Lecture 34

July 30

Exam

- Similar format to midterm
 - o Some multiple choice
 - o Long answer
- 3 hours
 - o 2X length of mid term
- cumulative
 - o slight emphasis on 2nd half
 - o include VHDL & reading
 - o cache
 - o bonus question 1 mark out of 90

Multiple Cycle Control

The life of an instruction

- PC points to next instruction
- Instruction fetch (IF)
 - o Microinstruction in address 192 of control ROM
 - o So the CAR should have 192
 - o Must load IR with instruction from memory
 - IL = 1
 - MM = 1
 - MW = 0
 - RW = 0
 - o Must then start the execution of micro program (EXO)
 - Need to increment CAR

MS = 000must increment PC

- PI = 1
- Pl = 0
- o EXO: start the execution
 - Need to start the micro-program for the opcode
 - Its micro program will always start at 0||opcode
 - Load CAR with 0||opcde
 - o MS = 001
 - o MC = 1
 - Nothing else should change
 - MW = 0
 - RW = 0
 - IL = 0
 - PI = 0
 - PL = 0

- o Instruction execution
 - Run the actual micro program to implement the given opcode
 - E.g. ADD (register read)
 - Do the addition:
 - o TA = 0
 - \circ TB =0
 - o MB = 0
 - o FS = 00010
 - Write back to DR:
 - \circ MD = 0
 - \circ TD = 0
 - o RW =1
 - Don't change memory:
 - \circ MW = 0
- Next, go back to IF micro instruction(this is the last instruction of all micro program)
 - o Load CAR with 192
 - MS = 001
 - NA = 192
 - MC = 0
 - o Don't update the registers:
 - PI = 0
 - PL = 0
 - IL = 0