Lecture 28 July 16

Memory Caches

Write cache

- So far, we have only considered reads from memory.
- Memory writes can also be cached
- There are several ways this can be done:
 - Write to other cache & memory immediately
 - Write only to memory
 - Write only to cache
 - Update memory when that word is removed from cache
 - If several units are accessing memory, cache coherence becomes a problem
 - .e.g. multiple processors, processor & I/O subsystem
 - What if one processor writes & the other read before the cache does the write?

Disk Cache

- The relative speed difference between memory & disk is very large.
 - Caching data from the disk can make a huge speed difference
- Often hard disks have cache built in.
 - \circ ~ 2MB in modern drives
 - o the cache is handled by circuitry on the drive
 - this cache is invisible to the programmer
 - the operating system can also keep a disk cache in RAM
 - al disk access in a modern PC is done through the OS
 - o if a request is made, the OS checks the cache in RAM
 - if not there ask the hard drive for it
- disk work differently from memory, so the cache can work differently
 - it's easy to read a large chunk of adjacent data at once
 - so we can easily cache the next data from the disk
 - o if that is accessed next, it will already be in the cache
- disk caches typically use LRU replacement
 - \circ there is enough time to do it
- writing cache
 - \circ $\,$ if a program writes to the disk, it could be stored in the RAM cache
 - \circ it can actually be written when the disk + CPU are free
 - o if the write doesn't make it to the disk, it could get lost
 - Power failure/ off switch
 - Disk eject
 - Crash

Virtual memory

- the problem: not enough space in memory to do what we won't _
- when programmer runs out of space in the register file, info is moved memory _
 - o done manually by the programmer
 - the same thing Can be done for memory
 - o if space runs out move some stuff to HD until its needed
 - o allows more data in "memory" then there is actual RAM
 - o done automatically by the hardware & OS
- modern computers can address a lot of memory \circ e.g. 32 bits addresses $\rightarrow 2^{32}$ bytes = 4 GB —

 - most computers have a fraction of that
 - if some data is kept on the HD we could use more of the address space
 - o the "virtual memory"