The Datapath

- The datapath consists of the register file and function unit
- The register file has some registers, each with a fixed number of bits
- The function unit consists of circuitry to do calculations
 - o Eg adder, shifter, multiplier etc
 - One data out for the result

N = # of bits per word

- K= bits required to select a register. Number of register $\leq 2^{k}$
- These can be connected to form a datapath:

drawing

The ALU

- The arithmetic/logic unit part of the function unit
- Our ALU will have 3 select lines:
 - S_2 : do a logic (1) or arithmetic (0) operation
 - \circ S₁, S₂: specify the operation

Arithmetic

- The arithmetic circuit is based around an a-bit adder
 - Some extra logic around it will make a very flexible circuit:

drawing

The B input logic will produce these outputs depending on S_1 , S_0 :

|--|

0	1	all 0's
0	0	В
1	1	!B
1	0	all 1's

This can be implemented with n of these:

drawing

- The output of the ALU will be

 $A+Y+C_{in}$

- That allows these operations:

\mathbf{S}_1	S ₀	C _{in}	Y	Output
0	0	0	zeros	A transfer
0	0	1	zeros	A+1 Increment
0	1	0	В	A+B add
0	1	1	В	A+B+1 add, inc
1	0	0	!B	A + !B add
				complement
1	0	1	!B	A+!B +1 A-B
				subtract
1	1	0	ones	A-1 decrement
1	1	1	ones	a-1+1=A
				transfer

Bu using the correct combination of these select signals (S_1, S_0, S_2) the ALU can do any of these operations