.
Catch
 exception-handling code for any remaining

exceptions
Finally
 clean-up code
End Try

Chapter 8 - VB 2005 by Schneider 25

Exception Handling and File
Errors

• Exception handling can also catch file
access errors.

• File doesn't exist causes an
IO.FileNotFoundException

• If an attempt is made to delete an open
file, IO.IOException is thrown.

Chapter 8 - VB 2005 by Schneider 26

8.2 Using Sequential Files

• Sorting Sequential Files

• CSV Format

• Merging Sequential Files

• Control Break Processing

Chapter 8 - VB 2005 by Schneider 27

8.2 Sorting Sequential Files

1. Read data from file into an array of
structures.

2. Sort the data based on chosen member
in structure.

3. Write sorted data to file.

Chapter 8 - VB 2005 by Schneider 28

CSV File Format

• Comma Separated Values

• Records are stored on one line with a
comma between each field

• Example:

 Mike Jones,7.35,35

 John Smith,6.75,33

Chapter 8 - VB 2005 by Schneider 29

LSV File Format

• Line Separated Values

• Each value appears on its own line

• Up to now, this is the only type of file we
have been using.

Chapter 8 - VB 2005 by Schneider 30

Split Function

• Facilitates working with CSV formatted files.

• Split can convert a line containing commas into
a String array.

• The 0th element contains the text preceding
the first comma, the 1st element contains the
text between the first and second commas, ...,
and the last element contains the text following
the last comma.

Chapter 8 - VB 2005 by Schneider 31

Split Example
• For instance, suppose the String array

employees() has been declared without an
upper bound, and the String variable line has
the value “Bob,23.50,45”.

employees = line.Split(","c)
• sets the size of employees() to 3
• sets employees(0) = “Bob”
• employees (1) = “23.50”
• employees(2) = “45”.

Chapter 8 - VB 2005 by Schneider 32

Split Comments
Employees = line.Split(","c)

• In this example, the character comma is called
the delimiter for the Split function, and the
letter c specifies that the comma has data type
Character instead of String. (If Option Strict is
Off, the letter c can be omitted.)

• Any character can be used as a delimiter. If no
character is specified, the Split function will
use the space character as delimiter.

Chapter 8 - VB 2005 by Schneider 33

Example 2
Private Sub btnConvert_Click(...) _
 Handles btnConvert.Click
 Dim stateData(), line As String
 line = "California, 1850, Sacramento, Eureka"
 stateData = line.Split(","c)
 For i As Integer = 0 To stateData.GetUpperBound(0)
 stateData(i) = stateData(i).Trim 'Get rid
 'of extraneous spaces
 lstOutput.Items.Add(stateData(i))
 Next
End Sub

Chapter 8 - VB 2005 by Schneider 34

Example 2 Output

California

1850

Sacramento

Eureka

Chapter 8 - VB 2005 by Schneider 35

Example 3: Convert a CSV
Format File to an LSV Format

Private Sub btnConvert_Click(...) Handles btnConvert.Click
 Dim line, fields(), fromFile, toFile As String
 Dim sr As IO.StreamReader
 Dim sw As IO.StreamWriter
 fromFile = InputBox("Name of original file:", _
 "Convert from CSV to LSV")
 toFile = InputBox("Name of converted file:", _
 "Convert from CSV to LSV")
 sr = IO.File.OpenText(fromFile)
 sw = IO.File.CreateText(toFile)
 Do While (sr.Peek() <> -1)
 line = sr.ReadLine()
 fields = line.Split(","c)

Chapter 8 - VB 2005 by Schneider 36

Example 3 continued
 For i As Integer = 0 To fields.GetUpperBound(0)
 sw.WriteLine(fields(i).Trim)
 Next
 Loop
 sr.Close()
 sw.Close()
 sr = IO.File.OpenText(toFile)
 Do While sr.Peek <> -1
 lstFile.Items.Add(sr.ReadLine)
 Loop
 sr.Close()
End Sub

Chapter 8 - VB 2005 by Schneider 37

Example 3: Input File

California, 1850, Sacramento, Eureka

New York, 1788, Albany, Excelsior

Chapter 8 - VB 2005 by Schneider 38

Example 3: Output File

California

1850

Sacramento

Eureka

New York

1788

Albany

Excelsior

Chapter 8 - VB 2005 by Schneider 39

Join Function
• The reverse of the Split function is the Join function
• Join concatenates the elements of a string array into a string

containing the elements separated by a specified delimiter.
Dim greatLakes() As String = _
 {"Huron","Ontario","Michigan","Erie","Superior"}
Dim lakes As String
lakes = Join(greatLakes, ",")
txtOutput.Text = lakes

OUTPUT:
Huron,Ontario,Michigan,Erie,Superior

Chapter 8 - VB 2005 by Schneider 40

Merging Ordered Sequential Files
Algorithm

1. Open the two ordered files for input, and open a
third file for output.

2. Try to get an item of data from each file.
3. Repeat the following steps until an item of data is

not available in one of the files:
a) If one item precedes the other, write it into the

third file and try to get another item of data from
its file.

b) If the two items are identical, write one into the
third file and try to get another item of data from
each of the two ordered files.

Chapter 8 - VB 2005 by Schneider 41

Merge Algorithm continued

4. At this point, an item of data has most likely
been retrieved from one of the files and not
yet written to the third file. In this case, write
that item and all remaining items in that file to
the third file.

5. Close the three files.

Chapter 8 - VB 2005 by Schneider 42

Control Break Processing

• Used to create subtotals

• When there is special significance to the
changing of the value of a certain
variable, that variable is called a control
variable

• Each change of its value is called a
break.

Chapter 8 - VB 2005 by Schneider 43

Data for Example 5
Month Day Address Price
January 9 102 Elm St $203,000
January 20 1 Main St $315,200
January 25 5 Maple St $123,450
February 15 1 Center St $100,000
February 23 2 Vista Dr $145,320
March 15 5 Rodeo Cir $389,100

Chapter 8 - VB 2005 by Schneider 44

Task for Example 5

• Display sales by month and display the
monthly subtotals.

Chapter 8 - VB 2005 by Schneider 45

Output for Example 5

Chapter 8 - VB 2005 by Schneider 46

Comments

• Files to be processed can be opened and
closed within a single procedure.

• Files can also be opened just once the instant
the program is run and stay open until the
program is terminated.

• To open a file once, open it in the form’s Load
procedure and put the Close method and End
statement in the click event procedure for a
button labeled “Quit.”

