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The Division Algorithm

If a, b ! Z, with b > 0, then there exist unique q, r ! Z with

a = qb + r, 0 ! r < b.

! q is referred to as the quotient

! r the remainder

! b is the divisor

! a is the dividend
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Examples

(a) When a = 170 and b = 11:

(b) When a = 98 and b = 7:

(c) When a = -45 and b = 8:
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Section 4.4:
The Greatest Common Divisor

Definition: For a, b ! Z, a position integer c is said to be a

common divisor of a and b if c|a and c|b.

E.g.

Definition: Let a, b ! Z, where either a !"0 or b !"0.  Then

c ! Z+ is called a greatest common divisor of a, b if

(a) c|a and c|b (that is, c is a common divisor of a, b), and

(b) For any common divisor d of a and b, we have d|c

E.g.
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Theorem

For all a, b ! Z+, there exists a unique c ! Z+ that is the

greatest common divisor of a, b.

Proof:
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Theorem Proof - cont’d…
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Theorem Proof - cont’d…
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Relatively Prime Numbers

Definition: Two integers a and b are relatively prime if

gcd(a, b) = 1.

E.g.

Are 15 and 28 relatively prime?

Are 55 and 28 relatively prime?

Are 35 and 28 relatively prime?
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Least Common Multiple

The least common multiple of the positive integers a and b

is the smallest positive integer that is divisible by both a and

b.

We denote the least common multiple of a and b by lcm(a, b).

E.g.
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Section 4.5: The Fundamental
Theorem of Arithmetic

Lemma 4.2: If a, b ! Z+ and p is prime, then

p|ab " p|a or p|b.

Proof:
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Another Lemma

Lemma 4.3: Let ai ! Z+ for all 1 ! i ! n.  If p is prime and

p|a1a2···an, then p|ai for some 1 ! i ! n.

Proof:
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Lemma Proof cont’d…
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Example

Show that       is irrational.

! 

2
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Example - cont’d…
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The Fundamental Theorem of
Arithmetic

The fundamental theorem of arithmetic: Every positive

integer can be written uniquely as the product of primes,

where the prime factors are written in order of increasing

size.

E.g.
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Partial Proof of Fundamental
Theorem of Arithmetic

Let’s prove the existence of a prime factorization, and leave

the uniqueness of it as a separate proof.
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Partial Proof - cont’d…
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Example

Suppose that n  Z+ and that

10·9·8·7·6·5·4·3·2·n = 21·20·19·18·17·16·15·14

Show that 17|n
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Aside: Pi Notation

We’ve already seen sigma notation for summations, Pi-

notation is the same type of notation for multiplications.

E.g.

! 

x
i
=

i=1

6

"

! 

i =
i= 3

6

"

! 

i =
i=m

n

"


