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Previous Lecture

  Cardinality through bijections
  Comparing cardinalities
  Countable sets
  Integers and rationals
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Complexity of Algorithms

  How to measure what the efficiency of an algorithm is?
  Sorting algorithms: given a sequence of numbers, arrange it in the 
increasing order.
  Longer sequences require more time.
  The (time) complexity of a sorting algorithm is a function  f  such 
that processing a sequence of length  n  requires  f(n) seconds.
  Not good: 

        - computers are different, so,  f(n)  is ill-defined 
        - different sequences of the same length may require different time

  The (worst case) (time) complexity of a sorting algorithm is a 
function  f  such that processing a sequence of length  n  requires at 
most  f(n) steps.
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Comparing Algorithms

  There are more than 20 different sorting algorithms. Which one is 
the best?
  Consider two of them: bubble sort and merge sort. We use the 
same computer, so we can measure in seconds, rather than in 
steps.
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Comparing Functions

  Problems
           -  the function  f  can be smaller than the function  g  on small 

values of  n,  but then it grows rapidly;
           -  we may be comparing functions that count `steps’ of different 

length, for example, every step counted by function  f  may be equal 
to two steps counted by function  g.

  Solutions
           -  start comparing functions not from  n = 1,  but from some 

sufficiently large  n;
           -  allow arbitrary constant factor for a function, for instance, do 

not distinguish  f(n) = n  and  g(n) = 5n.
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Big-Oh

 Let  f  and  g  be functions from  N  to  R.  The function  g  dominates  
f  (or  f  is  dominated  by  g) if the exist numbers  m ∈ R and  k ∈ N 
such that for all  n > k  we have  |f(n)| < m |g(n)|.
  f  is of order at most  g
  f ∈ O(g)

  Thus,  O(g)  is the class of all functions with domain  N  and codomain  
R  that are of order at most  g.
  Example.  

         Let  f(n) = 5n  and  g(n) =      .   Then  f ∈ O(g).

         Take  k = 5  and  m = 1.
         For any  n > k = 5,  we have         > 5n.
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Big-Oh  (cntd)

 Example  (cntd)
         Show that  g ∉ O(f).

  First,  we write the definition of  Big-Oh in symbolic form:
                  ∃ k ∃ m ∀ n ( (n > k) → (|f(n)| < m|g(n)|) )

  The negation of this is
                  ∀ k ∀ m ∃ n  ¬((n > k) → ( |f(n)| < m |g(n)| ) )

            ⇔  ∀ k ∀ m ∃ n  ((n > k) ∧ ( |f(n)| ≥ m |g(n)| ) )

   In our case  g  plays the role of  f,  and  f  plays the role of  g:
                  ∀ k ∀ m ∃ n  ((n > k) ∧ ( |g(n)| ≥ m |f(n)| ) )

   Proving:  take  n = max { k, 5m }.  Then
                       = n ⋅ n ≥ max { k, 5m} ⋅ n ≥ 5m ⋅ n ≥ m ⋅ g(n)
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Big-Oh  (cntd)

  More  Big-Ohs

   
   
   

  If functions  f  and  g  are such that  f ∈ O(g)  and  g ∈ O(f), then 
we say that  f  and  g  are of the same order, and denote it by

     f ∈ Θ(g)

  All the pairs above are actually functions of the same order
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Little-oh

  Some functions grow much faster than others

n

f(n)

f(n) = log n

f(n) = n
f(n) = 

f(n) = 
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Little-oh  (cntd)

  Let  f  and  g  be functions from  N  to  R.  The function  f  is said to 
be  negligible  for  g  if for any numbers m ∈ R  there is a number   k 
∈ N such that for all  n > k  we have  |f(n)| < m |g(n)|.

  We write  f ∈ o(g)

  In the case of domination  m  is usually big: we can find sufficiently 
big  m  so that the required inequality holds

       In the case of little-oh  m  is meant to be small:  we cannot find 
sufficiently small  m  so that  g  becomes smaller than  f.
  Example       5n ∈ o(     )

          Take any  m.
          Then for any  n > k  we have

Choose  any  k >     . For example,   k = ! 5
m

" + 1

5n = m×
(

5
m

)
× n < m× n2
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More Little-ohs

  Little-oh pairs of some well known functions:

   

   

   

   
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Homework

Exercises from the Book:
No. 1ade, 3ac, 5, 10ab (page 293)

    


