
I/O addressing

- Memory mapped I/O
- Isolated I/O configuration
 - o Distinct control lines for memory and I/O
 - o Allows separate address space
- I/O processor (data channel)
 - o A separate I/O processor (or I/O processor)
 - o Handles communication with I/O devices
 - o Free the CPU to do other work

Some Peripherals

The keyboard

- An input devices with a very slow data rate
- Must be able to detect the key press the user makes
 - o Including multiple key press (e.g. ctrl –a)
- It is built on a "scan matrix"
 - o Cash key is on two lines from a grid of wires
 - When pressed a connection is made

- To check if a key is pressed, the controller:
 - o Sends a signal to the decoder that activates the corresponding output
 - o Set the multiplexer to output the value from the corresponding input
 - o If MUX is 1, the key is down
- Each key is scanned hundreds of time per seconds
 - When it is pressed, the controller sends a key down signal
 - o When it is released it sends s key up

Video

- The video controller in a modern PC has a lot of processing power
- The CPU doesn't have to actual pixel data to the display
 - o It can send high-level commands to the video interfaces
- The graphics card turns these commands into actual pixels that can be sent to the monitor
 - o This requires a dedicated processor (GPU) and memory (for the pixel data, textures, etc)

Hard disk

- The primary non-volatile storage for most computers
- Data is stored on magnetic platters
 - o Parts of the pallet can be magnetized (or not) to store a 0 or 1.
- Each surface of the disk must have a read/write head *top and bottom)
- To read/write from the particular part, the head must be over it
 - o Must get the head to the correct "track"
 - o Must wait for the disk to spin to the right sector