
© Copyright Russell Tront, 2000 . Page 13-1

13. Java Input and Output

CMPT 101: For an introductory programming course, it is
only necessary to study sections 13.1, 13.5, 13.9, and 13.10.

Java’s input and output (I/O) programming features are not
simple. There are a bewildering number of useful classes
for input/output! In addition, to get these classes to do your
input and output, you usually have to have several of them
working together for you.

Java I/O is based on the concept of ‘streams’. A stream is a
hose for data coming in from input devices like a keyboard,
file, or a network connection. The keyboard stream
System.in is already available to you. For files and network
connections, you will have to give the particular stream
constructor that you need the name of the file or Uniform
Resource Locator (URL) of the network point from which
you wish to read. Similarly, there are output streams.

In addition, there are filtering streams that are like a hose
that you can connect to another hose. Filtering streams
convert the data passing through them from one format
(e.g. two’s complement integer) to another (Unicode or
ASCII) characters. The latter format is required for North
American keyboards, printers, and DOS/NT console
windows. e.g. For output of int variables to a human
readable file, you want to connect a filtering hose to a
destination hose which terminates in an actual file.

© Copyright Russell Tront, 2000 . Page 13-2

Java has a wonderful array of filtering, and source and
destination streams. The can provide data compression,
compute checksums, connect to web sites, etc.

REQUIRED READINGS: none.

OPTIONAL READINGS: Ch. 9 of [Savitch2001]

© Copyright Russell Tront, 2000 . Page 13-3

Section Table Of Contents

13. JAVA INPUT AND OUTPUT.......................... 1

13.1 DATA FORMATS AND CONVERSIONS............................4

13.2 INTRO TO STREAMS...7

13.3 SUBCLASSES OF INPUT STREAM10

13.4 SUBCLASSES OF READER ..12

13.5 CONNECTING STREAMS AND HYDRANTS...................13

13.5.1 More on Keyboard Reading.. 18

13.6 SUBCLASSES OF OUTPUTSTREAM20

13.7 SUBCLASSES OF WRITER...22

13.8 WHICH ONES ARE REALLY SOURCES AND FILTERS ..23

13.8.1 Actual Sources.. 24

13.8.2 Input Filters ... 25

13.8.3 Actual Sinks ... 26

13.8.4 Output Filters... 27

13.9 FILE I/O..28

13.9.1 Text I/O.. 29

13.9.2 Binary I/O ... 30

13.9.3 Random-Access I/O ... 31

13.10 SUMMARY ...35

© Copyright Russell Tront, 2000 . Page 13-4

13.1 Data Formats and Conversions

In most computer languages, there are only two general
formats: textual and binary.

In conventional text format, the data is in ASCII (American
Standard Code for Information Interchange) or, for IBM
mainframe computers, in EBCDIC. These are just mapping
tables indicating what byte value is used inside a computer,
and for keyboard and printer, to store say an upper case A,
or a comma. If you want to print a number out so that a
human can read it, it must be converted from whatever
internal numerical format is has to a sequence of bytes
containing the ASCII digit characters. Unfortunately,
different ethnic languages use the same ASCII codes above
128 for different accented characters.

In conventional binary format, numbers are stored in non-
ASCII form. These are more compact and easier to compute
with. Unfortunately, different computers store (particularly
floating point) numbers in binary form differently from each
other. In addition, there is a terrible incompatibility
between computer processors as to whether the most
significant byte of an integer or floating point number
should be lower or higher in RAM memory. When sending
such numbers to files or networks, the byte with the lowest
address is sent first. However, if this data goes to a
computer that stores things the other way around, chaos
results.

So, before Java things were sometimes not very compatible,
but were relatively simple:

© Copyright Russell Tront, 2000 . Page 13-5

1) characters were written directly in binary as no
conversion was needed (at least if you were using the
correct type of printer).

2) numbers written to printers and character windows
had to be converted (called formatted I/O) from internal
format (e.g. twos complement) to ASCII characters (e.g.
‘1’ ‘2’ ‘8’ ‘6’ ‘4’ ‘3’ ‘.’ ‘9’). Most programming
languages had functions like System.out.println(int) to
perform these functions, and reverse ones for reading.

3) numbers were written directly to files and network
connections in binary with no conversion (and hopefully
you didn’t have a ‘which end first’ problem reading
them on another computer).

Java attempts to alleviate the representation, ethnic, and
byte-ordering difficulties mentioned above. Java adopts
international formats for storing numbers, and
international conventions for whether the least significant
or most significant byte of a number is sent to a file or
network connection first. (Java uses ‘big end’ first like Sun
computers and most network standards. The Intel
microprocessor used in IBM PCs uses ‘little end’ first.)

In addition, Java adopted the so-called Unicode character
set. This set uses two bytes to store each character. Most
Java GUI I/O is based on Unicode characters, and there are
many input and output stream classes to help convert
characters coming in and out of Java from non-Java files.

Unfortunately, now that there are two bytes for each
character, Java had to adopt an character byte ordering
convention: most significant byte first. And, it is no longer

© Copyright Russell Tront, 2000 . Page 13-6

straight forward to write characters to a printer or DOS/NT
console window as the underlying hardware requires ASCII
bytes, not Unicode.

Now with Java:

1) Java characters (2 bytes) cannot be read directly to or
from ASCII I/O (1 byte) devices, but must go through
conversion functions or filtering streams.

2) However, you can also write Java Unicode characters in
binary (i.e. directly), storing the 16 bits directly for
later use when read back into Java.

3) Java number variables can be read and written to files
and network connections in binary without conversion,
and are compatible with network transmission
standards and some computers. They are always
compatibly read by another Java program.

4) To print Java numbers for humans to read, they have
to be converted. However, you now have two choices.
You can convert them to ASCII with a PrintStream like
System.out. Or you can convert them to Unicode
characters using either a PrintWriter, or the number’s
toString() method. You might use the latter for writing
to a Java GUI text box (which is designed to
display/edit/enter Unicode characters).

© Copyright Russell Tront, 2000 . Page 13-7

13.2 Intro to Streams

There are 5 subclasses that form the first part of the
inheritance tree for Java I/O.

Object subclasses:

1) /*abstract*/ InputStream

2) /*abstract*/ OutputStream

3) RandomAccessFile

4) /*abstract*/ Reader

5) /*abstract*/ Writer

The subclasses of InputStream are designed simply to read
bytes or arrays of bytes. They do not know how to convert
the bytes to Unicode characters, nor how to read some
ASCII digits and convert them into twos complement
representation for storage in an ‘int’ variable. Nonetheless,
the constructors of its further subclasses provide your
program with a hose that has data coming out of it a byte at
a time. The constructors normally take some parameter
that indicates where the data should be sourced from (e.g. a
file name). There is a default input stream provided
by Java called System.in that is pre-connected for
you to the standard input device (usually the
keyboard).

The subclasses of OutputStream do the opposite.

RandomAccessFile is a special kind of subclass for streams
on which you can both read and write. In addition, you can

© Copyright Russell Tront, 2000 . Page 13-8

seek() to any position in the file before beginning to read
and write. Thus, you can write into the middle of a file.
Random access is also good for writing primitives to the file
in a machine-independent binary format. That means that
an integer is written to file is its compact twos complement
form. This form is unreadable to humans, but requires
little format conversion, and is very compact (both good for
reading back in later).

Random access files are not used very frequently. To get
this same binary I/O functionality requires putting special
filters streams on existing input or output stream
subclasses.

Reader streams allow you to read into Unicode char
variables or char[] arrays. Various concrete subclasses will
allow you to read characters from a file (with any
conversion you want (say ASCII to Unicode), read from a
String, read from a pipe (some output stream), etc.

Writer streams allow you to write Unicode characters. You
can write a char or char[] to a file, to a string, to a pipe. Or,
to a byte stream with appropriate conversion.

InputStreams are very similar to Readers. The main
difference is the former has read byte member functions
while the latter has read char member functions.

OutputStreams are very similar to Writers. The former has
write byte member functions while the latter has write char
member functions.

The subclasses of these 4 have enhanced functionality as
indicated by their name (though you will have to look up

© Copyright Russell Tront, 2000 . Page 13-9

the details in the Java documentation). Here are some of
the subclasses of each of the 4 classes we have just
discussed.

© Copyright Russell Tront, 2000 . Page 13-10

13.3 Subclasses of Input Stream

1) FileInputStream - includes reading bytes from pseudo
file devices like keyboard, network sockets, etc.)

2) StringBufferInputStream – read bytes from a
StringBuffer in RAM memory.

3) ObjectInputStream - allows you to read whole objects at
once from a machine-independent binary source.

4) PipedInputStream – can read from a
PipedOutputStream.

5) ByteArrayInputStream – read portion at a time from a
byte array in memory.

6) /*abstract*/ FilterInputStream with subclasses:

a. DataInputStream – allows you to read all the
primitives individually from binary, machine-
independent format. Note: the readLine()
function is deprecated and you should use the one
in BufferedReader instead.

b. BufferedInputStream – for efficiency, data is
acquired from the underlying source in big hunks.
Application reads out bytes from the big buffer as
needed, so each read does not requiring going to
the underlying source device.

c. PushPackInputStream

d. CheckedInputStream – for streams with
checksum.

© Copyright Russell Tront, 2000 . Page 13-11

e. various InflatorInputStreams for GZIP, Zip, and
Jar compressed file formats.

f. DigestInputStream

g. LineNumberInputStream – counts lines.

© Copyright Russell Tront, 2000 . Page 13-12

13.4 Subclasses of Reader

1) InputStreamReader – a filter that converts a byte input
stream to a character stream using a locale and machine-
dependent conversion mapping.

a. FileReader – can be opened by supplying
constructor with a file name and a locale and
machine-dependent mapping.

2) BufferedReader – reads buffer of input at a time, for
efficiency. Also, great for reading a line of input
characters (up to line terminator) from another reader.

a. LineNumberReader

3) PipedReader

4) StringReader

5) CharArrayReader

6) /*abstract*/ FilterReader

a. PushBackReader

© Copyright Russell Tront, 2000 . Page 13-13

13.5 Connecting Streams and Hydrants

To read, you have to get an object like a fire hose for data,
and connect it to a data source like a fire hydrant. The
default fire hydrant that is provided by Java is named
System.in and is of some subclass of InputStream. The
hose you connect to it is an InputStreamReader instance,
which is good for converting ASCII keyboard input into
Unicode characters needed by your Java program.

To do output, you get a hose of type PrintStream and
connect it to whatever output device you want. System.out
is a PrintStream instance that is pre-connected for you to
the standard output device, usually your command line (i.e.
DOS or Unix shell) window. Note that PrintStream has
some characteristics of the newer, better PrintWriter, in
that both can convert Unicode to ASCII for printers and
command line windows. PrintStream has not been
abandoned because that would break to many existing Java
programs.

To get what you want, you often have to connect a number
of hoses together. In fact, Java has the worst input this
author has ever seen for reading in a simple integer from
the keyboard. Java I/O is very flexible, but consider how
many lines it takes to read an integer!

© Copyright Russell Tront, 2000 . Page 13-14

InputStreamReader isr;
isr = new InputStreamReader(System.in);
BufferedReader br;
br = new BufferedReader (isr);
String s = br.readLine();
s = s.trim();
int i = Integer.parseInt(s);

Isn’t that horrible?

Fortunately, the first 4 statements above can be compressed
down to 1 statement (which usually spans two lines) as
follows:

BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));

This takes System.in and cloaks it behind a
InputStreamReader converter hose that converts from
ASCII to Unicode. This is fed to a BufferedReader that is a
kind of hose that reads a whole line at a time. A buffered
reader provides a whole line (up until you press the
Enter/CarriageReturn key) so your program can use all the
digits of a number. BufferedReader is one of the few
streams with a very useful readLine() member function
which will fill a string variable with more than one
character.

In addition, the last 3 lines of the above input code can be
compressed down to one, as shown here:

i = Integer.parseInt(br.readLine().trim());

© Copyright Russell Tront, 2000 . Page 13-15

This calls the readLine() function of the BufferedReader,
which returns a String. The string may have leading and
trailing white space (e.g. tabs, or space characters) that will
mess up the parsing. So the String instance function
named trim() is called to remove leading and trailing white
space. Then the static Integer function called parseInt() is
called. It takes a string of Unicode characters like
“12345.67” and converts it into an int (stored in just 4 bytes
in twos complement form).

Note that once you have a BufferedReader constructed in
your program, you don’t need another each time you are
going to read some data. You construct the reader just
once, and then use its readLine() member function over and
over again.

So perhaps Java input is not as bad as I indicated. But
wait! In addition, the readLine() and parseInt() functions
can throw exceptions.

readLine() can potentially throw an IOException or
subclass of IOException (e.g. EndOfFile, floppy drive empty,
etc.). And the parseInt() static function can throw a
NumberFormatException (e.g. try entering “Mary” when
the program is trying to read an integer).

So, either the function this code is within must advertise
that it throws these exceptions, or the above code must be
within a try block with an appropriate catch clause(s)!

© Copyright Russell Tront, 2000 . Page 13-16

Here is a complete test program for reading integers.

//file ReadKeyboard.java

import java.io.*; //Needed for Readers.

class ReadKeyboard{

 public static void main(String[] args){

 System.out.println("Enter an integer:");

 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in), 1);

 //the 1 above helps a Win95 bug.

 try {

 String s = (br.readLine()).trim();
 int i = Integer.parseInt(s);

 System.out.println(
 "The integer read was " + i);
 }
 catch(Exception e){
 System.out.println(e.toString());
 System.exit(1);
 }
 }
}

© Copyright Russell Tront, 2000 . Page 13-17

Note that the catch(Exception e) clause above will catch
either IOException or NumericFormatException. Not only
that, but when you print e.toString(), each different kind of
exception will by default print a slightly different message
indicating what kind of exception it was. (Unfortunately,
the programmer of the parse functions did not put much
useful in the contained string of the exception, so
e.toString() which prints the exception type is more useful
than e.getMessage()). If you wanted to deal with
NumericFormatExceptions differently (than IOExceptions),
and perhaps ask the user to re-enter their data, then you
need separate catch clauses for each exception type.

If you have been using the [Savitch2001] textbook, you
might be curious how his SavitchIn class provides
introductory students with simplified input:

• SavitchIn.readLineInt() trims the string, calls parseInt()

and catches NumberFormatException. To read its data it
uses:

• SavitchIn.readLine() that provides much of the
functionality of a BufferedReader readLine(), in that it
reads a whole line and discards the line terminator. To
read its data it uses:

• SavitchIn.readChar() that catches IOException. To read
its data it uses:

• System.in.read() that reads a byte from an ASCII input
device of type InputStream. This particular function
expands the byte into a 2 byte Unicode character.

© Copyright Russell Tront, 2000 . Page 13-18

13.5.1 More on Keyboard Reading

The previous section gives a good example of how (awkward
it is) to read from the keyboard in a console application.
Further details are available in the String sub-section of the
course. Recall for example, the functions:

Byte.parseByte(String)
Short.parseShort(String)
Integer.parseInt(String)
Long.parseLong(String)
Float.parseFloat(String)
Double.parseDouble(String)
new Boolean(String).booleanValue()

Note that in Java 1.1 and earlier, there was no parseFloat()
and parseDouble(). Instead you had to use a round-about
method similar to that shown above for booleans.

These conversions from strings to primitives are very
important, as Java has no facilities for formatted input such
as C’s scanf() function, or C++’s overloaded input extraction
operator.

Unfortunately, the information just mentioned does not
explain how to read in primitives from the keyboard when
there are multiple primitives on a line. The secret to doing
this is to use the StringTokenizer class or a
StreamTokenizer reader. They scan their input and break
the incoming characters up into ‘tokens’. These are
available one at a time through the nextToken() member
function call. The type of the next token (either a number

© Copyright Russell Tront, 2000 . Page 13-19

or non-numeric string is also available. You can specify
what characters are to be considered delimiters: spaces,
commas, tabs, newlines, etc. Be careful though, as these
classes don’t seem to read floating-point numbers in
scientific notation very well (e.g. 6.02e26).

© Copyright Russell Tront, 2000 . Page 13-20

13.6 Subclasses of OutputStream

1) FileOutputStream - includes writing to pseudo file
devices like keyboard, network sockets, etc.)

2) ObjectOutputStream - allows you to write whole objects
at once in machine-independent binary.

3) PipedOutputStream – can sink to a PipedInputStream.

4) ByteArrayOutputStream – to write a bit at a time to a
byte array in RAM memory.

5) /*abstract*/ FilterOutputStream with subclasses:

a. DataOutputStream – allows you to write all the
primitives individually in a binary, machine-
independent format.

b. BufferedOutputStream – for efficiency writes to a
buffer, and when buffer is full only then outputs
the whole thing to sink. If you want the data out to
the sink immediately, use flush().

c. CheckedInputStream – for streams terminated by
checksums.

d. various DeflatorOutputStreams for GZIP, Zip, and
Jar compressed file formats.

e. DigestOutputStream

f. PrintStream – this is the underlying type for
System.out and System.err. But like the
readLine() function in DataInputStream, it does
not handle Uncode characters very well. Like that

© Copyright Russell Tront, 2000 . Page 13-21

function, the whole Printstream class has been
deprecated. For reasons of backward compatibility,
Printstream will still be used for System.out and
System.err, but all new code should be written to
use PrintWriter.

© Copyright Russell Tront, 2000 . Page 13-22

13.7 Subclasses of Writer

1) OutputStreamWriter – a filter that provides character
output functions which are converted to a byte stream
using a locale and machine-dependent conversion
mapping.

a. FileWriter – can be opened by supplying
constructor with a file name and a locale and
machine-dependent mapping.

2) BufferedWriter – allows character writes to be buffered
for efficiency. Only if the buffer is full does the data
actually get send to the sink device. You can flush() it if
you need the data output immediately.

3) PrintWriter – a great class for writing any of the
primitives to a character stream in human readable form.

4) PipedWriter – for writing characters to a PipedReader.

5) StringWriter – for writing characters a few at a time to
compose a String in RAM memory.

6) CharArrayWriter – for writing characters a few at a
time to a char[] in RAM memory.

7) /*abstract*/ FilterWriter – a base class if you want to
design your own writer filter class.

© Copyright Russell Tront, 2000 . Page 13-23

13.8 Which Ones Are Really Sources and Filters

Unfortunately, several Java class which do filtering are not
descendents of the abstract filtering classes. In all the
many Java I/O classes, it is therefore hard to tell which
ones are really hoses connected to some actual sink or
source, like a file or network or array. Or, to tell which ones
are really just filters. This section contains 4 subsections.
The first lists actual sources, the second input filters, the
third actual sinks, and the fourth output filters.

© Copyright Russell Tront, 2000 . Page 13-24

13.8.1 Actual Sources

These classes are input hoses that actually connect to some
data source (vs. a filter that just modifies already incoming
data). To get one, you have to tell the constructor what
actual source of data the far end of the hose is connected to
(e.g. the name of the file).

FileInputStream
RandomAccessFile
URL.getInputStream or
URLconnection.getInputStream.
ByteArrayInputStream
PipedInputStream
StringBufferInputStream

FileReader
CharArrayReader
PipedReader
StringReader

© Copyright Russell Tront, 2000 . Page 13-25

13.8.2 Input Filters

This section lists filters; hoses which connect to other hoses
rather than to an actual data source.

DataInputStream
BufferedInputStream
ObjectInputStream
SequencedInputStream
CheckedInputStream
DigestInputStream
various InflatorImputSteam subclasses
LineNumberInputStream
PushbackInputStream

InputStreamReader
BufferedReader
CharArrayReader
LineNumberReader
PushBackReader
/*abstract*/ FilterReader
StreamTokenizer

© Copyright Russell Tront, 2000 . Page 13-26

13.8.3 Actual Sinks

These classes provide actual sinks for data. During their
construction, you have to specify the actual data sink that
the downstream end of the hose is connected to (e.g. file
name).

FileOutputStream
RandomAccessFile
URLconnection.getOutputStream()
PipedOutputStream
ByteArrayOutputStream

FileWriter
StringWriter
CharArrayWriter
PipedWriter

© Copyright Russell Tront, 2000 . Page 13-27

13.8.4 Output Filters

Not all of the filters are descendents of the filtering classes.
This sub-section lists those output classes that provide a
hose that is not connected to an actual destination sink, but
instead just to another hose which goes eventually to a sink.

DataOutputStream
BufferedOutputStream
ObjectOutputStream
PrintStream (deprecated)
CheckedOutputStream
DigestOutputStream
various DeflatorOutputStream subclasses

OutputStreamWriter
BufferedWriter
PrintWriter
/*abstract*/ FilterWriter

© Copyright Russell Tront, 2000 . Page 13-28

13.9 File I/O

It would be nice to have a whole section here on file I/O.
However there is not time and there are other
complications.

There are two kinds of file I/O:
• Text I/O
• Binary and Random Access I/O

© Copyright Russell Tront, 2000 . Page 13-29

13.9.1 Text I/O
When the compiler is reading your programs, it is doing
input text I/O. Text I/O means two things:

1) You want basically to read characters. Perhaps you
want to read numbers too, but they are written in
either ASCII or Unicode representation. If you are
reading numbers written in ASCII or Unicode, you
might want to call certain functions that will read the
next string of characters, and hoping they are digits,
convert them into an internal form like int or float.

2) You are dealing with lines of text, each terminated with
a line termination character. The line termination you
get when pressing the Enter/CarriageReturn key is
slightly different on an IBM PC vs. MacIntosh vs. Unix
machine. However, Java mostly hides the difference.
The point here though is that in addition to reading
single characters, you may also use readLine()
functions to read as many characters as there are in the
next line.

Many other kinds of applications use text I/O. Notice that
there is usually conversion. Either:
• ASCII to Unicode.
• Internal to external representation of numbers
• Line terminators removed, or modified to be compatible

with the brand of OS (Mac, PC, Unix).

© Copyright Russell Tront, 2000 . Page 13-30

13.9.2 Binary I/O
Binary I/O is basically writing or reading the bytes exactly
as they are, without conversion. The concept of a line
terminator disappears as it is just another byte(s) going in
or out. So there is no concept of reading a ‘line’. To specify
how many bytes to read or write, you basically tell the
function the byte count, or tell it to read an float (which is
knows is 4 bytes long in internal format.

On reason not to do format conversion in binary I/O is that
it is silly to convert an int from twos complement internal
format, to human readable digit characters on disk or
network, only to later read them back in and have to
convert they back into the internal form. First, this slows
the computer down, and second it takes extra space on disk
to store the characters ‘1’ ‘2’ ‘8’ ‘6’ ‘4’ ‘3’ ‘.’ ‘9’ instead of
just 4 bytes.

© Copyright Russell Tront, 2000 . Page 13-31

13.9.3 Random-Access I/O

Many times when you are using binary I/O you might also
be using Random-Access I/O. Random access I/O permits
you to seek() to various places in a file without having to
read half the file to get to the middle of the file. This would
be ridiculous in this modern day of disks (c.f. tape storage).

To move to the beginning of 1000th byte, you just call
seek(999). The bytes are numbered starting at zero. You
can also consider this to mean skip the first 999 bytes.

What is even more interesting is that you are allowed to
write into the middle of a binary file. This is unlike text
files which, for historical reasons related to tape drive
hardware, do not allow you to write into the middle of a file
without messing up the rest of the file beyond the write
point.

Most databases are implemented using binary, random-
access files containing fixed length records. To instantly
read the 57th record you just do:

 seek(56 * recordLength);

© Copyright Russell Tront, 2000 . Page 13-32

Java has a class called RandomAccessFile for doing binary
random-access I/O. The RandomAccessFile class supports
these functions from the so-called DataOutput interface.

Method Explanation
writeBoolean(
boolean v)

Writes the boolean ‘v’ as a byte
in binary format.

writeByte(int v) Writes ‘v’ as a one-byte value
in binary format.

writeChar(int v) Writes ‘v’ as a two-byte binary
unicode character.

writeDouble(double
v)

Writes ‘v’ as an 8-byte binary
floating-point number.

writeFloat(float v
)

Writes ‘v’ as a 4-byte binary
floating-point number.

writeInt(int v) Writes ‘v’ as a 4-byte binary
signed integer.

writeLong(long v) Writes ‘v’ as an 8-byte binary
signed integer.

writeShort(int v) Writes ‘v’ as a 2-byte binary
signed integer.

writeBytes(String
s)

Writes ‘s’ as a sequence of
bytes (high 8 bits of each
character in ‘s’ are discarded)
in binary format.

writeChars(String
s)

Writes ‘s’ as a sequence of Java
unicode characters in binary
format.

writeUTF(String s
)

Write ‘s’ as a string using
binary UTF-8 coding.

© Copyright Russell Tront, 2000 . Page 13-33

RandomAccessFile class also provide the DataInput
interface functions:
Method Explanation
boolean
readBoolean()

Reads a boolean from the
file.

byte readByte() Reads a signed byte from
the file.

int
readUnsignedByte()

Reads an unsigned byte
from the file.

short readShort() Reads a signed 16-bit
number from the file.

int
readUnsignedShort()

Reads an unsigned 16-bit
number from the file.

char readChar() Reads a 16-bit Unicode
character from the file.

int readInt() Reads a signed 32-bit
integer from the file.

long readLong() Reads a signed 64-bit
integer from the file.

float readFloat() Reads a float (32-bit) from
the file.

double readDouble() Reads a double (64-bit)
from the file.

String readLine() Reads a line of text
terminated by a newline
character (‘\n’), or end-of-
file.

Note that Java has terrible support for writing arrays of
characters or arrays of bytes, even though these are
common in other programming languages.

© Copyright Russell Tront, 2000 . Page 13-34

However, Java has great support for writing to existing
databases using a protocol called Structured Query
Language (SQL). It also has interesting support for writing
whole objects (including variable length strings referred to
by the instance attributes) to a file. However, since these
records are not all the same length, because the strings
might be different lengths from object to object of the same
class, you cannot use the instance random-access abilities of
Java with such Object files.

© Copyright Russell Tront, 2000 . Page 13-35

13.10 Summary

If you are writing primitives out into human readable form,
use the print() and println() functions in PrintWriter.
PrintWriter (and the deprecated PrintStream) provide
different print functions that convert from binary to String
for each different primitive type. Also, as you have seen
throughout the course, they are great for concatenating
strings and primitives together for output (as the primitives
will all be converted to strings using the primitive’s
toString() method). You can also use most class’s toString(
) member functions (e.g. Integer.toString()) to convert
internal binary numbers to Strings or char[] for display on
graphical screens.

If you are doing binary output (i.e. no conversion) of
primitives, use either RandomAccessFile or a
DataOutputStream.

If you are reading primitives without conversion in from a
binary input, use DataInputStream or RandomAccessFile.

Finally, if you are reading in primitives from the keyboard,
read strings using readLine() from a BufferReader sourcing
from an InputStreamReader. Alternatively, get the basic
string from GUI text field objects. You then have to parse
them (e.g. Integer.parseInt()), or use a tokenizer (e.g.
StringTokenizer or StreamTokenizer). Parsing or
tokenizing converts them from human readable strings into
the appropriate binary format for each primitive.

