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Principle of Mathematical Induction

Climbing an infinite ladder

We can reach the first rung

For all  k,  standing on the 
rung  k  we can step on 
the rung  k + 1

Can we reach every step of it, if
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Principle of Mathematical Induction

  Principle of mathematical induction:
      To prove that a statement that assert that some property  P(n)  is 

true for all positive integers  n, we complete two steps
       Basis step:    We verify that  P(1)  is true.
       Inductive step:  We show that the conditional statement  
                   P(k) → P(k + 1)  is true for all positive integers  k

  Symbolically,  the statement
                   (P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n)

  How do we do this?
       P(1)  is usually an easy property
       To prove the conditional statement, we assume that  P(k)  is true (it 

is called inductive hypothesis) and show that under this assumption  
P(k + 1)  is also true 
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Summation

 Prove that the sum of the first  n  natural numbers equals                   
that is

  P(n):  `the sum of the first  n  natural numbers …
  Basis step:  P(1)  means

  Inductive step:   Make the inductive hypothesis,  P(k)  is true, i.e.

      Prove  P(k + 1):   
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More Summation

  Prove that
  Let  P(n) be the statement                                                     for the 
integer  n

 Basis step:  P(0)  is true, as
 Inductive step:   We assume the inductive hypothesis

      and prove  P(k + 1),  that is

      We have 
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The Cardinality of the Power Set

  Let’s use induction to prove that  | P(A) | =
  Let  Q(n)  denote the statement `an  n-element set has        subsets’
  Basis step:  Q(0),  and empty set has only one subset, empty
  Inductive step.  We make the inductive hypothesis, a  k-element set  
A  has      subsets

       We have to prove  Q(k + 1),  that is if a set  A  contains  k + 1  
elements, then  | P(A) | =

       Fix an element  a ∈ A, and set  B = A – {a}.

       The set  B  contains  k  elements, hence  | P(B) | = 
       Every subset  X  of  B  corresponds to two subsets of  A
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The Cardinality of the Power Set  (cntd)

B
X

A
X

A

X∪{a}

a

a

Therefore,  | P(A) | = 2 ⋅ | P(B) | =
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Odd Pie Fights

 An odd number of people stand in a yard at mutually distinct 
distances. At the same time each person throws a pie at their 
nearest neighbor, hitting this person.  Show that there is at least one 
survivor, that is, at least one person who is not hit by a pie.
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Odd Pie Fights  (cntd)

  Let  P(n)  denote the statement  `there is a survivor in the odd pie 
fight with  2n + 1  people’
  Basis step:  P(1),  there are  3  people

    Of the three people, suppose that the closest pair is  A  and  B,  
and  C  is the third person.  Since distances between people are 
different,  the  distances between  A  and  C,  and  B  and  C  are 
greater than that between  A  and  B.
    Therefore,  A  and  B  throws pies at each other, and  C  survives. 



Discrete Mathematics – Mathematical Induction 16-

Odd Pie Fights  (cntd)

  Inductive step:   Suppose that  P(k)  is true, that is, in the pie fight 
with  2k + 1  people there is a survivor.
   Consider the fight with  2(k + 1) + 1  people.

        Let  A  and  B  be the closest pair of people in this group of  2k + 3 
people.  Then they throw pies at each other.

        If someone else throws a pie at one of them, then for the 
remaining  2k + 1  people there are only  2k  pies, and one of them 
survives.

        Otherwise the remaining  2k + 1  people throw pies at each other, 
playing the pie fight with 2k + 1 people.  By the inductive hypothesis, 
there is a survivor in such a fight.
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Triomino

  Let  n  be a positive integer.  Show that every                
checkerboard with one square removed can be tiled using triominos

  P(n)  denotes the statement above
  Basis step:  P(1)  is true,  as 2 × 2  checkerboards with one square 
removed have one of the following shapes



Discrete Mathematics – Mathematical Induction 16-

Triomino   (cntd)

 Inductive step:   Suppose that  P(k)  is true that is every                
checkerboard with one square removed can be tiled with triominos.

      We have to prove  P(k + 1), that is,  every                    checkerboard 
without one square can be tiled.

Split the big checkerboard into 4 
half-size checkerboards

Put one triomino as shown in the 
picture.

We have 4                 
checkerboards, each without one 
square. By the induction 
hypothesis, they can be tiled.
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Analysis of Algorithms

  Consider the following problem
       There is a group of proposed talks to be given. We want to 

schedule as many talks as possible in the main lecture room. Let            
                         be the talks,   talk      begins at time       and ends at 

time      .  (No two lectures can proceed at the same time, but a 
lecture can begin at the same time another one ends.)  We assume 
that                              .
  Greedy algorithm:

         At every step choose a talk with the earliest ending time among all 
those talks that begin after all talks already scheduled end.
  We prove that the greedy algorithm is optimal in the sense that it 
always schedules the most talks possible in the main lecture hall.
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Greedy Algorithm

  Let  P(n)  be the proposition that if the greedy algorithm schedules  
n  talks, then it is not possible to schedule more than  n  talks.
  Basis step.  Suppose that the greedy algorithm has scheduled only 
one talk,     .  This means that every other talk starts before       ,  and 
ends after    .   Hence, at time     each of the remaining talks needs 
to use the lecture hall.  No two talks can be scheduled because of 
that.  This proves  P(1).
  Inductive step.   Suppose that  P(k)  is true, that is, if the greedy 
algorithm schedules  k  talks,  it is not possible to schedule more 
than  k  talks.

       We prove  P(k + 1),  that is,  if the algorithm schedules  k + 1  talks 
then this is the optimal number.
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Greedy Algorithm  (cntd)

  Suppose that the algorithm has selected  k + 1  talks.
       First, we show that there is an optimal scheduling that contains 
       Indeed, if we have a schedule that begins with the talk      ,  i > 1, 
     then this first talk can be replaced with     .   
       To see this, note that, since           ,  all talks scheduled after        still 

can be scheduled.
       Once we included     ,  scheduling the talks so that as many as 

possible talks are scheduled is reduced to scheduling as many talks as 
possible that begin at or after time      . 

       The greedy algorithm always schedules      , and then schedules  k 
talks choosing them from those that start at or after     .

       By the induction hypothesis, it is not possible to schedule more than  k  
such talks. Therefore, the optimal number of talks is  k + 1.
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Principle of Strong Induction

  Sometimes mathematical induction is not enough.  We can use the 
principle of strong induction.
  To prove that  P(n)  is true for all positive integers  n,  we complete 
two steps:
  Basis step:   Verify that  P(1)  is true.
  Inductive step:   Show that the statement

         [ P(1) ∧ P(2) ∧ … ∧ P(k) ] → P(k + 1)

       is true for all positive integers  k. 
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Game with Matches

  Two players take turns removing any positive number of matches 
they want from one of two piles of matches. The player who removes 
the last match wins the game.

  Show that if the two piles contain the same number of matches 
initially, then the second player can always guarantee a win.
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Strategy for the Second Player

  Let  P(n)  denote the statement  `the second player wins when 
there are initially  n  matches in each pile’.
  Basis step:   P(1)  is true, because in this case there is only one 
match in each pile, and the first player has only one choice, 
removing one match from one pile. Then the second player removes 
the match from the other pile and wins.
Inductive step:   Suppose that  P(j)  is true for all  j  with  1 ≤ j ≤ k.

     We prove that  P(k + 1) is true, that is, that the second player wins 
when each pile contain  k + 1  matches.

     Suppose that the first player removes  r  matches from one pile 
leaving  k + 1 – r  matches there.

      By removing the same number of matches from the other pile the 
second player creates the situation of two piles with  k + 1 – r  
matches in each.  Apply the inductive hypothesis.    
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Why Induction Works?  Well Ordering

  One of the axioms of positive integers is the principle of well-
ordering:

          Every non-empty subset of  N  contains the least element.
  Note that the sets of all integers, rational numbers, and real numbers 
do not have this property.
  Suppose that mathematical induction is not valid.

       Then there is a predicate  P(n)  such that  P(1)  is true,  
       ∀k ( P(k) → P(k + 1))  is true, but there is  n  such that  P(n) is false

       Let  T ⊆ N  be the set of all  n  such that  P(n)  is false.

       By the principle of well-ordering  T  contains the least element  a
       As  P(1)  is true,  a ≠ 1.

       We have  P(a – 1)  is true. However, since  P(a – 1) → P(a),  we get 
a contradiction
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Fallacies

  What is wrong in the following proof  that every set of lines in the 
plane, no two of which are parallel, meet in a common point?
  Basis step:  P(2)  is true by the definition of parallel lines.
  Inductive step:  Suppose  P(k)  is true, that is,  every set of  k  lines 
meet in a common point.

       We prove  P(k + 1).
       Consider a set of  k + 1  lines in the plane, no two of which are 

parallel.
       By the induction hypothesis the first  k  of them meet in a point  p.
       By the induction hypothesis the last  k  of them meet in a point  q.
       If  p  and  q  were different points, then all the lines that contain 

both of them would be equal.  A contradiction.
       Therefore,  p = q  and all the lines meet in this point
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Recursively Defined Functions

  Induction mechanism can be used to define things.
  To define a function  f: N → R  we complete two steps:

        Basis step:  define  f(1)
        Inductive step:  For all  k  define  f(k + 1)  as a function of  f(k),
                 or,  more general,  as a function of  f(1), f(2), … , f(k).

  Give a recursive definition of  f(n) = 
       Basis step:   f(0) = 1
       Inductive step:   f(k + 1) = 2 ⋅ f(k).
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Factorial

  Another useful recursively defined function is factorial
  f(n) = n!

       Basis step:   0! = 1
       Inductive step:   (k + 1)! = k! ⋅ (k + 1)

n n!
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40320

362880
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Fibonacci Numbers

 Usually, Fibonacci numbers are thought of as a sequence of natural 
numbers, but as we know such a sequence can also be viewed as a 
function from  N.
  F(n)
  Basis step:  F(1) = F(2) = 1
  Inductive step:   F(k + 1) = F(k) + F(k – 1)

n 1 2 3 4 5 6 7 8 9 10 11 12 13

F(n) 1 1 2 3 5 8 13 21 34 55 89 144 233

Binet’s formula where  ϕ  is the  golden ratio
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Recursively Defined Sets and Structures

  Induction can be used to define structures
  We need to complete the same two steps:

       Basis step:  Define the simplest structure possible
       Inductive step:  A rule, how to build a bigger structure from smaller 

ones.
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Well Formed Propositional Statements

  What is a well formed statement?
       (p → q) ∧ ¬r    is well formed

       (p → q) ¬ ∧ r    is not

  Recursive definition of well formed formulas
  Basis step:   A primitive statement is a well formed statement
  Inductive step:    If  Φ  and  Ψ  are well formed statements, then

          ¬ Φ,   (Φ ∧ Ψ),  (Φ ∨ Ψ),   (Φ → Ψ),   (Φ ↔ Ψ),   (Φ ⊕ Ψ) 

       are well formed statements

  Such a definition can be used by various algorithms, for example, 
parsing
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Fractals

  Fractals are curves defined recursively
  Basis step:  Fractal of level 0 is just a segment
  Inductive step:  Divide every segment of the fractal of level  k  into 3 
equal parts and remove the middle one. Insert in this place two sides 
of a equilateral triangle
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Rooted Trees

  A  binary tree  is a graph formed by the following recursive definition
       

  Basis case:   A single vertex is a binary tree
  Inductive step:   Suppose that             are disjoint binary trees with 
roots         ,  respectively.  Then the graph formed by starting with a 
root  r,  and adding an edge from  r  to each of the vertices         ,  is 
also a binary tree.  

        Or   T’  is a binary tree with the root  r’.  Then the graph formed by 
starting with a root  r,  and adding an edge from  r  to  r’  is also a 
binary tree

r

r r
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Structural Induction

  To prove properties or design algorithms working with recursively 
defined structures we need structural induction
  To prove a statement using structural induction we complete two 
steps

       Basis step:  Prove that the property is true for the simplest structure
       Inductive step:  Assuming that the property is true for all simpler 

structures, prove it for a more complex structure
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Structural Induction  (cntd)

 Height of a binary tree,  h(T).  Recursive definition:
 Basis step:  The height of a single vertex  r  is  0.   h(r) = 0
 Inductive step:  If a tree  T  is built from trees            as shown in the 
inductive step, then         h(T) = 1 + max( h(     ), h(     ) )

  We prove that the number of vertices in a binary tree,  n(T),  
satisfies the inequality
  Basis step:  For a single vertex  1 = n(r) ≤ 

  Inductive  step:  Let  T  be formed from
       We have     n(T) = 1 + n(     ) + n(      )
                                 ≤ 1 + (                  ) + (                  )

                                 ≤ 1 + 2(                               ) = 1 +             - 2 

                                 =              - 1 
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Homework

Exercises from the Book:
No. 3, 4a, 7b (page 244)

    


