
6-1

6. Advanced VHDL

This chapter describes some more advanced facilities offered in VHDL.
Although you can write many models using just the parts of the language
covered in the previous chapters, you will find the features described here
will significantly extend your model writing abilities.

6.1. Signal Resolution and Buses
In many digital sytems, buses are used to connect a number of output

drivers to a common signal. For example, if open-collector or open-drain
output drivers are used with a pull-up load on a signal, the signal can be
pulled low by any driver, and is only pulled high by the load when all
drivers are off. This is called a wired-or or wired-and connection. On the
other hand, if tri-state drivers are used, at most one driver may be active at
a time, and it determines the signal value.

VHDL normally allows only one driver for a signal. (Recall that a driver
is defined by the signal assignments in a process.) In order to model
signals with multiple drivers, VHDL uses the notion of resolved types for
signals. A resolved type includes in its definition a resolution function,
which takes the values of all the drivers contributing to a signal, and
combines them to determine the final signal value.

A resolved type for a signal is declared using the syntax for a subtype:
subtype_indication ::= [resolution_function_name] type_mark [constraint]

The resolution function name is the name of a function previously defined.
The function must take a parameter which is an unconstrained array of
values of the signal subtype, and must return a result of that subtype. To
illustrate, consider the declarations:

type logic_level is (L, Z, H);
type logic_array is array (integer range <>) of logic_level;

function resolve_logic (drivers : in logic_array) return logic_level;

subtype resolved_level is resolve_logic logic_level;

In this example, the type logic_level represents three possible states for a
digital signal: low (L), high-impedance (Z) and high (H). The subtype
resolved_level can be used to declare a resolved signal of this type. The
resolution function might be implemented as shown in Figure 6-1.
This function iterates over the array of drivers, and if any is found to have
the value L, the function returns L. Otherwise the function returns H, since
all drivers are either Z or H. This models a wired-or signal with a pull-up.
Note that in some cases a resolution function may be called with an empty
array as the parameter, and should handle that case appropriately. The
example above handles it by returning the value H, the pulled-up value.

6-2 The VHDL Cookbook

function resolve_logic (drivers : in logic_array) return logic_level;

begin
for index in drivers'range loop

if drivers(index) = L then
return L;

end if;
end loop;
return H;

end resolve_logic;

Figure 7-1. Resolution function for three-state logic

6.2. Null Transactions
VHDL provides a facility to model outputs which may be turned off (for

example tri-state drivers). A signal assignment may specify that no value
is to be assigned to a resolved signal, that is, that the driver should be
disconnected. This is done with a null waveform element. Recall that the
syntax for a waveform element is:

waveform_element ::=
value_expression [after time_expression]
| null [after time_expression]

So an example of such a signal assignment is:
d_out <= null after Toz;

If all of the drivers of a resolved signal are disconnected, the question of
the resulting signal value arises. There are two possibilities, depending on
whether the signal was declared with signal kind register or bus. For
register kind signals, the most recently determined value remains on the
signal. This can be used to model charge storage nodes in MOS logic
families. For bus kind signals, the resolution function must determine the
value for the signal when no drivers are contributing to it. This is how tri-
state, open-collector and open-drain buses would typically be modeled.

6.3. Generate Statements
VHDL has an additional concurrent statement which can be used in

architecture bodies to describe regular structures, such as arrays of blocks,
component instances or processes. The syntax is:

generate_statement ::=
generate_label :

generation_scheme generate
{ concurrent_statement }

end generate [generate_label] ;
generation_scheme ::=

for generate_parameter_specification
| if condition

The for generation scheme describes structures which have a repeating
pattern. The if generation scheme is usually used to handle exception
cases within the structure, such as occur at the boundaries. This is best
illustrated by example. Suppose we want to describe the structure of an

6. Advanced VHDL 6-3

adder : for i in 0 to width-1 generate

ls_bit : if i = 0 generate
ls_cell : half_adder port map (a(0), b(0), sum(0), c_in(1));

end generate lsbit;

middle_bit : if i > 0 and i < width-1 generate
middle_cell : full_adder port map (a(i), b(i), c_in(i), sum(i), c_in(i+1));

end generate middle_bit;

ms_bit : if i = width-1 generate
ms_cell : full_adder port map (a(i), b(i), c_in(i), sum(i), carry);

end generate ms_bit;

end generate adder;

Figure 6-2. Generate statement for adder.

adder constructed out of full-adder cells, with the exception of the least
significant bit, which is consists of a half-adder. A generate statement to
achieve this is shown in Figure 6-2.

The outer generate statement iterates with i taking on values from 0 to
width-1. For the least significant bit (i=0), an instance of a half adder
component is generated. The input bits are connected to the least
significant bits of a and b, the output bit is connected to the least significant
bit of sum, and the carry bit is connectected to the carry in of the next stage.
For intermediate bits, an instance of a full adder component is generated
with inputs and outputs connected similarly to the first stage. For the most
significant bit (i=width-1), an instance of the half adder is also generated, but
its carry output bit is connected to the signal carry.

6.4. Concurrent Assertions and Procedure Calls
There are two kinds of concurrent statement which were not covered in

previous chapters: concurrent assertions and concurrent procedure calls.
A concurrent assertion statement is equivalent to a process containing only
an assertion statement followed by a wait statement. The syntax is:

concurrent_assertion_statement ::= [label :] assertion_statement

The concurrent signal assertion:
L : assert condition report error_string severity severity_value;

is equivalent to the process:
L : process
begin

assert condition report error_string severity severity_value;
wait [sensitivity_clause] ;

end process L;

The sensitivity clause includes all the signals which are referred to in
the condition expression. If no signals are referenced, the process is
activated once at simulation initialisation, checks the condition, and then
suspends indefinitely.

The other concurrent statement, the concurrent procedure call, is
equivalent to a process containing only a procedure call followed by a wait
statement. The syntax is:

6-4 The VHDL Cookbook

concurrent_procedure_call ::= [label :] procedure_call_statement

The procedure may not have any formal parameters of class variable,
since it is not possible for a variable to be visible at any place where a
concurrent statement may be used. The sensitivity list of the wait
statement in the process includes all the signals which are actual
parameters of mode in or inout in the procedure call. These are the only
signals which can be read by the called procedure.

Concurrent procedure calls are useful for defining process behaviour
that may be reused in several places or in different models. For example,
suppose a package bit_vect_arith declares the procedure:

procedure add(signal a, b : in bit_vector; signal result : out bit_vector);

Then an example of a concurrent procedure call using this procedure is:
adder : bit_vect_arith.add (sample, old_accum, new_accum);

This would be equivalent to the process:
adder : process
begin

bit_vect_arith.add (sample, old_accum, new_accum);
wait on sample, old_accum;

end process adder;

6.5. Entity Statements
In Section 3.1, it was mentioned that an entity declaration may include

statements for monitoring operation of the entity. Recall that the syntax for
an entity declaration is:

entity_declaration ::=
entity identifier is

entity_header
entity_declarative_part

[begin
entity_statement_part]

end [entity_simple_name] ;

The syntax for the statement part is:
entity_statement_part ::= { entity_statement }
entity_statement ::=

concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

The concurrent statement that are allowed in an entity declaration must
be passive, that is, they may not contain any signal assignments. (This
includes signal assignments inside nested procedures of a process.) A
result of this rule is that such processes cannot modify the state of the
entity, or any circuit the entity may be used in. However, they can fully
monitor the state, and so may be used to report erroneous operating
conditions, or to trace the behavior of the design.

