Representing Languages

Discrete Mathematics
Evgeny Skvortsov

Discrete Mathematics — Representing Languages

Previous Lecture

@ Alphabets, strings, length of strings, concatenation and power
@ Formal languages

@ Constructing languages: Set theoretical operations

@ Concatenation, property of concatenation

22-

Discrete Mathematics — Representing Languages

Kleene Star

@ Foralanguage A over an alphabet X:
AV =), A=A and for neN, A"=A"TA-AA. A

—
n times

AT = AUA2UASU = | JA" the positive closure of A
n=1

A = OMUA* = D An the Kleene closure or Kleene star

n=0
@ Let A={aa,ab,ba,bb}. Then A is the language of all strings of
even length.

@ If B={ab} then " is the language of all strings of odd length

@ What are » ;
{aba} and {ab} {b}?

22-

Discrete Mathematics — Representing Languages

Properties of Kleene Star

Lemma

Let = be an alphabet and A, B languages over X. If AC B then for
al neN, A"CB"

Proof

We prove by induction on n. Since A=A CB= B1, the result is true
for n=1, that gives us the basis step of induction.

Suppose that the lemma is true for n =k. We have: if AC B then

AK CBX. Consider astring x from AK*! This string can be
represented as follows x =uv, where u€A and vE AK

If AC B, then u& B, and also by inductive hypothesis v & BX
Therefore x =uv € BBK = B¥*! and A¥+! CB** Q.E.D

Discrete Mathematics — Representing Languages 22-

Properties of Kleene Star (cntd)

Theorem
For an alphabet X and languages A, B over X
(1) ACAB’ (5) ACB*A
(2) ACB implies A*CB* (6) ACB implies A" CB’
B) AA =AA=A* (1) A"A"=A" =(A") =(A")*
(4) (AUB)*=(A*UB*)*=(A*B*)* =(A+)*
Proof

(2) Let ACB and u€A™ Then u€A" for some nEN. By
Lemma, it follows that UEB" CB* andso A* CB*

Q. E.D.

Discrete Mathematics — Representing Languages

Regular Expressions

@ An atomic language is a language that contains only one string,
and this string has length 1. {a}

For short we denote such a language simply by a

@ Every language that contains only one string can be represented as
a concatenation of atomic languages. A = {abba} = abba

(Carefull!! The abba in the parenthesis is a string, while the abba
in the end is a concatenation of languages.)

@ Any finite language is a union of concatenations of atomic
languages. A= {ab,ba,abba}=ab U ba U abba

@ An expression constructed from atomic languages by means of
concatenation, union, intersection, complementation, and Kleene
star is called a regular expression

Discrete Mathematics — Representing Languages 22-

Regular Expressions: Examples

@ What the languages a ba b, (an)*c*, ((abUba)*c)* are?

@ Write a regular expression for the language over {a,b,c} that
contains strings with exactly one occurrence of ¢

@ with exactly two occurrences of ¢
@ over {a,b,c,d} with one occurrence of ¢ and one occurrence of d

@ with as many occurrences of ¢ as you wish, but each such
occurrence should be followed by an occurrence of d

Discrete Mathematics — Representing Languages

Grammars

@ What is a sentence in a natural language?
@ One typical rule is: A sentence can consist of a noun phrase
followed by a predicate.
We may represent this rule as
<sentence> — <noun_phrase> <predicate>

@ This is not enough to deal with real sentences, and we need to
explain <noun_phrase> and <predicate>

<noun_phrase> — <article> <noun>
<predicate> — <verb>

22-

Discrete Mathematics — Representing Languages 22-

Grammars (cntd)

@ This is still not enough as we need concrete words in a sentence, so
we continue

<article> — the | a
<noun> — dog | boy | ...
<verb> — walks | runs | ...

@ If we describe all possible constructions, we get a full description of
possible sentences

Discrete Mathematics — Representing Languages 22-

Grammars (example)

@ Programming languages are described in terms of grammars

<conditional statement> ::= <if statement> | <if statement> else <statement> | <if
clause> <for statement> | <label>: <conditional statement>

<if clause> ::= if <Boolean expression> then
<unconditional statement> ::= <basic statement> | <compound statement> | <block>
<if statement> ::= <if clause> <unconditional statement>

<Boolean expression> ::= <simple Boolean> | <if clause> <simple Boolean> els
<Boolean expression>

<simple Boolean> ::= <implication> | <simple Boolean>

Discrete Mathematics — Representing Languages
Definition

@ Agrammar G consists of
- V set of variables
- 2 setof terminals (or terminal symbols)
- S&€V astart symbol
- P asetof rules or productions
@ Every production has the form
X—=Y

where X is a non-empty string consisting of terminals and
variables, and y is any string consisting of terminals and variables

<noun_phrase> runs — <article> dog runs
<if clause> ::= if <Boolean expression> then

22-

Discrete Mathematics — Representing Languages

Derivation

@ If we have arule x — y, and a string of the form w = uxv, then we
can use the rule to derive the string z = uyv

W = UXV = UyV = Z

W derives z
@® Rule S— aSh
abSbaSbaSaba = abSbaSbhaaSbaba
I -

OIf w —w,=. =w, thenwewrite y, "
@ Example
abShaSbaSaba K abaSbbaaSbhbaaaShbaba

\ J \ l‘\ I’

22-

Discrete Mathematics — Representing Languages 22-

Generating a Language

@® Let G=(V,X,S,P) beagrammar. Then the language L(G)

generated by G is the set of all strings of terminal symbols that can
be derived from S

Formally,
L(G)= (WwES |S=" w)

@ What is the language generated by the following grammar?
S—Aa A—A
A—Ba B—A
A—Bb B — abba

Discrete Mathematics — Representing Languages

More Examples

@ What is the language generated by the following grammar?
S—aSh S—A

@ What is the language generated by the following grammar?
S—SS S—A S—aSh S—DbSa

@ Suggest a grammar that generates the language of properly placed
parenthesis.

22-

Discrete Mathematics — Representing Languages

Homework

Exercises from the Book:
No. 17,19 (page 318)

Suggest a grammar that generates correct algebraic expressions

22-

