
Lecutre #6
May 19

If s=’1’ then
Elseif r=’1’ then

End if:

Behavioral descriptions
- we have to be sure to capture all of the behavior
- if both S and R are 1 the behavior is unknown
- we can capture this in VDHL:

o if s= ‘1’ and r = ‘1’ then
� q<= ‘X’ ;
� z_b <= ‘X’ ;

o elseif s= ‘1’ then
…
elseif r=’1’ then
….
endif;

D latch”

D Q
C !Q

- When C= 1, copy D into the flip flop (Q<=D)
- When C=0 no change
- A D flip flop

o same except D can only change on the rising edge of C

entity pet_d is port (
d, c: in std_logic;
q,q_b out std_logic);

end pet_d;
architecture vehav of pet_d is
begin

d_process: process (c)
begin

if rising_edge (c) then

q<= d;
end ifl

end process;
q_b <= not q;
end behave;

- rising_edge is built into the IEEE std_logic library
- the statement

q_b <= not q;

works like this:
process (q)

q_b<= not q;
end process;

A register in VHDL
- arrays: a group of several signals or variables
- generics: allow you to define parameters for each instance

o we can use the same code for an 8, 16, 32, bit register

entity reg is
generic(

n: integer);
port(

D: in std_logic_vector(n -1 down to 0);
Q: out std_logic vector (n-1 down to 0);
Clock load: in std_logic);

End reg;

If we instantiate with n=4, we get this:

D

Q

load

Architecture behave of reg is
Begin

Load_process: process (clock)
Begin

If rising_edge (clock)
And load = ‘1’ then

Q<=D;
End if;

End process;
End beahv;

- we can also copy D to Q bit-by-bit:
f… then

for index in n-1 down to 0
Q(index) <= D(index);

End loop;
End if;

