
CMPT 250 : Week 4 (Sept 26 to Oct 1)

1. DESIGN OF ARITHMETIC HARDWARE

2. ALU DESIGN

The adder/subtractor module described in CMPT 150 (Malvino, page 85) is a
simple example of an arithmetic/logic unit or ALU. The design of such modules
follows standard combinational logic principles described previously. Some
"tricks" that tend to simplify the implementation are described here.

To begin, an ALU is formally specified by a black-box and a function select
table. The black-box identifies two data input buses, a data output bus, and a
function select bus. It may also include a carry-in and carry-out or propagate and
generate outputs to permit chaining.

To illustrate the design procedure, consider an ALU that is to provide the
following functions:

f2 f1 f0	FUNCTION
0 0 0 | out <- 0
0 0 1 | out <- A and B
0 1 0 | out <- B’
0 1 1 | out <- 0’ = (11...1)
1 0 0 | out <- A plus B
1 0 1 | out <- A minus B
1 1 0 | out <- A plus 1
1 1 1 | out <- A minus 1

To begin, try to express each function the "same way" since this will reduce the
number of distinct subcircuits that will be required. In this example it is possible
to define every "artihmetic" function using the full adder equation:

(C) A.H.Dixon page..28

f2 f1 f0	FUNCTION
0 0 0 | out <- 0
0 0 1 | out <- A and B
0 1 0 | out <- B’
0 1 1 | out <- 0’
1 0 0 | out <- A plus B plus 0
1 0 1 | out <- A plus B’ plus 1
1 1 0 | out <- A plus 0 plus 1
1 1 1 | out <- A plus (1)’ plus 1

= A plus 11..10 plus 1
= A plus 11...1 plus 0
= A plus 0’ plus 0

From this table, a processor component can be designed, as given in figure 2.1.

m

s2

cm
s1

C_in

G

P

out
0

B

A

B

A

MUX

MUX

FA

COMPLMUX

0

1

2

0

1

0

Figure 2-1: 8-function ALU processor component

The controller for this processor consists only of a control point enabler, since,
there is no sequencing (in effect, a 1-state ASM). The control point selector
functions are defined in the following function table:

(C) A.H.Dixon page..29

f2 f1 f0	s1 cm s2 m C_in
0 0 0 | 0 0 1 0 x
0 0 1 | x x 0 0 x
0 1 0 | 1 1 1 0 x
0 1 1 | 0 1 1 0 x
1 0 0 | 1 0 x 1 0
1 0 1 | 1 1 x 1 1
1 1 0 | 0 0 x 1 1
1 1 1 | 0 1 x 1 0

In addition, the carry-in to the least significant bit will need to be defined as
indicated in the function select table for the third operand above.

3. UNSIGNED MULTIPLICATION

3.1. COMBINATIONAL MULTIPLIERS

The design of a commbinational multiplier is based on how we multiply
manually. To multiply a 4 bit number by a 2 bit number generates two partial
products a3,a2,a1,a0 and b3,b2,b1,b0 that must be added together to
determine the final product:

x3 x2 x1 x0
y1 y0

a3 a2 a1 a0

b3 b2 b1 b0

p5 p4 p3 p2 p1 p0

where ai = xi*y0 and bi = xi*y1

If P0 = a3,a2,a1,a0 and P1 = b3,b2,b1,b0

then
X times Y = (2 times P1) plus P0

Therefore begin by designing a 4x1 multiplier that is capable of adding a term after
multiplying its operands:

By inspection of the analysis of manual multiplication above, the 4x1 multiplier
can be used to compute a partial product and any accumulated sum from previous
partial products to it. Thus two such modules can be "chained" together to obtain
the desired 4x2 multiplier:

(C) A.H.Dixon page..30

FA

q4 q3 q2 q1 q0

b

a0a1a2a3p0p1p2p3

c_in

c_out 3 2 1 0

3 2 1 0 3 2 1 0

Figure 3-1: A 4x1 combinational multiplier

01230123
(C_in)

(C_in)
01233 2 1 0

01234

p5 p4 p3 p2 p1 p0

x0x1x2x3

0000

4 3 2 1 0

y1

0

y0

0

x0x1x2x3

Figure 3-2: A 4x2 combinational multiplier

By including a carry-in (from the full adder circuit on which its structural
description is based), the module can be used to build multipliers of any size, by
chaining them in two-dimensional arrays. For example to obtain an 8 x 2
multiplier using 4x1 packages, the following array is obtained:

(C) A.H.Dixon page..31

9 8 7 6 5 4 3 2 1 0

A(3..0)A(7..4)

B(1)B(1)

B(0)B(0)

0

0

00000000 A(3..0)A(7..4)

3 2 1 0

0123
c_in

B
c_out

A 3 2 1

3 2 1

0

0 3 2 1 0

0123

013 2
c_inc_out

BA

A A
c_out c_in

B B

c_inc_out
3 2 1 0

Figure 3-3: An 8x2 combinational multiplier

4. UNSIGNED ADDITION

From the previous two examples, then it is clear that efficient ADDER circuit
design contributes to the performance of circuits that perform other arithmetic
functions. This section looks at ways to design "fast" ADDERS.

The basic building blocks for addition circuits are defined by the following
Boolean functions, where x, y, and c denote binary inputs, s the sum output andin
c the carry output:out

1. 1-bit HALF-ADDER: s = x ⊕ y, c = xy . This device computes theout
sum of two 1-bit quantities. Note that it also provides the Boolean
functions And and xor.

2. 1-bit FULL-ADDER: s = x⊕ y ⊕ c , c = xy + c [x ⊕ y] . Thisin in
device computes the sum of three 1-bit quantities.

To add two n-bit numbers the following tabular notation is often used:

(C) A.H.Dixon page..32

c c ...c c 0n−1 n−2 2 1
x x ...x x xn−1 n−2 2 1 0
y y ...y y yn−1 n−2 2 1 0
−−−−−−−−−−−−−−

c s s ...s s sn n−1 n−2 2 1 0

Each column can be implemented with a 1-bit full adder. In each case the carry-in
for a given stage is defined by the carry-out from the previous stage to the right.

This method of implementing large adders is inefficient, since the carry-out is
required to propagate through the entire system. This means the propagation delay
is proportional to the number of bits in each operand. In fact if the propagation
delay of any gate is 1 ns, then the propagation delay for an n-bit adder is 2n ns. To
speed up addition it is necessary to compute the carry-out sooner. Consider the
carry-out at stage n − 1. Let g = x y and p = x ⊕ y . Then:n n n n n n

c = g + c ⋅pn n−1 n−1 n−1

This recurrence relation can be solved by repeated substitution:

c = g + c ⋅p1 0 0 0

c = g + c ⋅p2 1 1 1
=g + g p + c p p1 0 1 0 0 1

c = g + c ⋅p3 2 2 2
=g + g p + g p p + c p p p2 1 2 0 1 2 0 0 1 2

c = g + c ⋅p4 3 3 3
=g + g p + g p p + g p p p + c p p p p3 2 3 1 2 3 0 1 2 3 0 0 1 2 3

These equations are all sums-of-products and so c can be computed with twoi
levels of gates as functions of g ...g ,p ...p ,c . A package that implements logical0 3 0 3 0
circuits for these equations is called a carry-propagate generator or CPG.

The sum of each stage is defined by s = p ⊕ c , and so is computed with ani i i
additional level of exclusive-or gates. A 4-bit adder can be implemented with a 4-
level circuit, sometimes called a carry-look-ahead adder or CLA.

To obtain larger adders, the 4-bit CLA can be chained as could the 1-bit full
adder. For 16-bit addition, this yields a circuit where the carry bit is propagated
through 16 levels as opposed to the 32 levels of a chain of 16 1-bit adders. So an
adder based on a 4-bit CLA is twice as fast. The logic diagram for a 16 bit adder
can be found 2 pages ahead.

(C) A.H.Dixon page..33

s3

s2

s1

s0

p3

p2

p1

p0

p2

p3

p1

p0

C

S

G2

P2

G1

P1

G0

P0

c3

G

P

c_in

c2

c1

CPG

c0

HA

HA

HA

HA

C

S

C

S

C

S

Y3

X3

Y2

X2

Y1

X1

Y0

X0

Figure 4-1: 4-bit addition using a carry-propagate generator

(C) A.H.Dixon page..34

c16

s(15..12)

s(11..8)

s(7..4)

s(3..0)

XOR
4

XOR
4

XOR
4

XOR
4

G
P
C

G
P
C

G
P
C

G
P
C

HA
4

HA
4

HA
4

HA
4

p(15..12)

p(11..8)

p(7..4)

p(3..0)

c15

c14

c13

c11

c10

c9

c7

c6

c5

c3

c2

c1

c12

c8

c4

c0

g(15..12)

p(15..12)

g(11..8)

p(11..8)

g(7..4)

p(7..4)

g(3..0)

p(3..0)

y(15..12)

x(15..12)

y(11..8)

x(11..8)

y(7..4)

x(7..4)

y(3..0)

x(3..0)

Figure 4-2: 16-bit addition using a carry-propagate generators

(C) A.H.Dixon page..35

