
CMPT 250: Weeks 10-11 (Nov 7 to Nov 19)

1. CENTRAL PROCESSING UNIT DESIGN (Continued)

2. CONTROLLER DESIGN FOR THE µMIPS MACHINE

The design of the controller requires labelling the control inputs of the
components in the datapath logic of the µMIPS machine. The control points
indicated are from the diagram of the CPU at the end of last week’s notes.

The design that evolves from an ASM specification results in a controller
consisting of two components: a sequencer and a control-point enabler. Since there
are five ASM diagrams, the sequencer can be specified by five state diagrams. The
behavioral specification of the µMIPS sequencer consists of:

c = F’ * op43

b = F’ * op35

a = F’ * op0

c

b

a

F

B0

S1S0

L1L0

A1A0

F2F1

(C) A.H.Dixon page..61

Because of the large number of control points in the datapath, a step-action
sequence is used to describe the behavior of the control point enabler:

F1*F: lir, cs, rm, spc,s1, lpc, d
F2: la, lb, lalu, s1, kf

A0*F’ *op0*fn32: lalu, s1
A0*F’ *op0*fn34: lalu, s1, f0
A0*F’ *op0*fn36: lalu, s1, f , f2 0
A0*F’ *op0*fn37: lalu, s1, f , f2 1
A0*F’ *op0*fn42*altb: sin1, sin0,swa, w, jf
A0*F’ *op0*fn42*altb’ : sin1,swa, w, jf
A1: w, swa, jf

L0*F’ *op35: lalu, s1, sop1
L1: cs, rm, w, sin0, jf

S0*F’ *op43: lalu, s1, sop1
S1: cs, jf

F’ *op4*aeqb: jf, lpc
F’ *op4*aeqb’ : jf

Figure 2-1: Step-Action Sequence for the µMIPS Machine

The step-action sequence provides a suitable behavioral description for starting
the design of the control point enabler. The overall design process is as follows:

1. Construct a word format sufficient to specify the values of all control
points in the datapath, and any external status outputs that may also
be required. This format is called a µ-instruction format.

2. Construct a µ-instruction for each step-action sequence control point
list and store that µ-instruction in a word of ROM.

3. Define a mapping of the Boolean control functions for each step-
action sequence to the address in ROM where the associated control
point assignment is stored.

The mapping can be implemented using a programmable logic device such as a
PLA (programmable logic array), to be described shortly.

Analysis of the DATAPATH for the CPU reveals that there are 14 status outputs
corresponding to the opcode and fn-sel fields of the instruction register, the less-

(C) A.H.Dixon page..62

than and equals outputs of the comparator, and the F flag. There are also 22
control points. Further the ASM diagram identifies 8 ASM blocks (not including
the initialization state). The sequencer is implemented so that there is one
output/state and therefore will supply a further 8 inputs to the control point enabler.
Thus the control point enabler potentially has 22 inputs and 22 outputs.

3. PROGRAMMABLE LOGIC DEVICES (PLDs)

In contemporary logic design, combinational circuits are created from more
complex components rather than from discrete logic gates. However minimization
techniques associated with discrete gate implementations are still important in
many instances, including the implemention of combinational logic using
programmable logic devices (PLDs) which include the following:

• ROMs: Read only memory

• PALs: Programmable array logic

• PLAs: Programmable logic arrays

Implementing combinational logic using programmable logic devices produces
implementations that are smaller, cheaper, and easier to fix or modify than
conventional gate-level implementations.

Programmable logic devices provide a matrix of potential connections for
implementing a set of Boolean functions expressed as sums-of-products. Initially
fusible connections are provided at all intersections of lines in the schematic of the
organization of a hypothetical PLA on the next page.

The implementation of a combinational circuit with a PLD can be expressed in a
PLD schematic. This diagram specifies (with an "X") the connections to
preserve in a "simplifed" logic diagram of a PLD. (see next page). This diagram
represents a set of combinational circuits, each expressed as a sum of products.
Each horizontal line defines a product term. Each vertical line to the left of the
AND gates defines a different literal from the inputs. Each vertical line to the right
of the AND gates defins a sum of products.

The intersections of horizontal and vertical lines to the left of the AND gates is
called the product array while those to the right define the sum array. "X"’s on
any horizontal line in the product array define the literals that are ANDed together
by the AND gate on that horizontal line. "X"’s on any vertical line of the sum
array define the product terms that are summed in the OR gate at the bottom of the
vertical line which determines that output as a sum of products.

The PLD is "programmed" by specifying which intersecting connections are to
be disconnected. A device, called a "logic programmer", performs this task from a
tabular specification of the the locations where the fusible connections should be
broken.

(C) A.H.Dixon page..63

Figure 3-1: Schematic of a 3x4 PLD with 8 product terms

(C) A.H.Dixon page..64

A PAL is a PLD where only the product terms can be programmed. Each sum is
already to "hardwired" to a fixed number of products. Thus every function to be
implemented with a PAL must be expressible using no more poroduct terms than
the PAL provides per output.

A ROM is a PLD where only the sum terms can be programmed. In a ROM
every minterm that can be defined on the inputs is provided as a product term.
Each minterm actually corresponds to a location in memory expressed as a
sequence of values assigned to the variables. Then the collective values of all
functions for a particular assignment of values to the variables defines the contents
of the word of memory at that location. In effect the ROM stores the function table
of the function being defined.

A PLA permits the programming of both the product-terms and sum-terms.

On the next page is illustrated an example implementing the following step-
action sequence using a PLA. The structural schematic and an alternative way of
providing a behavioral descripton, called a personality matrix, are provided. The
initial step-action sequence is:

x*y : f2, f0
x’*y’*z’: f2
z : f1, f0
y’*z : f2

From this step-action sequence, one obtains the following sums-of-products:

f0 = x*y + z

f1 = z

f2 = x*y + x’*y’*z’ + y’z

There are four distinct product terms required as suggested by the existence of
four step-action statements whose boolean control expressions are product terms.

From this information we can identify the connections that are to be retained on a
PLA scehmatic (next page):

(C) A.H.Dixon page..65

x y z

-

f0 = xy + z
f1 = z
f2 = xy + x’y’z’ + y’z

--

--

-

1

1

1

1

1

1

-01

--1

000

11-

y’z

z

x’y’z’

xy

f0f1f2
OUTPUTSINPUTS

TERM
PRODUCT

f0f1f2

zyx

Figure 3-2: PLD and associated personality matrix

(C) A.H.Dixon page..66

By representing control words as encoded sequences, the control point enabler
can be implemented using a ROM to store the µinstructions for each control point
sequence, and a PLA to select the correct µinstruction from the ROM.

4. MEMORY ARCHITECTURES

Memory can be provided using any or all of five different types of "standard"
components:

• Flip-flops: Each component provides 1 bit of storage. Each device
includes a data input a data output and control points to permit storage
of the input. A tri-state buffer can be added to control accessibility to
the output. Flip-flops by definition include a clock enable input and
are therefore synchronous devices

• Registers: Each component provides a word of storage. In addition to
a parallel input and output permitting simultaneous access to all bits of
the word, additional control points permit storage and possibly some
operational capability (such as incrementing or shifting). Tri-state
logic may be included to control accessibility to the output. Registers
include a clock input and are therefore synchronous.

• Register Files: Each component provides a set of addressable
registers and set of address inputs to select the registers to accessed for
input and output. Registers may be retrieved from and stored to
simultaneously, depending on the status of read and write control
points. A clock input is also available, permitting register files to be
used as synchronous components.

• Static RAM (SRAM): Each component provides a set of addressable
words that can be either written to or retrieved from, but not both at
the same time. The content of memory remains unchanged when not
enabled for read or write by a cs control point, as long as power is
supplied. The access function is determined by a r/w function select
control point. SRAM uses a D-latch as the basis for implementing
each bit of storage, and is therefore an asynchronous device. The data
bus is typically bidirectional.

• Dynamic RAM (DRAM): Similar to SRAM, but the bits of memory
are implemented using a capacitor, with the stored value represented
by the charge on the capacitor. Because the charge decays with time,
the device is called dynamic since the value stored does not remain
indefinitely without exteranl assistance. In addition to the control
points of an SRAM, a DRAM also has a column strobe and row strobe

(C) A.H.Dixon page..67

to permit the address to be provided in two parts and to provide
internal timing.

SRAM and DRAM are asynchronous devices. To interface these with a
synchronous design, it is necessary to provide a controller and possibly additional
logic to accommodate the timing characteristices of the SRAM or DRAM.

In a memory device (synchronous or asynchronous), the memory cycle time is the
minimum time between two successive memory accesses. This time can be either
a read-cycle time or a write-cycle time depending on whether the accesses are for
retrieval or storage.

A synchronous memory architecture can be obtained using an SRAM or DRAM
and then introducing registers and a clocked memory controller. This architecture
must then generate an ack signal (acknowledge) to indicate when the memory has
completed the task requested. This permits the memory to have a different clock
period than the CPU, one sufficient to accommodate the set-up and hold times and
propagation delay of the asynchronous memory matrix.

The following ASM captures the related activity in a CPU and a MEMORY with
a synchronous controller.

The memory cycle time is the principal bottleneck in a Von Neumann computer
architecture, since every instruction and data item on which an instruction may be
performed is stored in the memory unit.

The technology adopted for implementing memory is the principal factor
affecting the memory cycle time. Static RAM (SRAM) is based on implementing
each bit of storage using the equivalent of a latch. For larger memories a simpler
design is required for storing a bit. This is achieved in Dynamic RAM.

Each DRAM cell consists of a small capacitor and a transistor that acts like a
switch. When the cell is selected the switch permits the capacitor to be charged,
representing the storage of a ’1’ bit, or discharged, representing the storage of a ’0’
bit. The value stored is defined by the voltage level on the data line.

To retrieve a value, it is necessary to determine if the capacitor is charged. A
voltage level half-way between logic-1 and logic-0 is placed on the data line, and
the select line is enabled. The result is that the voltage level increases slightly if
the capacitor is already charged, and decreases slightly if the capacitor is not
already charged. By sensing (with amplifiers) this increase or decrease in voltage
on the data line, it is possible to interpret the value that was stored there.

In designing a memory based on DRAM technology it is therefore important to
address two issues:

• Retrieval destroys memory contents.

• Capacitors lose their charge with time.

(C) A.H.Dixon page..68

0

1

1

0

1

0

1

0

M[addr]<-data

MEM2CPU2

...

...
STORAGE

RETRIEVAL

data,addr,cs

ack

data <-M[addr]

MDR <- data r

csack

addr,cs,r MEM1CPU1

MCPU

ack

r

cs

ack

r

cs

addr

data

Figure 4-1: CPU/Memory interface

So it is necessary to refresh memory whenever a value is retrieved and in any event
to refresh it periodically, to avoid loss from capacitor decay, typically from 2ms to
4ms upto as long as 64 ms in newer designs.

(C) A.H.Dixon page..69

5. DRAM MEMORY ARCHITECTURE

To perform a memory access request, a dynamic memory requires a sequence of
steps to be performed to complete an access. The following ASM diagram
addresses the special requirements of dynamic memory. State box M1 uses a
counter to sequentially access locations for refreshing. Each location is read into a
buffer register DR whose contents are then copied back to their original location.

ack

data

r/w’

cs

addr

M

1

0

0 1

M4

M3

M2M1

M0

DR <- M[CTR] ack
data <- DR

M[ROW] <- DR

DR <- data

DR <- M[ROW]

CTR <- CTR+1
M[CTR] <- DR

r/w’

cs ROW <- addrDR <- M[CTR]

(C) A.H.Dixon page..70

Whenever a memory request is initiated, the value being read or written is copied
first into the buffer register, DR. This permits the value then to be written to
memory, either as a new value (if a write request was made) or as a restore of the
original value that was lost because of the destructive aspect of a read. Note than
even when a memory request is processed, at least one additional refresh occurs
before a check is made for a new request. This ensures that the refresh "loop" is
not locked out if a large succession of memory requests is made.

A difficulty that arises with the need to refresh memory as suggested by the ASM
diagram is that only so many locations can be refreshed before the locations not yet
refreshed begin to decay. The number of locations depends on the time spent to
refresh each location.

A logical way to increase the maximum number of locations that can be
maintained is to allow more than one location to be refreshed at a time. This
requires a larger buffer register (DR) capable of holding a "row" of memory words,
and select logic to access the desired word within the row.

(C) A.H.Dixon page..71

