
CMPT 250 : Week 7 (Oct 15 to OCT 22)

1. SEQUENTIAL CIRCUIT MULTIPLICATION (cont’d)

1.1. SAVING REGISTERS

An examination of the multiplication process in the context of the logic diagram
reveals that both the X and P registers are shifted right at the same time.
Furthermore, initially P(LO) is not required and is set to 0.

By storing X in P(LO) at the beginning of multipication, and then examining
P(0) rather than X(0), we can save the cost an X register. This revised algorithm is
defined in the following ASM diagram:

1.2. SIGNED MULTIPLICATION

There are two possible approaches for signed multiplication:
1. Convert the operands to positive values, remembering the original

signs. Then perform unsigned multiplication. If the signs are
different, negate the result.

2. Develop an algorithm that includes the sign determination as part of
the process.

Booth’s algorithm is an example of an algorithm that determines the sign a a by-
product of the multiplication.

Booth’s algorithm is based on the fact that any number can be expressed as the
sum and difference of different powers of 2. Obviously, every number can be
expressed a sum, as this is reflected by its binary representation where a "1" in the

iith postion to the right of the least significant bit means that 2 should be one of the
summands.

What is not so clear is that there are other representations if subtraction of terms
is permitted and Booth’s discovery was a way of determining these terms from the
pattern of bits in the binary representation.

Booth’s Algorithm

Begin by adding a bit (called b) to the right of the least significant bit of the-1
binary number. We now proceed from right to left, comparing pairs of adjacent
bits b , b , i = 0,1,..,n-1, to detect the following patterns:i i-1

• 00 or 11: Increment i by 1.

(C) A.H.Dixon page..43

rdy

MPY

rdy

st

res

op2

op1

1

0

1

0

0

1

P2
N <- N + 1
P<- P shr 1

P(HI)<-P(HI)plus Y

res<-P

P(0)

N<n

P1

N <- 0
Y<- op2

P(LO)<-op1
P(HI)<-0

st

P0

Figure 1-1: The multiplier algorithm (v2)

i• 01: Add 2 to the sum. Increment i by 1.
i• 10: Subtract 2 from the sum. Increment i by 1.

For example the binary number 011010 Can be expressed as follows. (b is in-1
parentheses. "^" denotes bits examined):

(C) A.H.Dixon page..44

0011010(0) => do not add or subtract 2 .
^ ^

1011010(0) => subtract 2 from the sum.
^^

2011010(0) => add 2 to the sum.
^^

3011010(0) => subtract 2 from the sum.
^^

4011010(0) => do not add or subtract 2 .
^^

5011010(0) => add 2 to the sum; and stop.
^^

5 3 2 1011010 = 26 = 2 - 2 + 2 - 2

This test can be used in the multiplication algorithm. The bits of the multiplier are
tested according to the rules above, The multiplicand is either added to the product
or subtracted from the product if adjacent bits differ. After every case the product
is shifted right. Note that the an arithmetic shift rather than a logical shift is
performed to preserve the most significant bit of the product which maintains the
sign.

The previous mulitplication ASM can be modified to incorporate Booth’s test.
The product register P is extended by 1 bit so that P(0) holds b . Thus P(HI) =-1
P(n..n/2+1), and P(LO) = P(n/2..1). The value placed on the output
bus res is P(HI,LO) and does not include P(0). This is illustrated on the next
page. The significance of Booth’s algorithm is that an addition or subtraction only
occurs when adjacent bits are different. If this occurs infrequently, then few of
these operations are required, and performance is improved.

(C) A.H.Dixon page..45

rdy

10 00,11

P(-1) <- 0
Y<-op2, N<-0
P(LO)<-op1

P(HI)<-0

P(HI)<-P(HI)minus Y

MPY

rdy

st

res

op2

op1

1

1

0

0

01

P2
N <- N + 1
P<- P shr 1

P(HI)<-P(HI)plus Y

res<-P

P(0,-1)

N<n

P1

st

P0

Figure 1-2: Booth’s multiplier algorithm

(C) A.H.Dixon page..46

2. INSTRUCTION SET ARCHITECTURES & CPU DESIGN

Designing the central processing unit (CPU) of a simple computer provides a
good opportunity to illustrate the application of the tools and techniques covered in
the course, as well as to identify the fundamental considerations that affect the
eventual architecture.

2.1. PROBLEM SPECIFICATION AND ANALYSIS

A general purpose processor will be one which is capable of performing the tasks
specified by any algorithm.

To be able to define an algorithm, ignoring hardware considerations, requires a
set of basic operations, called the instruction set, with which the algorithm can be
defined. With a sufficiently robust instruction set, any algorithm can be defined
from the same set of instructions. Step 1 of the specification is the formulation of a
suitable instruction set.

Computer processor design is determined primarily by the instruction set that is
to be interpreted by it. To be able to define any algorithm a complete instruction
set is required; that is, one that provides the following types of operations:

• Data storage and retrieval, including input and output functions.

• Arithmetic, logic, and shifting functions.

• Conditional branching.

Each instruction must eventually be described formally in terms of the primitive
operations that are provided by the processor on which the instruction is to be
executed. In general the following considerations influence the choice of
instructions to be included in an instruction set:

1. completenenss: Data transfer, arithmetic, logic, test/branching, and
input/output can be performed by the instruction set.

2. efficiency: The most frequently used instructions can be performed
raptidly.

3. regularity: Instructions should be implemented:

• so as to adopt a reasonably uniform instruction format,

• so that similar features in two instructions are implemented in
similar ways,

• so that both operations of "complementary" pairs, when they
exist, are provided (eg. add/subtract, shift left/shift right).

As a general rule, uniformity of instruction definition leads to simpler processor

(C) A.H.Dixon page..47

designs. Flexibility of use while preserving uniformity can be achieved in
instruction set architectures in three significant ways:

1. By classifying instructions into the major groups described above and
using a common instruction format for eqch:

a. Data Transfer: LOAD, STORE, MOVE, PUSH, SERVE, ...

Design factors: Choice of register types and data flow paths.

b. Arithmetic/Logic: ADD, SUB, AND, MASK, ...

Design requirements: Combinational Logic to provide the
operations and data flow paths to supply the operands.

c. Shifting: SHRL, SHRA, CIR, ...

Design consideration: Whether to provide shifting as part of a
register function, or as a combinational circuit.

d. Testing/Branching: BEQ, BLE, <interrupt>, ...

Design requirements: Components for generating and
collecting testable conditions, and modifying or saving the
instruction pointer.

2. By fixing the number of operands that are provided by arithmetic
instructions. Machine design strategies can be classified by the
number of operands that must be explicitly provided by
computational instructions:

a. 0-operand machines These machines do not require any
explicit identification as to where the operand values will be
found. Therefore they are always in the same place. This
design is frequently modelled by stack machines; that is,
those that use a push-down-store to hold the operands and
result.

b. 1-operand machines The destination and one operand are
implied, while one operand is provided explicitly by the
instruction. Historically, the implied operand and destination
were provided by a single general purpose register called an
accumulator; hence this model is often referred to as an
accumulator machine.

c. multi-operand machines The operands and result are
specified explicitly in the instruction. Depending on where
the operands will be found or result will be stored two
versions are possible:

i. register-register machines All the operands and the
result are held within the processor using a set of

(C) A.H.Dixon page..48

general purpose registers, often implemented with a
register file (see below).

ii. register-memory machines include at least one
reference to memory in addition to referencing
specific internal registers.

Most contemporary CPUs today have adopted a multi-operand
architecture becuase of the performance benefits obtained in
executing such instructions.

The following example program segments illustrate how the instruction formats
as well as program organization are determined by the number of operands that are
required. each program segment is a machine language translation of the high-
level assignment statement, F = (A + B) * (C - D):

• one-operand architecture
LOAD A AC <- M[A]
ADD B AC <- AC + M[A]
STO TMP M[TMP] <- AC
LOAD C AC <- M[C]
SUB D AC <- AC - M[D]
MULT TMP MP,AC <- AC * M[TMP]
STM F+4 M[F+4] <- MP
STO F M[F] <- AC

From this small sample, the cpu datapath will need to include one
general work register, AC, as well as an "overflow" register MP for
holding the results of multiplications. In addition, combinational logic
will be required to provide the arithmetic operations.

• register-memory architecture
LDDA A ACCA <- M[A]
ADDA B ACCA <- ACCA + M[B]
LDDB C ACCB <- M[C]
SUBB D ACCB <- ACCB - M[D]
MUL ACCA,ACCB <- ACCA * ACCB
STD F

Additional work registers reduce the need to store temporary results in
memory as was the case with the one-operand machine. Additional
switching logic will be needed if the internal data lines are shared by
the work registers. The same general requirements exist for providing
arithmetic functions as occurred in the one-operand architecture.

(C) A.H.Dixon page..49

