
CMPT-101 Midterm

• It's in class, 50 minutes long
• It's open book

– You can bring in any written notes or books
• no sharing allowed in the exam

– No electronics allowed!

• Bring your student card
– Open book doesn't mean "don't study”

• In fact, it’s probably best to study for this exam
as if it were a closed book exam

Write Your Midterm!

• You must write the midterm for the
section you are officially registered for
– check your registration if you are unsure
– even if you think you are sure, check

again!

Midterm Notes

• The best preparation is to practice
writing and tracing programs

• There will definitely be some questions
asking you to
– write C++ code
– read C++ code

• There could be short answer questions,
multiple choice, true or false, fill in the
blank, etc.

Midterm Covers Chapters 1-6

• Chapter 1, Introduction
• Chapter 2, Fundamental Data Types
• Chapter 3, Objects
• Chapter 4, Decisions
• Chapter 5, Functions
• Chapter 6, Iteration

Chapter 7: Testing and
Debugging

• You should read this chapter on your
own --- it is a very practical chapter that
will help you when you write your own
programs

• It won’t be covered on this midterm, but
it will be on the final!

Focus on the Essentials

• Using ints, double, strings, and
variables

• Understand concepts like the type and
scope of a variable

• Know how to use the graphics library
• if-else-if statements and boolean

expressions



Focus on the Essentials

• Functions
– Pass by value vs. pass by reference
– Returning values

• Loops and recursion:
– while  loops, do-while  loops, for -loops

– the basic idea of recursion

• Know about documentation, program
style, basic testing, algorithms, etc.

Lectures and Assignments

• Questions could be based on lecture
material, assignments, the textbook, or
the slides covered in class
– Material covered in lectures follows the

book, but with varying emphases and
sometimes different examples

Do the Textbook Problems

• Solve (and bring!) answers to the
textbook questions
– Study groups are an excellent idea

• Beware: it takes time to look up
answers in your notes, so you might not
have time to check your notes for more
than a couple of questions

Prepare a Study Guide

• Go through the textbook and all your
notes and prepare a study guide
emphasizing important points
– Write examples of important concepts that

you can read and understand at a glance

You can Write in Pen or Pencil

• However, if you write in pencil, we will
not re-mark an exam if you think you've
found a marking error

• The back of every exam page is blank,
so you’ll have lots of space to work out
questions

Read the Mailing List

• If we decide to release any extra study
materials, we will announce this to the
mailing list
– please don’t email asking about old exams

or answers to the textbook questions
– if we make any available, we’ll let everyone

know via the mailing list



CMPT-101

Week 7
C++ Programmers Do it with

class

What is a Class?

• A class is like a factory that creates
objects

• A class is a type; an object is a value
• C++ lets you create your own classes

– This is means C++ lets you create new
types

– This is a way of extending the language!

Object-oriented Design

• Classes are useful when you do object-
oriented design (OOD)

• To do object-oriented design, you must
first figure out what the objects and
classes in the problem are
– Easier said than done!
– Many programmers find this to be the most

interesting and challenging part of
programming

Example: Bank Software

• Suppose you are writing the software
for a bank

• Using object-oriented design, you must
first "discover" the relevant classes

• You can do this by brain-storming, and
listing common banking terminology
– This is the first step of design, and things

will be made more precise later

Bank Things

Customers, chequing accounts, savings
accounts, money, tellers, ATMs, money,
cheques,  credit cards, bank cards, debit
cards, PIN numbers, bills, interest, deposits,
monthly statements, bank books,
withdrawals, mutual funds, term deposits,
stocks, bank books, safety deposit boxes,
loans, mortgages, RRSPs, money orders,
etc...

Bank Software

• The software for a bank could easily
have classes for all the things
mentioned on the previous slide
– And more --- banks are relatively big,

complex organizations

• Using classes that relate directly to
every-day objects makes the software
easier to write, maintain, extend, and
understand



Bank Software

• Once you have some idea of the
classes involved, you need to write the
interfaces for these classes
– that is, specify exactly what objects of each

class can do, and what kind of information
they store

– e.g. a Customer has a name, has
accounts, can transfer money between
accounts, etc.

Bank Software

• When you’ve defined the interface for all
your classes, you must then figure out
how to combine them
– this involves writing algorithms and

functions that make all the objects work
together in the right way

Writing Your Own Classes

• Classes consist of two things:
– Member variables
– Member functions

• Classes have two parts:
– Public parts, accessible to all
– Private parts, accessible only to the

object's member functions

these are owned by
objects

Classes can also have protected parts,
but we won’t get into that in this course.

Rule of Thumb

All variables should be private
• Public variables can changed by any

function, and that makes it easy to
accidentally corrupt an object

• It’s usually best to make all variables
private, and to write member functions
that let you read and write their values

Private Variables

• In the textbook’s Time class, you can
only read the hours, minutes, and
seconds
– there’s no way to set them after a Time

object as been constructed!

• This is good design, and it means you
can never have a Time object with an
invalid time

A Class Template

class some_name {

public:

// ...

private:

// ...

}; // class some_name

Public variables and
functions go here

Private variables and
functions go here

Beware: forgetting this semi-colon often results in
subtle, hard to find errors!



A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

this is a constructor. A constructor is just
a special member function that is called
automatically when an object is created

Constructors always have

• the same name as the class

• no return type (they’re not
even void)

A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow
these are private member
variables; only member
functions in Tvshow can
read/write name_ and

start_

A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

the underscore at the end of
the names is a useful

convention --- it means that
these are private member

variables; it’s not necessary,
but it can make your code

easier to read

A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow
this is a function header for
TVshow’s constructor --- no

body has been defined yet; the
constructor body must assign
name_ and start_ their initial

values

Remember: a constructor is
just a special kind of function
that initializes an object, e.g.

usually just giving default
values to private variables

A TV Show Class
class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

TVshow::TVshow(string name, Time start)

{ name_ = name;

  start_ = start;

}

this is how we can define
the body TVshow's

constructor; notice that it's
outside the class body

A TV Show Class
class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

TVshow::TVshow(string name, Time start)

{ name_ = name;

  start_ = start;

}

the header for the
constructor must be the

same in both places, or you'll
get a compiler error



A TV Show Class

// ... TVshow class is up here ...

TVshow::TVshow(string name, Time start)

{ name_ = name;

  start_ = start;

}

the name of
the class

the name of a member function,
which in this case is a constructor;
a constructor always has the same

name as the class

A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class Tvshow

TVshow::TVshow(string name, Time start)

{ name_ = name;

  start_ = start;

}
TVshow show("Friends",Time(20,0,0));

here’s an example of
how you create a

TVshow object (e.g. in
main, or some other

function)

A TV Show Class

class TVshow {

public:

  TVshow(string name, Time start);

private:

  string name_;

  Time start_;

}; // class Tvshow

TVshow::TVshow(string name, Time start)

{ name_ = name;

  start_ = start;

}
TVshow show("Friends",Time(20,0,0));

this automatically calls
the constructor, which
sets the name and the

start time to the
supplied values

A TV Show Class

TVshow show(”Friends”,Time(20,0,0));

Name_: "Friends"

start_: Time(20,0,0)

show

This line creates a TVshow object and labels it show

representation of a
TVshow object in the
computer’s memory

A TV Show Class

TVshow show("Friends",Time(20,0,0));

Name_: "Friends"

start_: Time(20,0,0)

show

That’s all that TVshow can do right now --- it’s not very
useful! Now we want to add member functions that will

let us set and read a TVshow’s attributes.

Kinds of Member Functions

• Three main kinds of member functions
have special names
– constructors create and initialize objects
– accessors read values of private variables
– mutators change values of private

variables



A Class Template
class some_name {

public:

// ... constructors come first ...

// ... accessors come second ...

// ... mutators come third ...

private:

// ... make all variables private...

}; // class some_name

Don’t forget the semi-colon!

A TV Show Class
class TVshow {

public:

  TVshow(string name, Time start);  // constructor

  // accessors

  string get_name() const;

  Time get_start() const;

  // mutators

  void set_name(string name);

  void set_start(Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

by putting const here,
we are telling the compiler
that this function will not
change the value of any

member variables

A TV Show Class
class TVshow {

public:

  TVshow(string name, Time start);  // constructor

  // accessors

  string get_name() const;

  Time get_start() const;

  // mutators

  void set_name(string name);

  void set_start(Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

const comes after the
function header, but

before the semi-colon

A TV Show Class
class TVshow {

public:

  TVshow(string name, Time start);  // constructor

  // accessors

  string get_name() const;

  Time get_start() const;

  // mutators

  void set_name(string name);

  void set_start(Time start);

private:

  string name_;

  Time start_;

}; // class TVshow

Accessors should always
be const like this --- it’s
not an accessor if you

don’t use const!

A TV Show Class
// ... TVshow class defined up here ...

string TVshow::get_name() const

{ return name_;

}

Time TVshow::get_start() const

{ return start_;

}

void TVshow::set_name(string name)

{ name_ = name;

}

void TVshow::set_start(Time start)

{ start_ = start;

}

the bodies of
member functions
are defined outside

the class

notice that TVshow::
appears before each
function name; this is
how C++ knows that

these functions belong
to class TVshow

A TV Show Class
// ... TVshow class defined up here ...

string TVshow::get_name() const

{ return name_;

}

Time TVshow::get_start() const

{ return start_;

}

void TVshow::set_name(string name)

{ name_ = name;

}

void TVshow::set_start(Time start)

{ start_ = start;

}

any member
function of TVshow
is allowed to access
name_ and start_

also, any member
function is allowed
to call any other

member function in
the same class,

without using the
dot notation



A TV Show Class
// ... TVshow class defined up here ...

int main()

{

  TVshow show("Friends", Time(20,0,0));

  cout << show.get_name() << “ is the name of the show.”

  cout << "\nIt’s starting time is:\n"

       << show.get_time().get_hours() << "hours\n"

       << show.get_time().get_minutes() << "minutes\n"

       << show.get_time().get_seconds() << "seconds\n";

  show.set_name("Enemies");

  cout << show.get_name() << " is the show’s new name";

}


