
CMPT 250 : Weeks 5 & 6 (Oct 3 to Oct 12)

1. UNSIGNED ADDITION (Continued)

To provide further improvement, the CPG is modified so that it does not actually
compute a carry-out, c , but rather outputs two values:out

G = g + g p + g p p + g p p p0 3 2 3 1 2 3 0 1 2 3

P = p p p p0 0 1 2 3

From these two values the carry-out is given by G + c P .0 0 0

Consider now the definition of carries c , c , and c . These are the carry inputs4 8 12
for the 2nd, 3rd and 4th modules of a 16 bit adder constructed from 4-bit CLAs.

c = G + c P4 0 0 0

c = G + c P8 1 4 1
=G + G P + c P P1 0 1 0 0 1

c = G + c P12 2 8 2
=G + G P + G P P + c P P2 1 2 0 1 2 0 1 2

These equations are computed by a CPG whose input values are
G ,...,G ,P ,...P ,c . These values in turn are the outputs from the 4-bit CLAs0 2 0 2 0
whose carry-out was replaced by G and P outputs. Therefore we can compute the
carry-ins to each module more quickly by introducing a second level of CPGs as in
the diagram:  Analysis of this circuit shows that the longest path requires 8 levels
of gates:

• one level to compute g ,pi i

• two levels to compute G ,Pi i

• two levels to compute c ,c ,c4 8 12

• two levels to compute the remaining carries

• one level to compute s as a function of c and p .i i i
Thus we have reduced the delay by a factor of 4, from 32 gate levels to 8 gate
levels in a 16 bit adder.
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Figure 1-1: 16-bit addition with two levels of CPGs
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2. BIT-VECTORS IN VHDL

The modelling of register behavior in VHDL may require the processing of bit
vectors. In VHDL bit_vector is an unconstrained sequence of elements of
type bit, and is available as a predefined datatype.  However, usually one wants
to constrain a bit_vector to a particular length, usually representing the size of
a bus.  Since bit_vector is already a type, a subtype declaration is
required, along with a range. A range is a specification of a sequence of integer
values, and in this instance is used to define the possible values a subscript may be
assigned when indexing the bits of the bit_vector.

For example, a data subtype called byte can be declared by:
subtype byte is bit_vector(7 downto 0);

Here, the individual bits of any variable declared to be of type byte are indexed
by subscripts 7 (the most significant bit) down to 0 (the least significant bit).

VHDL provides a looping construct, the for statement that permits one to
access the bits of a bit_string subtype in an orderly way.  The syntax of the
for loop is:

for <index variable> in <range> loop
statments defining the loop body

end loop;

Finally, VHDL provides procedure declarations to specify user-defined
operations, and these can be used to specify operations involving bit_vectors.
The syntax (simplified) for a procedure is:

procedure <procedure-name>(<parameter declaration>s)
local variable declarations
procedure body
end <procedure-name>;

A <paramater declaration> is similar to a port declaration, except that
oridnary variables are declared rather than signals.  It is also possible to include
signals as parameters, but this will not be needed.

The syntax of a <parameter declaration> is as follows:
<parameter name> : <mode> <datatype>

Parameters passing values in to the procedure are defined to have mode in,
while paramters returning values from the procedure are defined to have mode
out. Variables serving both functions are given mode inout.

The following examples illustrate the implementation of a complementer and an
incrementer behaviourally using procedure declarations.
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Example 1: Complementer
entity COMPL is

port(in_data: in byte;
en: in bit;
out_data: out byte);

end COMPL;

architecture behav of COMPL is
begin
compl_proc: process

procedure complement(data_in: in byte,
data_out: out byte);

variable i: integer;
begin

for i in 0 to 7 loop
data_out(i) := not data_in(i);

end loop;
end complement;

variable data: byte;
begin

if en = ’1’ then
complement(in_data,data);
out_data <= data;

else
out_data <= in_data;

end if;
wait on in_data, en;

end process;
end behav;

Note that a temporary ordinary variable, data was used to avoid passing a
signal variable as an argument for returning the complemented value, Although
in_data is also a signal there are no "complications" associated with assigning
signals to parameters of mode in. This is because input parameter values are
passed using a "call by value" mechanism, whereas output parameters are linked
via a "call by reference" mechanism.
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Example 2: Incrementer
entity COUNTER is

port(clk,clr: in bit;
out_value: out byte);

end COUNTER;

architecture behav of COUNTER is
begin

CTR_proc: process
procedure increment(count inout: byte)
variable i: integer;
variable s,c: bit;
begin

c := ’1’;
for i in 0 to 7 loop

s := count(i) xor c;
c := count(i) and c;
count(i) := s;

end loop;
end increment;

begin
if clk = ’1’ then

if clr = ’1’ then
count := B"00000000";

else
increment(count);

end if;
out_value <= count;
wait on clk;

end process;
end behav;

In this example it was necessary to declare the parameter to be of mode inout
since we are modifying the input parameter before returning it as an output
parameter.
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3. SEQUENTIAL CIRCUIT MULTIPLICATION

As was demonstrated previously, a significant amount of hardware is required for
multiplying two 32 bit operands, the typical word size, using combinational logic.
Multiplication can be implemented more simply, though less efficiently, with a
sequential circuit based on repeated addition.  The traditional algorithm consists of
computing an n x 1 product, shifting it left one bit and adding it to an accumulated
partial product.  Alternatively, one can hold the n x 1 product fixed and shift the
accumulated partial product to the right.

Both approaches are illustrated in the following example:

0101 00000000
0110 0000
---- --------
0000 00000000
0101 0101

0101 --------
0000 00101000
------- 0101

00011110 --------
00111100
0000
--------
00011110

The second approach is defined formally in the ASM diagram on the next page.
Note that if the format of the inputs is "unsigned binary" then the carry-out
following addition should be used to replace the most significant bit when the
number is shifted right.
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Figure 3-1: A sequential multiplier
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