
MACM 101 Sample Questions
Fall 2019, Surrey

ANSWER KEY

IMPORTANT! The following questions are just a collection of practice questions. This is not necessarily
the same length, or mix of questions, as the actual final exam.

1. In the following questions, the letters are the regular 26 letters a, b, c, ... z.

(a) How many different 4-letter strings are there?

Solution: 264 = 456976

(b) How many different 4-letter strings are there such that not all the letters are the same?

Solution: 264 − 26 = 456950

(c) How many different 4-letter strings are there such that no two letters are the same?

Solution: 26 · 25 · 24 · 23 = 358800

(d) How many different 4-letter strings are there such that two, or more, of the letters are the same?

Solution: 264 − 26 · 25 · 24 · 23 = 98176

2. How many different ways can cars be stopped at a 4-way stop? Take into account the direction they
are going: left, right, or straight. What if there are pedestrians who want to cross as well?

Solution: There are 4 roads into a 4-way stop, and each road could be in one of 4-states: no car,
a car turning left, a car turning right, or a car going straight. Thus, there are 44 = 256 different
possible situations at a 4-way stop.

Now lets add pedestrians. Each of the 4 roads could be crossed in two different directions, and so
there are a total of 8 possible pedestrians crossing. Assuming at most one pedestrian per crossing,
there are 28 = 256 possible ways pedestrians could cross. Combined with the cars, that means
there are 44 · 28 = 256 · 256 = 65536 4-way stop configurations of cars and pedestrians. That’s a
lot — 4-way stops can be tricky!

3. Prove that if
(
n
k

)
=
(

n
k+1

)
, then n must be odd.

1



MACM 101
Sample Questions
ANSWER KEY Page 2 of 11

Solution: You can show n = 2k + 1 by a step-by-step simplification of
(
n
k

)
=
(

k
k+1

)
.

4. Give a propositional logic expression having only the variables r, y, and g that is true just when exactly
one of r, y, or g is true, and false otherwise.

Solution: One such expression is: (r ∧ ¬y ∧ ¬g) ∨ (¬r ∧ y ∧ ¬g) ∨ (¬r ∧ ¬y ∧ g).

5. Give a logically equivalent expression for ¬p that does not use ¬, and prove that it is logically equivalent
to ¬p. The only symbols you can use in your answer are p, ∧, ∨, →, T0, and F0 (you can use each of
them 0 or more times).

Solution: p→ F0 works. To prove it’s logically equivalent to ¬p, note that if p is 1, then p→ F0

is the same as 1 → 0, which is 0. If p is 0, then p → F0 is the same as 0 → 0, which is 1. Thus
p→ F0 always has the same truth value as ¬p, and so they’re logically equivalent.

6. Define the following propositional logic terms, and also give a short example of each:

(a) Tautology

Solution: A tautology is a compound statement that is true for all assignments of truth
values to its variables. For example, p ∨ ¬p and p→ p are tautologies.

(b) Contradiction

Solution: A contradiction is a compound statement that is false for all assignments of truth
values to its variables. For example, p ∧ ¬p and ¬(p→ p) are contradictions.

7. (a) Prove that if ∀x.p(x) ∨ ∀x.q(x) is true, then ∀x.[p(x) ∨ q(x)] is also true.

Solution: If ∀x.p(x)∨ ∀x.q(x) is true, then either ∀x.p(x) is true, or ∀x.q(x) is true (or both
are true). Suppose ∀x.p(x) is true. Then for all elements a in the universe, p(a) is true, and
thus p(a)∨q(a) is true (it’s a basic law of propositional logic that if p is true, then so is p∨q —
it’s called disjunction amplification). Since a is any element in the universe, ∀x.[p(x) ∨ q(x)]
is true.

A similar argument shows that if ∀x.q(x) is true, then ∀x.[p(x) ∨ q(x)] is true. Thus, these
two facts together prove that ∀x.[p(x) ∨ q(x)] is true whenever ∀x.p(x) ∨ ∀x.q(x) is true.
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(b) Prove that if ∀x.[p(x) ∨ q(x)] is true, then ∀x.p(x) ∨ ∀x.q(x) is not necessarily true.

Solution: To prove this we just have to show an example universe where ∀x.[p(x) ∨ q(x)] is
true, but ∀x.p(x) ∨ ∀x.q(x) is false.

Consider a universe with just two members, a and b. Suppose that p(a) is true and q(a) is
false, and p(b) is false and q(b) is true. Then it is not hard to see that ∀x.[p(x)∨ q(x)] is true.
However, ∀x.p(x)∨∀x.q(x) is false because it’s not the case that p is true of all elements, and
it is not the case that q is true of all elements.

It helps to think about this intuitively. Suppose in a group of 10 people, 5 people speak French
(and no English), and 5 speak English (and no French). Then all of them speak either French
or English, but it is clearly not the case that they either all speak French, or all speak English.

8. Suppose that p(x) and q(x) are open statements in the same universe. Prove:

(a) ∃x.[p(x) ∧ q(x)]⇒ [∃x.p(x) ∧ ∃x.q(x)]

Solution: Suppose ∃x.[p(x)∧q(x)] is true. Then there is some element a such that p(a)∧q(a).
It follows from this that p(a) is true, and thus ∃x.p(x). Similarly, it also follows that q(a) is
true, and so ∃x.q(x). Thefore, ∃x.p(x) ∧ ∃x.q(x) is true.

(b) [∃x.p(x) ∧ ∃x.q(x)] 6⇒ ∃x.[p(x) ∧ q(x)]

Solution: To prove this, we need only show that there is at least one universe where ∃x.p(x)∧
∃x.q(x) is true but ∃x.[p(x) ∧ q(x)] is false. Consider the universe of integers, and suppose
p(x) means x is even, and q(x) means x is odd. Then ∃x.p(x) ∧ ∃x.q(x) is true becuase it
states there are some numbers that are even, and there are some numbers that are odd. But
∃x.[p(x)∧ q(x)] states there is at least one number that is both odd and even, but this is false.
Therefore, [∃x.p(x) ∧ ∃x.q(x)] does not logically imply ∃x.[p(x) ∧ q(x)].

9. Assuming A and B are sets in the same universe, prove that A ∪B = A ∩B.

Solution: We need to show both A ∪B ⊆ A ∩B and A ∩B ⊆ A ∪B.
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To prove A ∪B ⊆ A ∩B, suppose x is some element in A ∪B. Then:

x ∈ A ∪B

⇒ x /∈ (A ∪B)

⇒ ¬(x ∈ A ∪B)

⇒ ¬(x ∈ A ∨ x ∈ B)

⇒ ¬(x ∈ A) ∧ ¬(x ∈ B) (by De Morgan’s law)

⇒ x /∈ A ∧ x /∈ B

⇒ x ∈ A ∧ x ∈ B

⇒ x ∈ A ∩B

To prove A ∩B ⊆ A ∪B, suppose x is some element in A ∩B. Then:

x ∈ A ∩B

⇒ x ∈ A ∧ x ∈ B

⇒ x /∈ A ∧ x /∈ B

⇒ ¬(x ∈ A) ∧ ¬(x ∈ B)

⇒ ¬(x ∈ A ∨ x ∈ B) (by De Morgan’s law)

⇒ ¬(x ∈ A ∪B)

⇒ x /∈ A ∪B

⇒ x ∈ A ∪B

Note that because the empty set is a subset of all sets, we can assume there is at least one element,
x, in the set on the left side of ⊆.

10. (a) State the principle of (weak) mathematical induction.

Solution: Let S(n) be any open statement, where n is a positive integer. Suppose the
following two things are true:

1. S(1)

2. S(k)⇒ S(k + 1), for all positive integers k

Then S(n) is true for all positive integers n.

(b) Using mathematical induction, prove that this equation holds for all positive integers n:
n∑

i=1

2i−1 = 2n − 1
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Solution: Let S(n) be the proposition
∑n

i=1 2i−1 = 2n − 1.

For the base case, S(1), it is easy to verify that 21−1 = 21 − 1.

For the inductive case, we need to show that S(k)⇒ S(k + 1) is true for all positive integers
k. To prove a statement of the form P ⇒ Q, we assume P is true and then show that Q is
also true. So, we assume S(k) is true, and our goal is to prove S(k + 1).

S(k + 1) is:

k+1∑
i=1

2i−1 = 2k+1 − 1

The left-hand side of the equation can be transformed into the right-hand side like this:

L.H.S. =
k+1∑
i=1

2i−1

= (21−1 + 22−1 + 23−1 + . . . + 2k−1) + 2(k+1)−1

= (2k − 1) + 2k (since S(k) is true)

= 2 · 2k − 1

= 2k+1 − 1

= R.H.S.

This proves the inductive step, and so, by the principle of mathematical induction, S(n) is
true for all positive integers n.

11. In the following paragraph, an incorrect proof by induction is given. Explain exactly what is wrong
with the proof.

Let S(n) represent that statement “any group of n jelly beans are all the same color”.
Assume that n is a positive integer, and each jelly bean is one color.

We’re going to use induction prove that S(n) true for all positive integers n.

The base case is n = 1, and clearly S(1) is true. That is, if you have a group consisting of
just one jelly bean, then all the jelly beans in that group are the same color.

For the inductive case, suppose S(k) is true, i.e. for any group of k jelly beans all the jelly
beans are the same color. Now consider any group of k + 1 jelly beans. Pick one of the jelly
beans and call it x. If you remove x, then the remaining k jelly beans are all the same color
c (by our inductive hypothesis). Now pick some jelly bean, other than x, from the k + 1
jelly beans, and call it y. If you remove y, then the remaining k jelly beans are, again, all
the same color c. Therefore, we’ve proven that S(k + 1) is true, and so, by induction, it
follows that S(n) is true for all positive integers n. In other words, all jelly beans are the
same color.
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Solution: The general argument in the inductive case does not work for the case n = 2. Try it
and see. Consider a group of 2 jelly beans. Suppose they are yellow and green. If you take out
the yellow one, then the remaining jelly beans are green. If you take out the green one, then the
remaining ones are yellow. But obviously the two “taken out” jelly beans are different colors, so
the argument does not hold.

So the flaw in the proof is that it assumes x and y are the same color. But that’s wrong: all that
can be logically concluded is that if you take out x, then the remaining jelly beans are all the same
color c1, and if you take out y, then the remaining jelly beans are all the same color c2. The proof
incorrectly assumes c1 = c2! As we showed above, c1 is not equal to c2 when n = 2.

This is a classic example of an incorrect proof by induction. You can replace S(n) with many other
propositions, e.g. S(n) could mean ”any n people are the same age”.

12. (a) Define a divides b, i.e. a|b.

Solution: If a and b are both integers, and b 6= 0, then b divides a if there is an integer n
such that a = bn.

(b) Suppose a|b and b|a. What are all possible values of a and b that make this true? Prove your
answer is correct.

Solution: If a|b and b|a, then either a = b or a = −b.
To see why, we have from the definition of divides that both b = ma and a = nb for some
integers m and n. Thus b = m(nb), which simplifies to mn = 1 (b 6= 0, so it’s safe to cancel
the bs). The only integer solutions to mn = 1 are either m = n = 1, or m = n = −1. So if
m = n = 1, then a = nb = 1 · b = b, and if m = n = −1, a = nb = −1 · b = −b.

(c) Give the definition of a composite number.

Solution: A composite is an integer greater than 1 that is not prime. Or, equivalently, an
integer greater than 1 that has three, or more, different divisors.

(d) How many different divisors does 10! have?

Solution: The prime factorization of 10!:

10 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

= 1 · 2 · 3 · 22 · 5 · (2 · 3) · 7 · 23 · 32 · (2 · 5)

= 28 · 34 · 52 · 7

Thus, 10! has (8 + 1)(4 + 1)(2 + 1)(1 + 1) = 9 · 5 · 3 · 2 = 270 different divisors.
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(e) Give a number with exactly 100 different divisors.

Solution: There are many numbers that could be given here. Some are: 249 · 3, 719 · 234,
11 · 374 · 1019.

In general, a positive integer n = pe11 pe22 · . . . · p
ek
k , where p1, . . . , pk are all different primes, will

have exactly 100 different divisors just when (e1 + 1)(e2 + 1) · . . . · (ek + 1) = 100.

(f) Suppose n is the product of exactly 100 different primes. How many different divisors does n
have?

Solution: Each subset of the primes making up n corresponds to a divisor, so n has 2100

divisors.

(g) What is the greatest common divisor of 217 and 301? Show the steps of how to calculate it using
the Euclidean algorithm.

Solution: GCD(217, 301) = 7. It can be calculated as follows:

GCD(217, 301) = GCD(217, 301)

= GCD(217, 84)

= GCD(133, 84)

= GCD(49, 84)

= GCD(35, 84)

= GCD(35, 49)

= GCD(35, 14)

= GCD(21, 14)

= GCD(7, 14)

= GCD(7, 7)

13. Prove that if p is a prime greater than 3, then the square of p is one more than a multiple of 24.

Solution: Let p be a prime greater than 3. We need to show that p2− 1 is a multiple of 24. Since
p2− 1 = (p− 1)(p+ 1), we know that both p− 1 and p− 2 are even (since p is odd), and also that
one of p − 1 or p − 2 must be divisible by 4 (because one of any two consecutive even numbers
must be a mutiple of 4). Thus (p− 1)(p+ 1) is a multiple of 8. Furthermore, at least one of p− 1,
p, and p + 1 must be a multiple of 3, and it can’t be p because p > 3. Thus (p− 1)(p + 1) is both
a multiple of 3 and 8, so it is also a multiple of 24.

14. (a) Define the Cartesian product (cross product) A×B.
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Solution: For any two sets A and B, A×B = {(a, b) | a ∈ A, b ∈ B}.

(b) Suppose A and B are both finite, and |A| = m and |B| = n. What is |A×B|?

Solution: |A×B| = mn = |A||B|

(c) Suppose A and B are both finite sets that each contain 2 or more elements. Explain why it’s
impossible for A×B to have size 31.

Solution: We know that |A× B| = |A| · |B| = 31. Since 31 is prime, it’s only divisors are 1
and 31, and so either |A| = 1 or |B| = 1. But this is impossible because both A and B have
at least two elements.

(d) Give the definition of a function from a set A to a set B.

Solution: A function from A to B is a binary relation where every element of A occurs exactly
once as the first element of an ordered pair in the relation.

(e) Suppose A and B are both finite, and |A| = m and |B| = n. How many binary relations are there
from A to B?

Solution: 2mn = 2|A||B|

(f) Suppose A is a set with 3 elements, and B is a set with 2 elements. How many binary relations
from A to B are not functions?

Solution: 22·2 − 23 = 8

(g) If A and B are finite sets, how many binary relations from A to B are not functions?

Solution: 2|A||B| − |B||A|

(h) Define a 1-to-1 (injective) function.

Solution: A function f : A → B is 1-to-1 if each element of B appears at most once as the
image of an element of A.

(i) Suppose f : A → B and g : B → C. Define the composition f ◦ g of f and g. Be sure to clearly
state the domain and codomain of f ◦ g.

Solution: The composition of f and g is defined as (g ◦ f)(a) = g(f(a)) for each a ∈ A, and
f ◦ g : A→ C.
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(j) Define what it means for a function f to be invertible.

Solution: A function f is invertible if there is function g : B → A such that g ◦ f = 1A and
f ◦ g = 1B, where 1A is the identity function on A, and 1B is the identity function on B.

15. For each of the following questions, choose true or false.

(a) True or False: Functions are relations.

Solution: True

(b) True or False: The ordered pair (2, 3) equals the ordered pair (3, 2).

Solution: False

(c) True or False: If f is an onto function, then the range of f equals the codomain of f .

Solution: True

(d) True or False: For the function f : A→ B, A is the domain of f and B is the range of f .

Solution: False

(e) True or False: If f(n) = n2 and f : Z→ Z, then Z is the range of f .

Solution: False

(f) True or False: If a function is onto, then it is 1-to-1.

Solution: False

(g) True or False: If a function’s range and codomain are the same, then its onto.

Solution: True

(h) True or False: If A and B are finite, and f is a function f : A → B, then if |A| < |B| it’s
impossible for f to be onto.

Solution: True

(i) True or False: If A and B are finite, and f : A→ B is a bijection, then |A| = |B|.

Solution: True
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(j) True or False: A function is invertible if, and only if, it is a bijection.

Solution: True

(k) True or False: The function 1A is a bijection.

Solution: True

16. Is there a binary operator on R that has both 0 and 1 has an identity element? Prove your answer is
correct.

Solution: No, there is no such operator.

We’ll prove the more general fact that if a binary operator f has an identity element, then it must
be unique. Suppose e1 and e2 are identity elements for f . Then f(e1, e2) = e2 because e1 is an
identity element, and also, f(e1, e2) = e1 since e2 is an identity element. Since e1 and e2 are both
equal to f(e1, e2), it follows that e1 = e2.

Since 0 6= 1, no binary operator on R can have both 0 and 1 as an identity element.

17. (a) Define g dominates f , where f : Z+ → R and g : Z+ → R.

Solution: g dominates f if there exist constants m ∈ R+ and k ∈ Z+ such that |f(n)| ≤
m|g(n)| for all n ∈ Z+, where n ≥ k.

(b) Prove that 3n2 + 6 is dominated by n2 − 10.

Solution: To show that n2 − 10 dominates 3n2 + 6, we must find m ∈ R+ and k ∈ Z+ such
that 3n2 + 6 ≤ m(n2 − 10) for all n ∈ Z+, where n ≥ k.

By inspecting the inequality, it seems that m = 5 might work as a value for m (since that
will give a 5n2 term on the right-hand side which is bigger than the 3n2 term on the left-hand
side).

When m = 5, the inequality simplifies to 3n2 + 6 ≤ 5(n2 − 10), or 3n2 + 6 ≤ 5n2 − 50.
Subtracting 3n2 from both sides gives 6 ≤ 2n2 − 50. This inequality is clearly true if n is
bigger than, say, 100, and so we set k = 100.

Setting m = 5 and k = 100 satisfies the inequality, and so n2 − 10 dominates 3n2 + 6.

(c) Prove that n2 − 10 is dominated by 3n2 + 6.

Solution: To show that 3n2 + 6 dominates n2 − 10, we must find m ∈ R+ and k ∈ Z+ such
that n2 − 10 ≤ m(3n2 + 6) for all n ∈ Z+, where n ≥ k.
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By inspecting the inequality, it seems that m = 1 might work as a value for m (since that
will give a 3n2 term on the right-hand side which is bigger than the n2 term on the left-hand
side).

When m = 1, the inequality simplifies to n2 − 10 ≤ 3n2 + 6. Subtracting n2 from both sides
gives −10 ≤ 2n2. This inequality is clearly true if n is 1 or more, and so we set k = 1.

Setting m = 1 and 1 = 100 satisfies the inequality, and so 3n2 + 6 dominates n2 − 10.

(d) Prove that n2 does not dominate n3.

Solution: We’ll use proof by contradiction here. So assume n2 did dominate n3. Then that
means there must be m ∈ R+ and k ∈ Z+ such that n3 ≤ mn2 for all n ∈ Z+ where n ≥ k.

Dividing both sides of the inequality by n2 gives n < m. But this is impossible: m is a fixed
and unchanging constant value, while n is a variable that can be as big as we like. No matter
what value m is set to, n can be made bigger.

This is a contradiction, and so n2 does not dominate n3
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