
Lecture4
May 12

Building an Adder
− We will build a full adder

HA HA

− First, a description of the entity:
library ieee;
use ieee.std_logic_1164.all;
entity full_adder is

port (
x, y, z : in std_logic;
s, c : out std_logic;

);
end full_adder

− Now, a behavioural description
Architecture behav of full_adder is
Begin

FA: process (x, y, z)
Variable tmp: std_logic;

Begin
Tmp:= X xor Y;
S<= tmp xor Z after 3 ns;
C<= (X and Y) or (Z and tmp) after 5 ns;

End process;
End behave;

− Tmp is a variable
o Variables aren’ t signals
o Used like varabiles in a programming language –to hold info
o Variables have nothing to do w/ structural descriptions or in circuits
o Assignment to a variable is done with := NOT <=

− The sequential statements execute in order

tmp

o The circuits total Tpol (propogation delay is 5 ns;
o The assignments execute at the same simulation time
o The “after” just delays the result

− Now, a structural description:
o First, we need gates:

− and_gate
− xor_gate
− or_gate

o now, we can build a half adder:
entity half_adder is

port(
x, y: in std_logic;
s, c: out std_logic
);

end half_adder;
architecture struct of half_adder is

begin
XOR1: entity work.xor_gate

port map (
a=>x,
b=>y,
c=>s);

AND1: entity work.adn_gate
port map(

a=>x,
b=>y,
c=>s);

end struct

a

a

b

b

c

c

c

s

− “struct” is the name of this implementation
− “XOR1” and “AND1” are the labels for the “entity instance”

o an” instance” is basically a copy of whatever we defined the
xor_gate/and_gate to be

− the “port map” connects signals in our entity to ports on the instance
o x=> y indicates that port x on the instance, y is a signal in the

entity we’re defining

