
Assignment 5, Population Modeling

CMPT 102

03-1

1 The Problem

You will be simulating the change in the populations of two species in a
given area. The two species have a predator-prey relationship. We’ll call the
species “predator” and “prey”—you can think of whatever species you like.

A growth model for a predator-prey population was independently sug-
gested by Lotka and Volterra [1]. We use the following variables in the
system:

N1 density of the prey population (0 ≤ N1 ≤ 1)
N2 density of the predatory population (0 ≤ N2 ≤ 1)
r1 rate of increase in of the prey population, in the absence of

predation (birth rate) (r1 > 1)
d2 mortality rate of the predator, absent starvation (0 < d2 < 1)
P coefficient of predation (P ≥ 0)
P2 predatory effectiveness of the predator (0 ≤ P2 ≤ 1)

The growth rate in the prey population, N1 is

dN1

dt
= r1N1 − PN1N2 ,

and the rate of change in the predator population, N2 is

dN2

dt
= P2N1N2 − d2N2 .

Both N1 and N2 are the fraction of the total possible population that is
present, so it should always be the case that 0 ≤ N1 ≤ 1 and 0 ≤ N2 ≤ 1.

We will simulate the populations of these two species using these formulae.
In order to make things a little more interesting, we will consider the two

population in a large area, broken up into a grid. The populations in each

1



area obey the above relationships. In addition to this, some percentage of
the population in a square moves to a neighbouring square at each step. We
add the following parameters:

m1 the fraction of the prey population that moves to each of
the four neighbouring squares with each step (0 ≤ m1 ≤ 1/4)

m2 the fraction of the predator population that moves to each of
the four neighbouring squares with each step (0 ≤ m2 ≤ 1/4)

There should be no migration past the edges of the area. So, for some of
the squares, migration happens in less than four directions:

The following parameter settings make for an interesting system. You can
also experiment and see if you can create situations that look very different
from this one, but still like some real population.

r1 = 1.1

d2 = 0.2

P = 2.0

P2 = 0.6

m1 = 0.05

m2 = 0.05

2 Program details

You should create a program called pop.c to implement this situation over
several seasons.

The above formulae give the rate of change in N1 and N2. We will be
simulating this population in discrete steps. To get from one step to the
next, we will set N1 to N1 + dN1

dt
and N2 to N2 + dN2

dt
.

When doing this, you might get one of the Ni either larger than 1 or
smaller than 0. You should check at each step and make sure that each Ni

2



stays in the correct range. If it is larger than 1, set it to 1; if it is less than
0, set it to 0.

After you have calculated the new N1 and N2, do the migration. For the
prey, N1 · m1 of the prey should move to the square above the current one;
the same number should move to the square below, left and right.

This is trickier than it seems at first glance. You should calculate all of
the migration numbers on the original values. That is, if you migrate some
individuals south, you should not migrate any of them back north when you
calculate migration for that square. That means you probably need another
set of storage to hold the numbers of individuals that are migrating. You
want to calculate the migrating numbers from the original array, but not
change it until you’re done these calculations.

You are not required to do any input—all of the parameters (r1, d2, etc.)
and the initial populations can be set in the code itself. You should make it
easy to change these values if you want to explore another type of population,
though.

3 The library

In order to get you started and get you over some of the harder parts of the
assignment, you should start with the libpopsim.h library, provided by the
instructor.

Before you #include this library, you should define the symbolic con-
stants WIDTH and HEIGHT which give the size of the grid of squares for the
simulation.

So, in your program, you should have something like this:

#define WIDTH 10

#define HEIGHT 10

#include "/gfs1/CMPT/102/a5/libpopsim.h"

This library contains the following type definition:

typedef struct {

double pred,prey;

} region;

This structure should be used to store the information about a single grid
square, with pred being the fraction of the maximum predator population

3



present in the area and prey being the fraction of the maximum prey popu-
lation present.

Also defined is the function draw img with the following prototype:

void draw_img(region pop[WIDTH][HEIGHT], int generation);

This function creates an image file called pop00000.ppm in the current di-
rectory, where 00000 is replaced with the value generation. The array pop

should contain the current populations in each square.
An image like this will be created:

The number of dots in each square represents the number of predators and
prey in each location. If several of these images are appropriately combined,
they should form an animation of the population dispersal. See Section ??

for information on working with the images.

4 Working with the images

Once you have your program working and creating images, you’ll probably
want to see what they look like.

4.1 In the lab

Viewing the images is far easier in the lab than from your own computer.
You can view a single image with the command display pop00001.ppm.
You can view all of the images, as frames of an animation with a command

like this:

animate -delay 10 -pause 2 *.ppm

Here, the number after -delay is the 1/100-ths of a second to pause between
frames and and number after -pause is the number of seconds to wait before
repeating the animation.

4



If you want to convert the images into an animated GIF file, which can
be viewed with a web browser and put on a web page, you can use this
command:

convert -delay 10 -loop 0 *.ppm popanim.gif

This will create a file called popanim.gif containing the animation. The
number after -delay is the 1/100-ths of a second to pause between frames.
The -loop 0 part indicates that the animation should loop after finishing.

4.2 At home

This is going to be a pain. You might be better off to get the program
working and then go to the lab to play with the images.

You can transfer the frames of the image to your home computer with
FTP and view them in your favourite image viewer. If you want to convert
them to another format before transferring them, you can try a command
like one of these, depending on the image type you want:

convert pop00023.ppm pop00023.bmp

convert pop00023.ppm pop00023.gif

convert pop00023.ppm pop00023.png

You can also create and animated GIF as described above and transfer
that.

5 Hints

Your main() function could get quite large. You might consider breaking it
up and creating a couple of functions so it is easier to understand.

You’ll probably need to access your array of populations from each of
these functions. Since it is a fairly large data structure, you might want to
make it a global variable instead of passing it around as a parameter.

• Remember to initialize the values in all of the variables that need it. If
you create an array that needs to be initialized, you’ll have to write a
for loop to do that.

5



• Be careful about the edges of the array. Don’t try migrate any indi-
viduals from a square in the top row to the square above—there’s no
square there.

• Suggested plan of attack:

1. get the program working for a single area;

2. get the program working on a grid of regions, with no migration

3. get the image output working;

4. finally, add migration between regions.

6 References

1. Smith, Robert Leo, Elements of Ecology, third edition, Harper-
Collins, 1992.

7 Submitting

You have to use the submission server to submit your work. You only need
to submit the file pop.c. You can do this by typing these commands:

tar cvf a5.tar pop.c

gzip a5.tar

Then, submit the file a5.tar.gz.

6


