Register Transfers

June 9, 2003

- We need to be able to take data from any register(s), do some calculations and write back to a register
- There are a few ways to do this
 - We will only worry about register transfer (RG \leftarrow R0)
 - No calculations
- Multiplexer based transfer
 - Connect a multiplexer :
 - Inputs: output from every register
 - Output: to a register input

- Works if there are a few registers—bad if there are a lot
 - o 32 register: 32 31 to 1 multiplexers and a lot of connections

Bus Based transfer

- too many multiplexers would mean a large (thus costly) circuit
- we could use a single input line for all registers
 - o a "bus"
 - o (any shared single is a "bus")
- the multiplexer will be connected to every input:

- Eg. To do R0 \leftarrow R2
- select input 2 ($S_1 = 1, S_0 = 0$)
- set $L0 \leftarrow 1$;
- Eg. R0 \leftarrow R2, R1 \leftarrow R2
- select input 2 ($S_1 = 1, S_0 = 0$)
- set $L0 \leftarrow 1, L1 \leftarrow 1$
- $R1 \leftarrow R0, R0 \leftarrow R1$
 - o Can't o
 - o Could have done with the multiplexer solution

The State Bus

- We can use three-state buffer to get rid of the multiplexers all together
 - We will use a single bus for both input & output
 - o A "bidirectional bus"
- We need a register with bidirectional input/output

Tri State Buffer

- When En is 1, it behaves like a buffer (output the input signal)
- When En is 0, don't allow any current in either direction

In	En	Out
0	1	0
1	1	1
0	0	Hi –Z
1	0	Hi –Z

Hi-Z = high impedance

- No current allow past
- In VHDL: 'Z'

– Building a bidirectional register:

• Using a standard register:

Standard Symbol

We can now connect some bi-di-register on a bus:

At most of the enable signal can be 1 at a time

Eg. To do R0 \leftarrow R2 - set E2=1, L0 \leftarrow 1 Eg. To do R0 \leftarrow R2 R1 \leftarrow R2 - E2 = 1, L0 = 1, L1= 1 Using a signal bus for input & output halves the # of connections - Less circuitry -