
MACM 101 (Surrey) Midterm Review Questions, Spring
2018

1. In 10-pin bowling, the goal is to knock down 10 pins, numbered 1 to 10. You get to roll
two balls, one after the other. If you knock down all 10 on your first ball, that’s called
a strike. If you don’t get a strike, how many different patterns of pins are possible after
the first ball?

Solution: After the first ball, each pin is either standing or knocked over. We can
represent each pin with a bit, i.e. a 0 means knocked over, and 1 means standing.
Since there are 10 pins, there are 10 bits, and so there are 210 = 1024 bit patterns.
But the bit pattern of all 0s will never occur, because that means the bowler got a
strike and so would not roll their second ball. Thus, there are 1023 possible patterns
of pins for the second ball.

2. Recall that a bit is a 0 or a 1.

(a) An IPv4 Internet address has the form W .X.Y .Z, where W , X, Y , and Z are
each integers from 0 to 255. For example, 142.58.102.68 is the IPv4 address for
www.sfu.ca. How many different IPv4 addresses are possible?

Solution: Each of W , X, Y , and Z can take on 256 possible values, and so
the total number of IPv4 addresses is 256 · 256 · 256 = 2564. Note that 2564 =
(28)4 = 232

(b) How many bits are needed to represent one IPv4 address?

Solution: Numbers from 0 to 255 can be represented with 8 bits, i.e. 28 = 256.
So four numbers from 0 to 255 need 4 · 8 = 32 bits. This also tells us that the
total number of IPv4 addresses is 232.

(c) An IPv6 Internet address consists of 16 octets, where one octet is 8 bits. How many
different IPv6 addresses are possible?

Solution: 16 octets is 16 · 8 = 128 bits, and so there are 2128 possible IPv6
addresses.
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3. Prove that the following equality is true for all valid integers n and k:(
n

k

)
=

(
n

n− k

)

Solution: By definition:(
n

k

)
=

n!

k!(n− k)!
for 0 ≤ k ≤ n

Then: (
n

n− k

)
=

n!

(n− (n− k))!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)

4. State the binomial theorem.

Solution: If n is a positive integer, and x and y are variables, then:

(x + y)n =

(
n

0

)
x0yn +

(
n

1

)
x1yn−1 + . . . +

(
n

n− 1

)
xn−1y1 +

(
n

n

)
xny0

=
n∑

k=0

(
n

k

)
xkyn−k

=
n∑

k=0

(
n

n− k

)
xkyn−k

5. An ice cream parlor sells 31 different flavors of ice cream. How many different ways can
you select 3 scoops of ice cream where i) the order matters, and ii) the order doesn’t
matter?
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Solution: i) If order doesn’t matter, then the 3 scoops of 31 flavors can be chosen
in 31 · 31 · 31 = 313 = 29791 different ways.

ii) This is a combination with repetitions question where n = 31 and r = 3, and so
the total number of possibilities is:(

n + r − 1

r

)
=

(
31 + 3− 1

3

)
=

(
33

3

)
= 5456

This is the same as asking how many ways 3 balls can be distributed among 31
containers.

6. State the Modus Tollens inference rule, and prove that it’s valid.

Solution: Modus Tollens is this rule:

¬q
p→ q

∴ ¬p

To prove that it’s valid, you must show that [¬q ∧ (p → q)] → ¬p is a tautology.
This can be done with a truth table.

7. Show that the following rule of inference is not valid.

¬p
p→ q

∴ ¬q

Solution: To show that this rule is not valid, we can show that the corresponding
conditional (¬p ∧ (p → q)) → ¬q is not a tautology. To show that a compound
statement is not a tautology, we need to find and assignment of values to its variables
that makes it false.

For (¬p ∧ (p → q)) → ¬q to be false, (¬p ∧ (p → q)) must be true and ¬q must be
false. If you construct a truth table, you will see that when p = 0 and q = 1 the
expression false, and so it is not a tautology.
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8. Suppose p(x, y) means “xy = 0”, and the universe of discourse is all real numbers. You
may also use statements of the form “a = b”, where a and b are numbers are variables.
Translate each of the following statements in quantified logic, and also say whether the
statement is true, false, or possibly true or false.

(a) 3 times 5 is 0

Solution: p(3, 5) is false.

(b) Either 3 times 5 is 0, or 6 times 0 is not 0.

Solution: p(3, 5) ∨ ¬p(6, 0) is false.

(c) x times y is 0 if, and only if, y times x is 0.

Solution: ∀x∀y.p(x, y)↔ p(y, x) is true.

(d) If xy = 0, then either x or y is 0.

Solution: ∀x∀y.p(x, y)→ (x = 0 ∨ y = 0) is true.

(e) If x or y is 0, then so is xy.

Solution: ∀x∀y.(x = 0 ∨ y = 0)→ p(x, y) is true.

(f) A negative number times a positive number is never 0.

Solution: [(x < 0)∧(y > 0)]→ ¬p(x, y) is true. Note that 0 is neither negative
nor positive.

(g) 0 times any number is 0.

Solution: ∀x.p(0, x) ∧ p(x, 0) is true.

(h) There’s a number x such that no number times x is 0.

Solution: ∃x∀y.¬p(x, y) ∧ ¬p(y, x) is false.

(i) For every number x, there’s exactly one number that you can multiply x by to get
0.

Solution: ∀x∃y.(p(x, y) ∧ (∀z.p(x, z)→ y = z)) is true.
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9. Suppose E(x, y) means “x = y”, G(x, y) means “x > y”, and the universe of discourse
is all real numbers. Translate each of the following statements into quantified logic, and
also say whether the statement is true, false, or possibly true or false.

(a) 5 is bigger than 2

Solution: G(5, 2) is true.

(b) All numbers are equal to themselves.

Solution: ∀x.E(x, y) is true.

(c) No number is greater than itself.

Solution: ∀x.¬G(x, x) is true.

(d) For any two different numbers, one is bigger than the other.

Solution: ∀x.∀y.¬E(x, y)→ [G(x, y) ∨G(y, x)] is true.

(e) x equals y if, and only if, y equals x.

Solution: ∀x.∀y.E(x, y)↔ E(y, x) is true.

(f) If x equals y and y equals z, then x equals z.

Solution: ∀x.∀y.∀z.[E(x, y) ∧ E(y, z)→ E(x, z)] is true.

(g) There’s no biggest number.

Solution: ∀x.∃y.G(y, x) is true.

(h) There’s a biggest number.

Solution: ∃x.∀y.¬G(y, x) is false.
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