A Constructive Proof of Euclid's Theorem

T. Donaldson

October 29, 2019

What follows is a *constructive* proof of Euclid's theorem (that there are infinitely many primes): the proof actually shows how to create an infinite set of primes.

Definition. Suppose $P = \{p_1, p_2, \dots, p_n\}$ is a finite and non-empty set of primes. The **Euclid number of P**, denoted **E**, is $E = 1 + p_1 \cdot p_2 \cdot \dots \cdot p_n$.

For example, if $P = \{2\}$, then it's Euclid number is 1 + 2 = 3. If instead $P = \{5, 11\}$, then it's Euclid number is $1 + 5 \cdot 11 = 56$.

Lemma. If E is the Euclid number of the set of primes A, then no prime divisor of E is in A.

Proof. Suppose p_i is also a prime divisor of E, and p_i is in A. That means p_i divides both E-1 (the product of all the primes in A) and E. Since (E-1) + E = -1, then by part e) of theorem 4.3 from the textbook, p_i must also divide -1. But since $p_i > 1$ that's impossible, and so if p_i is a prime divisor of E it cannot also be in A.

The essential idea of this proof is that if a and n are positive integers, and both a|n and a|(n+1), then a = 1. This implies a prime cannot divide two consecutive integers (such as E - 1 and E).

Theorem (Euclid's theorem). There are an infinite number of primes.

Proof. Consider the following process:

- 1. Let $A = \{2\}$.
- 2. Calculate the Euclid number E of A.
- 3. Add the smallest prime divisor p of E to A. By the previous lemma, we know p cannot be in A, and so this step always increases the size of A by 1.
- 4. Go to step 2.

Since A increases in size forever, and it only contains primes, there must be an infinite number of primes. \Box