Sequencing & Control

- we'll ignore the data path for the moment
 - we will assume that it can do the register transfers we need
- the control unit activates operations in the data path
 - o it connected to the datapath control inputs and status outputs
- a programmable system and none-programmable system have very different control units
- programmable system:
 - o input instructions from memory
 - o must keep a program counter
 - must be able to decode instructions & direct datapath to execute.
- None programmable system
 - No instruction memory, FC, fetch, decode

ASM Diagrams

Will be used to describe the behavior of the control unit Parts:

- A state box is positive-edge triggered by the clock
 - Control doesn't enter a state box until the next cycle
 - You can't set the value of a register and use it in the same cycle
- Every block stars with a state box & ends just before the next

Example ASM

- Multiply M by N and put the result into P
- First example: do this by adding M copies of N together

- P gets M Ns added to it
 - o I counts for M down to zero to keep track
- This assumes:
 - o We have registers M, N, P, I
 - I can load and decrement
 - We can added two registers into P
 - P can be reset to 0
 - o Both are operations on P and I can be down in one cycle
 - The data path returns the value of I>0 as a status signal

– Examples

cycle	state	Μ	Ν	Ι	Р	start
1	idle	2	6			1
2	idle			2	0	
3	mul			1	6	
4	mul			0	12	
5	mul					
6	idle					