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Previous Lecture

  Caesar cipher
  Chinese Remainder Theorem
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Fermat’s Theorem

  Fermat’s Great (Last) Theorem.
       For any  n > 2,  the equation                     
    does not have integer solutions  x,y,z > 0

  It had remained unproven for 358 years
       (posed in 1637, proved in  1995)

  Andrew Wiles proved it in 1995
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Fermat’s Little Theorem

  Fermat’s Little Theorem.
       If  p  is prime and  a  is an integer not divisible by  p,  then

  Clearly, it suffices to consider only residues modulo  p.
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Fermat’s Little Theorem  (cntd)

  Fermat’s Little Theorem was improved by Euler
  Fermat’s Little Theorem improved

       For any integers  m  and  a  such that they are relatively prime 

    where  φ(m)  denotes the Euler totient function, the number of 
numbers  0 < k < m  relatively prime with  m

  Example: 
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Public Key Cryptography

  Earlier we considered Caesar cipher.  To encrypt and decrypt 
messages using this cipher one needs to know the key
  Caesar cipher uses the same key for encryption and decryption; it 
is secret, and if one knows the key he knows everything.
  Public key cryptosystems use a different approach
  Such a system uses different keys for encryption and decryption:

     Every person has a key for encryption, and can write an encrypted 
message

     But this does not help to decrypt the message
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RSA Cryptosystem

  RSA stands for the names of the inventors: Rivest, Shamir, Adleman

  RSA key:  a modulus  n = pq,  where  p  and  q  are large prime 
numbers (current standards are 128, 256, or 512 digits each),  n  is 
public while  p  and  q  are secret, and 

     an exponent  e  relatively prime with  (p – 1)(q – 1)

From left to right:
  Ron Rivest
  Adi Shamir
  Len Adleman
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RSA Encryption

  In the RSA method, messages are translated into an integer (a 
short message) or a sequence of integers
  Let  M  be the plaintext (the original message).  Then the ciphertext 
is the residue

  Example.   Encrypt the message  STOP  using the RSA 
cryptosystem with  p = 43  and  q = 59,  so that  n = 43 ⋅ 59 = 2537,  
and with  e = 13.

        Note that  gcd(e, (p – 1)(q – 1)) = gcd(13, 42 ⋅ 58) = 1
   Solution.  Translate the letters of  STOP  into their numerical 
equivalents and group them into groups of four:  1819 1415

        Encrypt them using                                   .  We get

Thus,  the encrypted message is   2081 2182



Discrete Mathematics – Public Key Cryptography 32-

RSA Decryption

  The decryption key  d  is the inverse of  e  modulo  (p – 1)(q – 1). It 
is secret!

        Since  gcd(e, (p – 1)(q – 1)) = 1,  the inverse exists.
  Indeed,  de ≡ 1 (mod (p – 1)(q – 1)),  therefore there is  k  such that 
de = 1 + k(p – 1)(q – 1).  Hence

      Note that  φ(n) =                            = (p – 1)(q – 1)

      By Fermat’s Little Theorem,                                                 
      Hence, 
      Thus 
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Example

  We receive the encrypted message  0981 0461.  What is the 
plaintext if it was encrypted using the RSA cipher fro the previous 
example.
  Solution

       The encryption keys were  n = 43 ⋅ 59  and  e = 13.  
       It is not hard to see that  d = 937  is the inverse of  13 modulo  
    42 ⋅ 58 = 2436.
       Therefore to decrypt a cipher block  C,  we compute

       In our case we have           
       
       Thus the plaintext is  0704 1115,  that is  HELP
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Why RSA Works

  The secrecy comes from the fact that it is incredibly difficult to find 
an inverse modulo a big number if we do not know its prime 
decomposition.
  However, it is also very difficult to find a prime decomposition of a 
number if its prime factors are big.  The most efficient factorization 
method known requires billions of years of work of the fastest 
computers to factorize a 400-digit number.

  We need  n  to be the product of 2 prime numbers, because the 
method works only if the message is relatively prime with  n.  Thus  n  
needs to have very few divisors.
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A note. There was a repeating mistake at 
the midterm. So I would like to emphasize:

                        
COUNTABLE IS NOT 
FINITE


