
CMPT 250 : Weeks 12-13 (Nov 21 to 30)

1. HIERARCHICAL MEMORY

In choosing between SRAM and DRAM for implementing memories, the trade-
offs are expensive vs cheap, and fast vs slow.  To approach the performance of
SRAM at the cost of DRAM, it is possible to combine the two types of
components and in many circumstances achieve a performance approaching
SRAM at the cost of DRAM.

That is, improve the efficiency of the memory cycle using faster devices to
provide only a small part of the physical memory.

If only a part of physical memory is implemented with fast components, then the
average memory access time can be used to compare the performance of different
hierarchical memory architectures:

t = p × t + (1 − p) × tavg fast mem slow mem

where p is the probability that the address specified maps to a physical address in
the fast memory.  Obviously the closer that p is to 1, the closer the access time is
to that achieved if only fast memory components were used.  On the other hand,
for economic reasons, as well as physical constraints, we would like to make the
ratio of fast memory to slow memory as small as possible.

Locality of reference is the property possessed by a program if the memory
addresses used to fetch and execute each instruction "for the most part" are near to
each other in space or time. Space locality refers to instructions that occupy the
same local area of memory.  Two instructions exhibit Time locality of reference if
one will be required shortly after the other.

The degree to which programs possess the property of locality of reference
determines how successful a hierachical memory structure will be in providing a
shorter memory access than that expected of slow memory alone.

1.1. CACHE HIERARCHIES

A cache memory architecture is a hierarchical memory where the fast memory is
provided by bipolar semiconductor components (flip-flops) and slow memory is
provided by some non-bipolar technology (eg DRAM).  The "fast memory"
component will be referred to as the cache, and the slow memory as the "main
memory". The contents of cache initially is usually a copy of some part of main
memory.

(C) A.H.Dixon page..72



The probability p that a virtual address maps to a cache location is called the hit
ratio of the cache memory architecture.

In the following examples of different cache architectures, assume that the cache
(ie fast memory component) has been divided up into k blocks of m words per
block. Thus the cache consists of m × k words of fast memory.

Let main memory (ie slow memory) be n times larger than the cache.  Then main
memory consists of n × m × k words of slow memory.

Assume each block of m words in the cache is a copy of some block of m words
in main memory.  Now the cache can only hold a copy of 1/n of the total contents
of main memory, so each word of cache will be extended by an additional field to
identify from which block of main memory the word has been copied. This field is
called the tag for the word (or block).

Thus a cache memory architecture can be constructed from two storage
components: the cache memory with data words extended to include a tag, and the
main memory itself.  The components required for the memory management unit
will depend on which blocks from main memory can actually reside in the cache
simultaneously. Different strategies for mapping a block of main memory to cache
are possible, and these strategies affect the definition of the address mapping logic
that is required to map a virtual address to a physical address in the cache memory
architecture.

2. DIRECT MAPPING CACHE

Memory Mapping Strategy
1. From the physical parameters defining the size of the storage

components, the main memory consists of a total of n × k blocks of m
words. Therefore we can divide them up into k sets of n blocks,
S ,S , . . . ,S .0 1 k−1

2. Since there are k cache blocks, associate a different one of the k sets
of main memory blocks with each cache block.  A main memory
block belonging to the set S can only be copied to cache block i.i

3. Since there are n members of S , associate a unique identifier, calledi
a tag, with each block in the set to distinguish it from the others in
the same set.  Store the tag of the block from set S currentlyi
occupying cache block i, in the most significant bits of each word in
cache block i. Thus each word in the cache will have two fields: a
data field and a tag field.

Address Mapping Function
1. Partition an address referencing main memory into three fields:

(C) A.H.Dixon page..73



a. Field B - set identifier: identifies which set the block belongs
to, and therefore which cache block is the one where the word
to be accessed might be found.

b. Field T - tag identifier: identifies which main memory block
among those that are associated with cache block B contains
the word being accessed.

c. Field W - offset field: identifies which of the m words within
the block is to be accessed.

2. If the T field matches the tag part of any word in cache block S then
the location can be retrieved from the cache.  Otherwise the word
must be retrieved from main memory. In that case, the main memory
block containing the word addressed is brought into cache before the
value is returned. The figure below illustrates the mapping.  Note the
extra bit v of each cache word.  This is used to determine if there is
valid data stored at that location.

eq

data
TAG

B,WT

=

dataTAGvWBT

cdata formatabus format

ackm

mdata

cdata

mrmcscrccs

maddrcaddr

abus

M

Figure 2-1: Address Logic for Direct Mapping

(C) A.H.Dixon page..74



EXAMPLE: A cache memory architecture employs a main memory of sixteen
32-bit words partitioned into blocks of size 2 words.  The cache is 25% the size of
main memory.

Therefore n = 4, m = 2, and k = 2, so the address will be partitioned into a B field
of 1 bit, a W field of 1 bit, and a T field of 2 bits.

The size of the required memory components are:
1. Main Memory: 16 words, each 32 bits long;

2. Cache Memory: 4 words, each 35 bits long;

The memory mapping strategy defines which main memory blocks are allocated
to which cache blocks.  From the problem specification, main memory is
partitioned into 2 groups of 4 blocks.

One possible partition is to place the first four blocks in group 0, and the second
four blocks in group 1.  That is, if a word belongs to one of the first four blocks, it
can be found only in cache block 0, provided a copy of the block to which the
word belongs currently resides in that block of cache.

Thus only one of the first four blocks can be in cache at any one time.  For this
partition, addr(B) = addr(MSB), and addr(W) = addr(LSB) with addr(T) =
addr(2,1).

A second possible partition is to place alternate blocks in the same group.  In this
case blocks 0, 2, 4, and 6 are placed in group 0, with blocks 1, 3, 5, and 7 being
placed in group 1.  In thisd case addr(B) = addr(1), addr(W) = addr(LSB) and
addr(T) = addr(3,2). (Bits are labelled from right to left, with LSB = 0 MSB = 3).

The choice of partition influences the efficiency of cache memory.  For programs
which are stored in contiguous locations in memory, the second partition results in
more consecutive locations of a program being in cache at the same time. With the
first partition, no two consecutive blocks (except for block 3 and block 4) can be in
cache simultaneously.  In other words it takes advantage of spatial locality, since it
allows for more instructions that will follow the current one to be in cache at the
same time.

3. ASSOCIATIVE MAPPING CACHE

The disadvantage of direct mapping is that only one of n blocks can be placed in
a given cache block position at any time.  If we relax this constraint, then any one
of the n × k blocks of main memory could occupy any cache block position. This,
of course, would require a larger block identifier, and would require that the T field
of the address be compared with all tags in cache. A search based on sequential or
binary comparisons would take too long. What is required is the logic to compare
simultaneously all the tags of the blocks in cache with the T field of the address.

(C) A.H.Dixon page..75



This requires a content addressable memory be used for storing the tags associated
with each cache block

A content addressable memory (CAM) is any memory device where the value of
the data is used to access memory.  That access generates an output that determines
if the value is in memory, and if so where.

When the tag array is implemented with a CAM, then the T field of an address
can be compared simultaneously with all tags in the tag array.  The output is a
binary vector with a 1 in position i if and only if the T field matches the value in
CAM[i]. If the output is non-zero, there will be a 1 in exactly one output bit. The
address i of the location of the tag in the CAM can be used to construct the cache
address by concatenating it with the W field of the abus address.

The requirements of a CAM (or associative memory) are met by the following
architecture. Each row of ‘‘cells’’ defines a word of the CAM.  The associated
row of XNOR gates provides the comparison logic permitting the input tag to be
compared with the corresponding word of CAM. The select logic allows a
particular row to be enabled for input, in order to store a new value in that word of
CAM:

er

taddr
T(1)T(0)

m1

m0

1

0

s
in

out

Figure 3-1: 2x2 CAM Organization

(C) A.H.Dixon page..76



Using a content addressable memory, the addressing logic for retrieving a value
from a location in cache would be organized as follows:

1. The T-field is compared with all tags stored in the TAG array.

2. The match vector is decoded by the code converter.  Its output is the
binary representation of the location in the match vector where a bit
has been set (if any).  This output provides the block address to the
cache memory.  The W field of the address is used to complete the
address to cache.

T W
block

match

T

CVTR
CODE

ARAY
TAG

data

datavW

cdata formatabus format

ackm

mdata

cdata

mrmcs

cr
ccs

maddr
caddr

abus

M

Figure 3-2: Address Logic for Associative Mapping

3.1. REPLACEMENT STRATEGIES

An examination of the associative mapping strategy reveals that when there are
no further free cache blocks for transfering a block from memory, then a decision
must be made as to which occupied cache block to replace.

Possible strategies include:

• Random: The selection of the replacement block is based on some
randomized selection procedure and does not make use of any
knowledge of the application.

• FIFO: The oldest cache block loaded is overwritten. Such algorithms

(C) A.H.Dixon page..77



employ a First-In-First-Out (FIFO) cache block replacement strategy.
This strategy is reflected in the ASM diagram for associative cache
given in last week’s notes.

• LRU: Although random and FIFO are the simplest replacement
strategies to implement, they do not take into account the possibility
that "other" blocks may be more suitable replacement candidates, such
as those that are seldom referenced.  The Least-Recently-Used (LRU)
replacement strategy attempts to address this issue.  By keeping track
of the time since last reference for each cache block it is possible to
choose the "most stale" cache block; that is, the one least recently
referenced.

4. WRITING TO CACHE MEMORIES

With retrieval, the contents of memory remain unchanged and therefore each
block of cache is an exact copy of some block of main memory.  However, with
the storage of a value two options exist as to how to proceed:

1. Write-Through

With this technique, every update of cache automatically updates
main memory.  The advantage of this approach is that memory is
always up-to-date.  However no benefit of the memory architecture
occurs since every storage access by definition accesses main
memory. The performance of the cache memory architecture is
determined by the hit ratio for retrievals and the ratio of retrieval
accesses to storage accesses

2. Write-Back

With this technique, only the cache is updated.  A flag associated
with the updated cache block is set and if and when it becomes
necessary to overwrite that block, it is written back to main memory
if its flag is set. This strategy improves the performance of cache
memory particularly in programs where the same location is
referenced frequently.  Additional hardware is required for the flags
and for making it possible to perform a block transfer from cache to
main memory.

The write-back method takes advantage of cache memory, but with additional
cost and complexity of the extra hardware requirements. This plus the fact that
"typical" programs have a significantly greater number of retrieval requests than
storage requests, have made the write-through technique a more common solution
in the past to the problem of storing in cache memories.

Recently however, with the development of new memory technologies including

(C) A.H.Dixon page..78



synchronized RAM, it is possible to improve the efficiency of block transfers and
consequently write-back systems are becoming more common.

5. INPUT/OUTPUT INTERFACES

The logic required for communication between the distinct physical modules of a
computer system (Processor, memory, I/O devices) is collectively referred to as the
intrasystem communications logic. The communications logic needed to transfer
data between different computer systems is referred to as the intersystem
communications logic. Intrasystems interface design addresses two problems:

1. The propagation delay caused by the physical separation of devices.

2. The variation in device interface requirements.

3. The limitation imposed by the available inputs and outputs on the
CPU chip.

5.1. BUS ORGANIZATION

Any collection of signal lines between devices constitutes a communications bus.
The purpose of a bus determines its type:

• processor-memory bus: Addresses data traffic between a processor
and memory. It is typically short, to minimize delay, and possesses a
wide data path (at least one word).

• input-output bus: Provides the communications link between
input/output devices and the processor.

• backplane bus: A "hybrid" bus permitting both memory and
input/output devices to share the same bus.

Bus adaptors are used to permit two different buses to be connected.  Input and
output devices are not usually connected directly to a bus but are connected via an
Interface Unit that matches the device specific signal lines to the standard
reflected by the common processor-memory or backplane bus.

To design an Interface Unit requires a determination of the communication
requirements for the Processor to fully interact with the device.  These can be
classified as follows:

• Command Decoding: The Processor must be able to request a
particular function or activity of the device;

• Data: The Processor must be able to transmit/receive data according
to the type of function request;

(C) A.H.Dixon page..79



• Status Reporting: The external device may have a different clock
period from that of the Processor; hence, it must be able to report task
completion to the Processor (or error detection);

• Address recognition: The Processor must be able to specify uniquely
which of several alternate devices the I/O function request is
addressed to.

These requirements motivate the structural organization of an interface unit as
defined in the a "behavioral" logic diagram on the next page.

ctl bus

dev data bus
assignment
dev ctl pt

status
dev

logic
transformation

data

PR

DR

data busaddr bus

en

controller
interface

decoder
fn

recognizer
addr

dev fn request
addr
dev

DEVICE
PERIPHERAL

CPU

Figure 5-1: Basic I/O Interface Organization

The types of function that can be requested by the Processor via the address bus
are:

• Control: Activate the device in a particular way;

(C) A.H.Dixon page..80



• Test: Monitor some aspect of the device status;

• Data Output (from Processor): Transfer one data item from I/O bus
to the DATA Register (DR);

• Data Input (to Processor): Transfer one data item from device to
Peripheral Register (PR).

6. BUS ARBITRATION

In a common bus system only two devices can be using the bus at a time; one for
sending (the source), and one for receiving (the destination).  All other devices
must be prevented from accessing the bus at inappropriate times.  The problem of
who gains control of the common bus is called the bus arbitration problem.
Devices sharing a bus can be designed to provide one or both of the following
roles:

• bus master: Any device which can control a bus is a potential bus
master. Otherwise it is referred to as a slave.

• bus arbiter: A device which controls which bus master will be given
access to the bus.  There is at most one bus arbiter associated with a
common bus.

A One bus-master system is an architecture where only one device can send data
over a bus.  In such a case no arbiter is required. Otherwise the communications
architecture will employ a mulitple bus-master system and require a bus arbiter.  In
such situations the following control lines are required:

• Bus Request: (breq) Used to initiate a request for bus control.

• Bus Grant: (bgrant) Used to acknowledge a bus request.

• Bus Ready: (brel) Used to advise the bus arbiter when the bus is free.

The bus arbiter employs a protocol to address the following questions:
1. How does the arbiter identify which Interface Unit issued a bus

request?

2. If several devices issue requests, which one is serviced?

There are several ways to define a protocol with hardware:

1. Daisy Chain Arbitration
a. Device Interface Unit places request for bus access. breq
<- 1.

(C) A.H.Dixon page..81



b. Arbiter holds request until brel = 1 (i.e., bus free) and
then asserts bgrant.

c. bgrant nis passed from one interface unit to next until
received by the module initiating the request;

d. Initiating module receives bgrant and takes control of the
bus, thus becoming the bus master. brel is set to 0 to
indicate the bus is now busy.

e. When finished the bus master frees the bus by asserting
brel.

The basic architecture implied by this strategy is to form a "daisy
chain" of I/O interfaces; that is, each interface is connected to the
next in such a manner that information can be transmitted in one
direction along the chain of interfaces.  One possible way to define
such a chain is as follows:

outin

brel

brelbrelbrel

LOWEST PRIORITYHIGHEST PRIORITY

bgrant

Arbiter)
(Bus
CPU

abus

breq
dbus

data

databreq

req

devicedevice

req

breq data

datadata

databreq

req

device

Figure 6-1: Daisy Chain Arbitration

2. Parallel Arbitration

Daisy-chaining provides a simple way of imposing a priority on the

(C) A.H.Dixon page..82



order in which interrupts from devices are handled: the "closer" the
interface is to the front of the chain, the higher the priority. For the
example given, the front of the chain is that interface that first
receives the interrupt acknowledge from the Processor.

By providing a separate bus arbiter or "device selector" to process
bus requests from the interfaces (or device requests directly from the
peripheral units themselves), a more flexible priority management
capability can be realized.  In particular, the ability to program the
behavior of the device selector from the Processor allows software to
be used to define the handling of bus requests. The following
diagram illustrates the basic architecture:

bgrant
bgrantbgrantbgrant brel

breq

BUS ARBITER

CPU

addr

data

data

databreq

req

devicedevice

req

breq data

datadata

databreq

req

device

Figure 6-2: Parallel Arbitration

The advantages of this approach are:
a. The priority is not determined by the physical position of the

I/O module;

b. A masking facility for bus requests can be provided;

c. The priority of request handling can be modified after
hardware construction.

(C) A.H.Dixon page..83



3. Distributed Arbitration

Rather than employ special hardware or require that devices be
connected in a particular order, it is possible to incorporate the
priority selection into the Interface Units themselves:

• Self-Selection: Each interface unit can write its identity to part
of the data bus.  Since it can read all of the bus, it can identify
who wants access to the bus; in particular, it can determine by
knowing who else wants the bus whether it has highest
priority. If so it seizes the bus.

• Collision Detection: It is possible through the use of a carrier
signal for a device to transmit data on the bus, and at the same
time to listen and see if the contents of the bus are what it is
transmitting. If not, then a collision has occurred, and both
devices stop transmitting, with each retrying after a short but
different amount of time has elapsed.

(C) A.H.Dixon page..84


