
May 14
Lecture #5

Full adder
− structureal description

HA HA

architecture struct of full_adder is
signal Sout1, Cout1, Cout2: std_logic:

begin
HA1: entity work.half_adder

port map(
x => x,
y => y,
s => Sout1,
c => Cout1);

HA2: entity work.half_adder
port map(

x => Sout1
y => Z
s => S
c Cout2);

OR1: entity work.or_gate
portmap (

a => Cout2.
b => Cout1,
c => C);

end struct;

− this circuit needs some connection to hook the entity together
o signals Cout1, Cout2, Sout1 are defined as std_logic
o signals and parts are treatred similarly

− One of the reasons to describe circuits in VHDL is simulation
o we need to connect the ports of a circuit, so we can see it work
o this is done w/ a “test bench”

Cout1

Sout1

Cout2

o the test bench is self-contained (no ports)
o we simulate the test bench

− our test bench will be called “tb” and have no ports:
entity tb is
end tb:
architecture behave of tb is

signal X, Y, Z, S, C: std_logic;
begin

TEST: process
begin

x <= ‘0’ ;
y <= ‘0’ ;
z <= ‘0’ ;

wait for 100 ns;
x <= ‘1’ l
wait fr 50 ns;
y<= ‘1’ l
wait for 50ns;
z<= ‘1’ ;
wait for 50ns;

end process
UUT: entity work.full_adder (struct)

port map (x=>x y=>y, z=>z, s=>s, c=>c);
end behave;

− process always run as often as possible
o w/ a dependency list

� process (a, b, c)
o is only allowed to start when the signals change

− other wise, it starts again immediately
− so, ever process should have either r a dependency list or waits
− when instantiating, we can specify the implementation:

entity work.thing (behave)
wait:

− makes the process pause
− three versions

1. wait for <time>;
pause for the given time (simulation)

2. wait until <condition>;
pause until the condition is true
ie. wait until c=’1’ ;

3. wait on <signal list>
wait until one of the signals change
eg.
process (a, b) process wait on a, b;
 ….. …..

end process; end process;

Laches in VHDL
− SR-Latch

s q

r !q

entity sr_latch is
port (

sr: in std_logic;
q, q_b: out std_logic);
end sr_latch;
architectural behave of sr_latch is
begin

sr_process: process (s,r)
begin

if s= “1’ then
q <= “1” ;
q_b <= “0” ;

elseif r= “1” then
q<= “0”
q_b <= “1” ;

end if
end process:

end behav

