
12

Statistical Multiplexing of Variable-Bit-Rate Videos
Streamed to Mobile Devices
CHENG-HSIN HSU, Deutsche Telekom Laboratories USA
MOHAMED HEFEEDA, Simon Fraser University

We address the problem of broadcasting multiple video streams over a broadcast network to many mobile devices, so that: (i)
streaming quality of mobile devices is maximized, (ii) energy consumption of mobile devices is minimized, and (iii) goodput in
the network is maximized. We consider two types of broadcast networks: closed-loop networks, in which all video streams are
jointly encoded to ensure their total bit rate does not exceed the broadcast network bandwidth, and open-loop networks, in
which videos are encoded using standalone coders, and thus must be carefully broadcast to avoid playout glitches. We first show
that the problem of optimally broadcasting multiple videos is NP-complete. We then propose an approximation algorithm to
construct burst schedules for multiple VBR (Variable-Bit-Rate) streams. The proposed algorithm frees network operators from
the manual and error-prone bandwidth reservation process which is currently used in practice. We prove that the proposed
algorithm achieves optimal goodput and near-optimal energy saving. We show that it produces glitch-free schedules in closed-
loop networks, and it minimizes number of glitches in open-loop networks. We implement the proposed algorithm in a trace-
driven simulator, and conduct extensive simulations for both open- and closed-loop networks. The simulation results show
that the proposed algorithm outperforms the existing algorithms in many aspects, including number of late frames, number
of concurrently broadcast video streams, and energy saving of mobile devices. To show the practicality and efficiency of the
proposed algorithm, we also implement it in a real mobile TV testbed as a proof of concept. The results from the testbed confirm
that the proposed algorithm: (i) does not result in playout glitches, (ii) achieves high energy saving, and (iii) runs in real time.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Wire-
less communication

General Terms: Design

Additional Key Words and Phrases: Broadcast networks, variable-bit-rate streams, mobile TV, energy saving, goodput, DVB-H

ACM Reference Format:
Hsu, C.-H. and Hefeeda, M. 2011. Statistical multiplexing of variable-bit-rate videos streamed to mobile devices. ACM Trans.
Multimedia Comput. Commun. Appl. 7, 2, Article 12 (February 2011), 23 pages.
DOI = 10.1145/1925101.1925107 http://doi.acm.org/10.1145/1925101.1925107

1. INTRODUCTION

Increasingly more users watch streaming videos over wireless networks using mobile devices such as
laptops, PDAs (Personal Digital Assistants), smart phones, and PMPs (Portable Media Players). When

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and in part by
the British Columbia Innovation Council.
Authors’ addresses: C.-H. Hsu and M. Hefeeda (corresponding author), School of Computing Science, Simon Fraser University,
250-13450 102nd Ave., Surrey, B. C., Canada V3T 0A3; email: mhefeeda@cs.sfu.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2011 ACM 1551-6857/2011/02-ART12 $10.00

DOI 10.1145/1925101.1925107 http://doi.acm.org/10.1145/1925101.1925107

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:2 • C.-H. Hsu and M. Hefeeda

Mobile Users

Video
Encoder

Video
Encoder

Video
Encoder

High−Quality

Stream

High−Quality

Stream

High−Quality

Stream

IP Network

Database

Broadcast Center

M
ul

ti
pl

ex
er

Video Files

Live IP Streams Stream

Broadcast

Video

... ...

Joint Rate
Allocator

EncodersDecoders

Joint Video Coder

Network Operator

Content Providers

Network

Broadcast

Provider 1

............
Video

Video

Video

Provider 2

Provider N

Fig. 1. Main components of a closed-loop video broadcast network.

the streaming rates are high and number of mobile devices is large, streaming videos using unicast
may overload that wireless network. In contrast, streaming videos from a base station using one-to-
many multicast/broadcast service supports many more mobile devices. We consider wireless networks
that support multicast/broadcast, and we refer to them as broadcast networks. Sample broadcast net-
works include WiMAX networks [Wang et al. 2008], MBMS (Multimedia Broadcast Multicast Services)
cellular networks [Parkvall et al. 2006], and mobile TV broadcast networks such as DVB-H (Digital
Video Broadcast–Handheld) [ETSI 2004; Faria et al. 2006; Kornfeld and May 2007], MediaFLO (For-
ward Link Only) [Chari et al. 2007], and ATSC (Advanced Television Systems Committee) mobile DTV
[ATSC Mobile DTV Standard 2009] networks.

A typical broadcast network is illustrated in Figure 1, which consists of three entities: content
providers, network operators, and mobile users. Content providers are companies that create videos.
Network operators are companies that manage base stations and provide services to mobile users. A
network operator multiplexes several videos into a broadcast stream, and transmits it over a broad-
cast network with a fixed bandwidth. We consider a fixed bandwidth because feedback channels from
numerous receivers are not practical in a broadcast network, and many broadcast standards, such as
Kornfeld and May [2007] and Chari et al. [2007], use Forward Error Correction (FEC) and strong chan-
nel coding to combat dynamic wireless channels for reliable broadcast services in planned coverage
areas. Videos are usually encoded in VBR (Variable-Bit-Rate), rather than CBR (Constant-Bit-Rate),
for better video quality, shorter delay, and higher statistical multiplexing gain [Lakshman et al. 1998].
Because the broadcast network is bandwidth limited, the multiplexer must ensure that the bit rate
of the broadcast stream does not exceed the network bandwidth. One way to control the bit rate is to
employ joint video coders, which encode multiple videos and dynamically allocate available network
bandwidth among them, so that the aggregate bit rate of the coded streams never exceeds the network
bandwidth. As shown in Figure 1, a joint video coder consists of a joint rate allocator, several decoders,
and several VBR coders. We call broadcast networks with joint video coders as closed-loop broadcast
networks. Joint video coders may not always exist in broadcast networks, because of the high deploy-
ment cost. We call broadcast networks with standalone video coders as open-loop broadcast networks.

Since mobile devices are battery powered, energy consumption is critical to user experience, as
higher energy consumption leads to shorter watch time. Therefore, broadcast networks must imple-
ment some energy saving techniques. One common technique is to make the base station send each
video stream in bursts at a bit-rate much higher than the encoding rate of that video. This is called
time slicing in broadcast network standards. The base station computes the next burst time and in-
cludes it in the header fields of every burst. Time slicing enables the mobile devices to receive a
burst of traffic, and then put their receiving circuits into sleep until the next burst to save energy.
While time slicing allows mobile devices to save energy, multiplexer must carefully compose burst

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:3

schedules, which specify the start time of each burst and its size, in order to maintain good service
quality.

In this article, we consider the problem of constructing burst schedules for the multiplexer in a
broadcast network that transmits VBR streams in order to achieve the following three objectives.

(1) Streaming Quality. Video streaming is a real-time application, and multiplexers should ensure that
there is no buffer violation instances on mobile devices. A buffer violation occurs when the receiver
of a video stream either: (i) has no data in the buffer to play out (buffer underflow), or (ii) has no
space to store the received data (buffer overflow).

(2) Energy Consumption. Higher energy consumption leads to shorter watch time before users replac-
ing or recharging their batteries, and more toxic waste of primary (nonrechargeable) or recharge-
able batteries. Multiplexers should reduce the energy consumption on mobile devices to increase
user satisfaction and reduce pollution.

(3) Goodput. The wireless spectrum is expensive, for example, AT&T sold a WiMAX spectrum in the
USA to Clearwire for $300 million [AT&T News 2007]. To be commercially viable, network oper-
ators must achieve high goodput in their wireless networks. The goodput refers to the fraction of
the amount of video data delivered on time over the network capacity. Higher goodput in general
leads to more concurrently broadcast video streams within a given spectrum, and thus higher net
profits of network operators.

We formulate the problem of broadcasting multiple VBR streams as an optimization problem, and
we show that it is NP-complete. We propose an approximation algorithm to solve this problem, and we
show that the resulting burst schedules are optimal in terms of goodput and near-optimal in terms of
energy saving. We then show that the proposed algorithm produces glitch-free schedules in closed-loop
networks, and minimizes the number of glitches in open-loop networks. We evaluate the proposed al-
gorithm using simulations and experiments. We develop a trace-driven simulator, and we implement
the proposed algorithm in it. The simulation results show that the proposed algorithm outperforms
the algorithms currently used in commercial base stations in both open- and closed-loop networks.
For example, in our experiments, the proposed algorithm results in almost no missed/late frames in
an open-loop network, while the current base stations lead to as high as 30% of missed/late frames.
Finally, we use a real mobile TV testbed to show the practicality and efficiency of the proposed schedul-
ing algorithm. The results from the testbed confirm that our proposed algorithm runs in real time, and
produces feasible burst schedules that result in high energy saving. For instance, the energy saving
for low bit-rate video streams (250kbps) can be as high as 96%, and it is at least 80% for high bit-rate
video streams (768kbps) in our experiments.

We note that a preliminary version of this article was presented at the ACM Multimedia 2009 Con-
ference [Hsu and Hefeeda 2009b].

The rest of this article is organized as follows. Section 2 summarizes the related work in the liter-
ature. In Section 3, we define and formulate the problem of broadcasting VBR streams. We solve the
problem and analytically analyze our proposed solution in Section 4. Proofs of our theorems are given
in Appendix C. We conduct extensive trace-driven simulations in Section 5, and we implement and
evaluate the proposed algorithm in a real testbed in Appendix A. We conclude this article in Section 6.

2. RELATED WORK

The energy saving of mobile devices in broadcast networks that send videos in bursts has been con-
sidered in several works. For example, the authors of Yang et al. [2004] and ETSI [2007] study the
energy saving achieved by a given burst schedule. Both works show that streaming videos in bursts
enables mobile devices to put their receiving circuits into sleep for a significant fraction of time. These

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:4 • C.-H. Hsu and M. Hefeeda

two works do not solve the burst scheduling problem. In Hefeeda and Hsu [2008, 2009], we optimally
solve a simplified version of the burst scheduling problem where video streams are classified into a few
classes and each class has a different bit rate. We present an efficient burst scheduling algorithm for
video streams that can take any arbitrary bit rates in Hsu and Hefeeda [2009c, 2009a]. Our previous
works [Hefeeda and Hsu 2008, 2009; Hsu and Hefeeda 2009c, 2009a] target CBR video streams, and
do not consider the rate variability within each video stream. In the current article, we solve the burst
scheduling problem for VBR video streams, which may lead to better streaming quality, shorter delay,
and more concurrent broadcast streams [Lakshman et al. 1998].

Streaming VBR videos in the Internet is challenging. Several smoothing algorithms have been pro-
posed in the literature, for example, in Lai et al. [2005] and Lin et al. [2006], which absorb bit-rate
variations of a VBR stream by adding buffers at both sender and receiver, and compute a Constant-
Bit-Rate (CBR) transmission schedule that results in no buffer violations instances. These smoothing
algorithms are based on the leaky bucket algorithm [Chou 2007; Ribas-Corbera et al. 2003], and they
assume that packets are small. While the packet size assumption holds in the Internet, broadcast net-
works transmit videos in much larger bursts to save energy. Therefore, these smoothing algorithms
cannot solve the problem considered in this article. Camarda et al. [2006] extend the Internet smooth-
ing algorithms for mobile networks that transmit videos in bursts. They consider the problem of placing
frames of a VBR stream into bursts of some predefined burst schedules, such that the mobile devices
are free from buffer violation instances and the number of late frames is minimized. Their work is dif-
ferent from ours, because they consider a given burst schedule, while we compute near-optimal burst
schedules. Furthermore, the smoothing algorithms in Lai et al. [2005], Lin et al. [2006], Chou [2007],
Ribas-Corbera et al. [2003], and Camarda et al. [2006] only consider a single VBR stream while our
problem is to concurrently broadcast multiple video streams.

Joint video coders have been well studied in the literature. For example, several works, such as Wang
and Vincent [1996], Tagliasacchi et al. [2008], He and Wu [2008], Rezaei et al. [2008], Jacobs et al.
[2008], propose joint coder designs for popular video coding standards. Wang and Vincent [1996] pro-
pose a joint coder for MPEG-2 coded streams. Tagliasacchi et al. [2008] and He and Wu [2008] propose
joint coders for H.264/AVC coders. Rezaei et al. [2008] also propose a joint coder for H.264/AVC using
fuzzy logic, which achieves low end-to-end delay and uniform quality among video streams. Jacobs
et al. [2008] propose a joint coder that adjusts the bit rate of multiple scalable streams encoded using
H.264/SVC coded coders. H.264/SVC coders significantly reduce the cost of adapting and transcoding
video streams. These works on joint coders are quite different from ours, as they do not construct burst
schedules. In this article, we solve the burst scheduling problem in broadcast systems with and without
joint coders.

Rezaei et al. [2009] propose a burst scheduling algorithm for mobile TV networks. They divide the
broadcast time into fixed-length scheduling windows, and then schedule all video streams in round-
robin fashion in each window. To adapt to bit-rate variations, the burst length is flexible in each
scheduling window, but bursts cannot span over more than two scheduling windows. They propose
an empirical model to predict future frame sizes, and then compute the probable start time of the next
burst. That is, their burst schedules always wake the receiving circuits up early so that mobile devices
do not miss bursts. Our work is different from theirs in two aspects. First, our algorithm constructs
schedules with completely flexible burst start times and lengths, that is, without the constraints of
scheduling windows. This gives us opportunities to achieve better energy saving. Second, we assume
that there is a small look-ahead window (a few seconds) for constructing burst schedules, which en-
ables us to compute precise burst start times. This in turn allows us to avoid waking up receiving
circuits too early, and thus our algorithm saves more energy. We note that a small look-ahead win-
dow is a reasonable assumption because many programs are prerecorded, while live streams are often

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:5

delayed to allow censoring and editing. Since the work in Rezaei et al. [2009] probabilistically schedules
bursts, its energy saving can never be better than the current base stations in closed-loop networks,
which employ the same round-robin scheduling but use real frame sizes. Therefore, we only compare
our algorithm against the current base stations.

3. PROBLEM FORMULATION

3.1 Problem Statement and Hardness

We study broadcast networks in which a base station transmits S video streams to many mobile devices
over a shared air medium with bandwidth R kbps. We consider a broadcast time of T sec, in which
each video stream has I frames, and is coded at F fps (frame-per-second). Therefore, we have T = I/F.
We consider very general VBR streams: each frame i (1 ≤ i ≤ I) of video stream s has a size of ls

i
kb. We assume streams have instantaneous bit rates smaller than the air medium bandwidth, that is,
ls
i F < R. To guarantee smooth playouts, every frame i must arrive at mobile devices no later than its
decoding deadline i/F sec. The base station transmits every video stream in bursts at bit-rate R kbps.
Therefore, once a burst of data is received, mobile devices put the receiving circuits into sleep until the
next burst in order to save energy.

We define two performance metrics for video streaming over wireless networks: energy saving and
goodput, from mobile users’ and network operators’ point of view, respectively. For users, we define
energy saving as the ratio of time that mobile devices can put their receiving circuits into sleep to the
total time, and we write the energy saving of video stream s as γs. We define the system-wide energy
saving as γ = (∑S

s=1 γs
)
/S. Similar definition of energy saving has been used in broadcast networks

[Yang et al. 2004; ETSI 2007]. For network operators, we define the goodput σ as the fraction of the
ontime transmitted data amount, which is the aggregate size of ontime bursts, over the maximum
data amount offered by the air medium, which is T R kb. This definition only considers the video data
transmitted before their decoding deadlines, as late video data cannot improve video quality. With
these definitions, we state the problem of optimally broadcasting VBR video streams over a broadcast
network to mobile devices as follows.

Problem 1. Consider S VBR-encoded video streams to be concurrently transmitted by a base sta-
tion to multiple mobile devices. Each video stream is sent as bursts of data to save energy on mobile
devices. Find the optimal burst schedule for all video streams to maximize the goodput σ and the en-
ergy saving γ , while achieving optimal streaming quality, that is, resulting in no playout glitches on
mobile devices.

In this problem, the goodput is the primary objective. Higher goodput in general leads to more con-
current video streams. Since the wireless spectrum is precious, concurrently streaming more video
streams leads to higher profits for network operators. The energy consumption is the secondary ob-
jective. Mobile devices are energy-limited and higher energy saving results in longer watch time, thus
higher user satisfaction. A burst schedule specifies for each burst the start time and its size for all
video streams. The resulting schedule cannot have burst intersections, which happen when two bursts
have nonempty intersection in time. Furthermore, the schedule must ensure that there are no buffer
violation instances for any channel. A buffer violation occurs when a mobile device has either no data
in the buffer to pass on to the decoder for playout (buffer underflow), or has no space to store data
during a burst transmission (buffer overflow).

Problem 1 is a generalization of the burst scheduling problem addressed in our previous works
[Hefeeda and Hsu 2008, 2009; Hsu and Hefeeda 2009c, 2009a], where we consider CBR video streams
with only one objective function: maximizing energy saving for mobile devices. Yet this single-objective

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:6 • C.-H. Hsu and M. Hefeeda

function problem has been proved to be NP-complete [Hefeeda and Hsu 2009]. Therefore, Problem 1,
which considers VBR streams and two objective functions, is clearly NP-complete.

We note that our optimization problem is quite different from many other multi-objective schedul-
ing problems, which are often solved by defining an overall objective function as a weighted sum of
the given objective functions. Solving those multi-objective problems is tricky because the weights for
objective functions are either heuristically chosen or determined by analyzing the complex trade-off
among objective functions [Pinedo 2008, Section 4.3]. More importantly, the resulting schedules are
compromised, because they are unlikely to be optimal in terms of either objective function. In contrast,
our problem consists of two objective functions that are independent of each other, which does not re-
quire us to define a weighted overall objective function. In Section 4, we solve this problem, and we
prove that the resulting schedule is optimal in terms of goodput, and near-optimal in terms of energy
saving in closed-loop networks.

3.2 Mathematical Formulation

We let ns be the number of bursts scheduled for video stream s, where 1 ≤ s ≤ S. We use f s
k sec and

bs
k kb to denote the start time and burst size of burst k of video stream s, where 1 ≤ k ≤ ns. Since

the air medium has bandwidth R kbps, it takes bs
k/R sec to transfer burst k of stream s. Notice that

receiving circuits need to be waken up earlier than the next burst time, because it takes some time to
lock to the radio frequency and synchronize to the symbols before data can be demodulated. This time
period is referred to as overhead duration To sec. The value of To could be high in wireless networks,
for example, in mobile TV broadcast networks, To ranges from 50 to 250 msec [Kornfeld and May 2007;
ETSI 2007; Faria et al. 2006]. Since mobile devices must turn on the wireless interfaces To sec earlier
than the burst, the wireless interfaces stay on between [f s

k − To, f s
k + bs

k/R) in order to receive burst
k of stream s. Last, we let the receiver buffer size be Q kb. Given these notations, we can define cs

k kb
as the buffer level of mobile devices at the beginning of burst k of video stream s. Mathematically, cs

k is
written as

cs
k = max

⎛
⎝0,

k−1∑
j=1

bs
j −

h∑
i=1

ls
i

⎞
⎠ ,

where h is the maximum positive integer such that h/F ≤ f s
k . This equation computes the volume

difference between the received data (the first summation) and the consumed data (the second sum-
mation), and returns 0 if there is no received data in the buffer. Finally, we write a schedule L as a set
of bursts: {〈 f s

k , bs
k〉 | 1 ≤ s ≤ S and 1 ≤ k ≤ ns} for all video streams.

The burst scheduling problem for VBR streams can be formulated as

Pri : max
L

σ =
∑S

s=1
∑ns

j=1 bs
j

/
R

I/F
; (1a)

Sec : max
L

γ = 1 −
∑S

s=1
∑ns

k=1

(
To + bs

k

/
R

)
I/F

/
S; (1b)

s.t.
[

f s
k , f s

k + bs
k

R

) ⋂ [
f s̄
k̄ , f s̄

k̄ + bs̄
k̄

R

) = ∅; (1c)

cs
k > 0; (1d)

cs
k + bs

k −
∑

f s
k ≤ j/F< f s

k +bs
k/R

ls
j ≤ Q; (1e)

∀ 1 ≤ s �= s̄ ≤ S, 1 ≤ k ≤ ns, 1 ≤ k̄ ≤ ns̄.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:7

In this formulation, the primary goal is to maximize the goodput σ , which is the fraction of the ontime
transmitted data amount,

∑S
s=1

∑ns
j=1 bs

j , over the maximum data amount, RT = RI/F. The secondary
goal is to maximize the energy saving γ , which is the fraction of time that mobile devices can put their
receiving circuits into sleep over the total time. Consider stream s, the aggregate receiving circuits
ontime is

∑ns
s=1(To +bs

k/R) sec, and the video length is I/F sec. Therefore, the energy saving of stream s
can be computed by 1 −

∑ns
s=1(To+bs

k/R)
I/F . Computing the average energy saving γ among all video streams

gives the system-wide energy saving. The constraints in Eqs. (1c)–(1e) guarantee that the resulting
burst schedule is feasible. In particular, Eq. (1c) ensures that there are no burst intersections among
all S video streams. Eq. (1d) checks the buffer level for stream s at the start time of every burst to
prevent buffer underflow instances. Eq. (1e) validates the buffer level for stream s at the end time of
every burst to prevent buffer overflow instances, where the third term (summation) includes all frames
that have deadlines during that burst. It is sufficient to check the buffer level only at the burst start
and end times, because the buffer level of mobile devices increases if and only if there is a burst at that
moment.

4. PROBLEM SOLUTION

We propose in Section 4.1 an approximation algorithm to solve the burst scheduling problem. In
Section 4.2, we show that our algorithm achieves optimality along one objective function (goodput)
and near-optimality along the other objective function (energy saving). We give detailed proofs in
Appendix C due to the space limitations. In Section 4.3, we study the applicability of the proposed
algorithm in open-loop networks.

4.1 Scheduling Algorithm for VBR Streams

The high-level idea of our algorithm is as follows. We mathematically transform our problem to another
scheduling problem for which we design an efficient approximation algorithm. We then transform the
solution found by the approximation algorithm to a solution for the original problem. We analytically
bound the approximation gap and prove the correctness of our algorithm.

Our transformation idea produces a simpler scheduling problem with only one constraint: no burst
intersection, and it gets rid of the other constraint: no buffer violation instances. This is achieved by
using two separate buffers, say B and B′, so that B can be drained when B′ is filled up, and B′ can be
drained when B is filled up. More specifically, we propose to split the receiver buffer Q into two equal-
sized buffers, and divide the sending time of video stream s into ps disjoint time windows. We design a
scheduling algorithm to properly send all S video streams, so that mobile devices of any video stream
s in window p, where 2 ≤ p ≤ ps, render the video data that have been received in window p − 1, and
thus are free from buffer overflow instances. That is, mobile devices use a buffer for receiving (filling
up) data and another buffer for decoding (draining) data in every time window p, and they swap these
two buffers upon reaching a new time window p + 1. We notice that windows have different lengths in
time due to the VBR nature of video streams.

Following are some details about our algorithm. To perform the transform, we first need to decide
how many frames can be sent in each window p without resulting in buffer overflow on mobile devices.
For any video streams s and any window p (1 ≤ p ≤ ps), we let ms

p be the last frame (with the largest
frame index) that gets included in window p. Since the receiving buffer size is Q/2 kb in all windows,
for any stream s, we can write ms

p by induction as

ms
0 = 0; and

ms
p∑

j=ms
p−1+1

ls
j ≤ Q

2
<

ms
p+1∑

j=ms
p−1+1

ls
j , ∀ 1 ≤ p ≤ ps. (2)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:8 • C.-H. Hsu and M. Hefeeda

This induction stops once ms
p̂ = I for some integer p̂. Upon ms

p is determined, we know that frames
[ms

p−1 + 1, ms
p] are the maximum number of frames that can be fit in the receiving buffer of window

p, for 1 ≤ s ≤ S and 1 ≤ p ≤ ps. Letting ys
p be the aggregate data amount that must be received in

window p, we can write ys
p as

ys
p =

ms
p∑

j=ms
p−1+1

ls
j . (3)

Furthermore, observe that mobile devices in window p always render the data received in window
p − 1. This means that the time length of window p depends on the number of frames received in
window p − 1, for example, if 5 frames are received in the previous window, the playout time of the
current window is 5/F sec, where F is the frame rate. Let xs

p and zs
p be the start and end times of

window p for video stream s. Then, we can write xs
p and zs

p as

xs
1 = 0; and xs

p = (
ms

p−2 + 1
)/

F, 2 ≤ p ≤ ps. (4)

zs
1 =

S∑
s=1

ys
1/R; and zs

p = ms
p−1

/
F, 2 ≤ p ≤ ps. (5)

We mention that the windows are defined in a very dynamic way: video streams with higher instan-
taneous bit rates get shorter windows, while others get longer windows. This allows our algorithm to
quickly adapt to the rate variations in VBR video streams, and utilize the receiving buffer B (or B′).
Notice that in the first window (p = 1) of all video streams, mobile devices have no data to playout and
only receive and buffer data. Therefore, any window length could be assigned to the first window. To
maximize the goodput and minimize the delay, we let the first window size be

∑S
s=1 ys

1/R, which is the
shortest possible window length to send data in the first window of all video streams. Since ys

1 ≤ Q/2
(indicated by Eqs. (2) and (3)), the delay incurred by the SMS algorithm is bounded by

d = (SQ)/(2R). (6)

Using these notations, we can formally write the transformed scheduling problem as

Pri : max
L

S∑
s=1

ns∑
j=1

bs
j ; (7a)

Sec : min
L

S∑
s=1

ns; (7b)

s.t. ys
p =

∑
∀ xs

p≤ f s
k <zs

p

bs
k; (7c)

∀ 1 ≤ s ≤ S, 1 ≤ p ≤ ps.

This formulation first maximizes the goodput by maximizing the amount of ontime delivered video
data in Eq. (7a). It then maximizes the energy saving by minimizing the number of bursts in Eq. (7b),
as each burst incurs a constant overhead duration To. The constraint in Eq. (7c) ensures that the
aggregate size of scheduled bursts in every window equals to the aggregate size of frames associated
with that window, which avoids buffer violation instances (both overflow and underflow).

To solve the transformed problem, we first define decision points as the time instances at which ei-
ther: (i) a new window starts, that is, at time xs

p, (ii) a window exceeds its decoding deadline, that is,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:9

Fig. 2. An efficient burst scheduling algorithm.

at time zs
p, or (iii) bursts scheduled to a window have met the required aggregate data amount ys

p. At
each decision point t, we schedule a burst for the window with the smallest end time zs

p among all out-
standing windows p′ with start time xs

p′ earlier than current time t and end time zs
p′ later than current

time t. We use outstanding window to refer to a window that needs more bursts: its accumulated data
amount has not met the required amount ys

p. Note that windows p′ with xs
p′ > t are not considered, be-

cause these windows have not started and the video data may not be available yet. Moreover, windows
p′ with zs

p′ < t are not considered either, because these windows are already late, and late frames are
essentially useless for streaming videos. The scheduling algorithm builds a schedule with a moving
current time t and stops if there exist no outstanding windows, nor windows with start times in the
future. Last, we define the completion time of window p of stream s as the time that window achieves
the required data amount ys

p.
We call this algorithm Statistical Multiplexing Scheduling (SMS) algorithm, and give its high-level

pseudocode in Figure 2. This algorithm constructs the first window for each video stream in lines 3–5.
It uses the for-loop between lines 7 and 11 to traverse through all decision points in ascending order
of time. It schedules a new burst in line 8 to video stream s, and then checks whether the window of s
is complete or late in lines 9 and 10. New window is generated in line 10 if the current window either
completes or is late. The algorithm stops when no more decision points exist.

We note that the SMS algorithm considers a window p for each stream s at any moment, and only
advances to window p + 1 if window p completes or is late (lines 9–10). Thus, it only requires a small
look-ahead window (in the order of a few seconds) for frame size ls

i , and is an online scheduling algo-
rithm. In addition, the SMS algorithm can handle the dynamic nature of video service. For example, to
transition from a video stream to a new one, the SMS algorithm simply discards the current window
and generates a new window for the new video stream, and continues to schedule bursts with no in-
terruptions nor runtime penalty. Finally, the SMS algorithm does not need joint video coders, and can
work with any VBR streams, and imposes no limitations on the video coders for rate control. Hence, it
allows video coders to encode video streams with the maximum coding efficiency, and thus achieve the
best streaming quality.

4.2 Analysis of the SMS Algorithm in Closed-Loop Networks

We first prove that the proposed algorithm produces feasible burst schedules in closed-loop networks,
which employ joint rate allocators to encode multiple videos into VBR streams so that the aggregate

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:10 • C.-H. Hsu and M. Hefeeda

0 1 2 3 4
0

0.5

1

1.5

2

2.5

Receiver Buffer Size Q (MB)

A
pp

ro
xi

m
at

io
n

G
ap

Δ
γ

(%
)

To = 50 msec
To = 100 msec
To = 200 msec

(a)

0 500 1000 1500
0

1

2

3

4

Channel Bit Rate rs (kbps)

A
pp

ro
xi

m
at

io
n

G
ap

Δ
γ

(%
)

To = 50 msec
To = 100 msec
To = 200 msec

(b)

Fig. 3. The proposed algorithm leads to small approximation gap with typical parameters: (a) average coding bit rate is
512kbps, and (b) receiver buffer is 1MB.

bit rates of video streams do not exceed the bandwidth of their broadcast networks. We then prove
that the resulting schedule is optimal in terms of goodput. We show that the resulting schedule is
near-optimal in terms of energy saving, and we give its approximation gap. Last, we derive its time
complexity.

THEOREM 1 (CORRECTNESS). The SMS algorithm returns a feasible burst schedule for the original
burst scheduling problem (Problem 1) in closed-loop broadcast networks.

THEOREM 2 (OPTIMALITY OF GOODPUT). The SMS algorithm produces optimal burst schedules in
terms of goodput.

THEOREM 3 (NEAR-OPTIMALITY OF ENERGY SAVING). The SMS algorithm produces near-optimal burst
schedules in terms of energy saving with an approximation gap: �γ = γ ∗ − γ ≤ Tor/Q, where γ ∗ and
γ are the system-wide energy saving achieved by the optimal scheduling algorithm and by the SMS
algorithm, respectively, and r represents the average coding bit-rate across all video streams.

THEOREM 4 (TIME COMPLEXITY). The SMS algorithm runs in time O(PS+S2), where S is the number
of video streams, and P is the maximum number of windows among all video streams.

The preceding theorems show that the SMS algorithm produces burst schedules that are optimal
in terms of goodput, and near-optimal in terms of energy saving. In addition, it produces glitch-free
bursts in closed-loop broadcast networks. Moreover, the approximation gap of energy saving given in
Theorem 3 has a few desirable properties. First, the gap decreases when the overhead duration To

decreases, which is expected as the hardware technology advances. Second, the gap decreases when
the receiver buffer size Q increases. The receiver buffer gets larger whenever the unit price of memory
chips reduces, which has been a trend for several years. Last, the gap decreases when the average
coding bit-rate r reduces, which is likely to happen as newer coding standards always achieve higher
coding efficiency, and thus lower coding bit rates. These properties show that the SMS algorithm will
even perform better as the technology advances.

To illustrate the energy saving performance of the SMS algorithm under current technology, we nu-
merically analyze its approximation gap using a range of practical parameters. We consider overhead
duration from 50 to 200 msec, receiver buffer size from 256KB to 4MB, and coding bit rate from 128
to 1536kbps. We plot the numerical results in Figure 3. Figure 3(a) shows that the gap becomes very
small if the receiver has a reasonable buffer size, for example, the gap is less than 1.5% if receiver
buffer is larger than 1MB. Figure 3(b) illustrates that the gap becomes smaller when coding bit rate is
smaller, for example, the gap is less than 1.25% for coding bit rate is 512kbps and below. Notice that

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:11

512kbps is high enough for video streaming to mobile devices, because these devices have small display
resolutions. These two figures confirm that the SMS algorithm achieves a very small approximation
gap on energy saving with current technology.

Last, we comment on the delay incurred by the SMS algorithm, which is bounded by (SQ)/(2R) as
shown in Eq. (6). For illustration, we employ common network parameters, where the air medium
bandwidth R = 10Mbps, receiver buffer size Q = 2Mb, and stream coding rate is 512kbps. We first
consider a service provider who broadcasts five video streams, its delay is less than 500 msec which is
negligible. For a service provider who saturates the bandwidth and broadcasts 20 video streams, the
delay is no more than 2 sec.

4.3 The SMS Algorithm in Open-Loop Networks

Compared to open-loop broadcast networks, a closed-loop broadcast network requires additional com-
ponents, such as a joint rate allocator, and several joint-coding enabled video coders. Therefore, open-
loop broadcast networks are less expensive to deploy, and thus are more suitable to small-scale network
operators such as local TV stations, temporary base stations, and startup broadcast companies with
limited budget. The SMS algorithm proposed in Figure 2 can be used in open-loop broadcast networks.
The next corollary states the sufficient condition for the SMS algorithm to construct glitch-free burst
schedules in open-loop networks.

COROLLARY 1 (SUFFICIENT CONDITION). The SMS algorithm returns glitch-free burst schedules, that
is, leads to no buffer violation instances in open-loop broadcast network if the aggregate bit rate of
all video streams does not exceed the broadcast network bandwidth. That is,

∑S
s=1 ls

i ≤ R/F, for all
1 ≤ i ≤ I.

This corollary is a direct result of Theorem 1, in which we use the fact that joint video coders prevent
the video coders from overloading the broadcast network at all time to prove the burst schedules pro-
duced by the SMS algorithm have no buffer underflow instances. Fortunately, for small-scale network
operators, not too many video streams need to be broadcast. Therefore, these network operators are
unlikely to saturate the network bandwidth. Hence, these network operators may implement the SMS
algorithm in the multiplexers without purchasing expensive joint video coders. When the aggregate
bit rate of the video streams instantaneously exceeds the network bandwidth, the SMS algorithm will
minimize the number of glitches in open-loop networks, by scheduling as much data as possible, which
is proved in Theorem 2.

5. EVALUATION USING SIMULATION

In this section, we use simulations and real video traces to evaluate the proposed SMS algorithm in
open-loop and closed-loop networks.

5.1 Burst Scheduling in Current Multiplexers

Many commercial multiplexers, such as UDCast [2008] and UBS [2009], implement two burst schedul-
ing schemes: slotted and dynamic scheduling. In Appendix B, we describe how network operators use
these two schemes to broadcast VBR streams, which can be summarized with three algorithms: VBRα,
RVBRβ , and DVBRτ . In the rest of this section, we compare our SMS algorithm against these three
algorithms.

5.2 Simulation Setup

We have implemented a trace-driven simulator for broadcast networks. The simulator takes trace
files of real VBR coded streams as inputs and can simulate both open- and closed-loop networks. We

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:12 • C.-H. Hsu and M. Hefeeda

have designed a clean interface for the simulator to facilitate various burst scheduling algorithms, and
we have implemented the proposed SMS algorithm in the simulator. We have also implemented the
current VBRα, RVBRβ , and DVBRτ algorithms (which are described in Section 5.1) for comparison. We
only consider these three algorithms because we are not aware of any other burst scheduling algorithm
in the literature. This, however, is not a major concern, as we analytically prove that our algorithm
achieves optimal goodput and almost-optimal energy saving. Furthermore, in some of our experiments,
we compare the results of our algorithm against an upper bound on the energy saving that can be
achieved by any algorithm.

We first evaluate the SMS algorithm in open-loop networks. For the network parameters, we use
16-QAM modulation scheme, 5/6 channel coding rate, 1/8 guard interval, and 5MHz channel band-
width. This gives us a broadcast network with bandwidth R = 17.2Mbps [ETSI 2007]. We consider an
overhead duration To = 100 msec and receiver buffer size Q = 4Mb (= 0.5MB). To saturate network
bandwidth, we concurrently broadcast up to 20 VBR video streams, where each stream has different
characteristics. We downloaded 20 trace files from a Video Trace Library [Seeling et al. 2004]. These
trace files are for CIF video streams coded by H.264/AVC coders at 30fps. We follow the recommen-
dations given in Seeling and Reisslein [2005] to generate a realistic video traffic workload from these
traces in two steps. First, we construct a 60-min trace by starting from a random time and wrapping
around if the end of the original coded stream is reached. Second, we scale the frame sizes of each video
stream so that it has a random average bit rate between 100 to 1250kbps. These two steps generate
a set of video trace files with diverse and varying video characteristics to mimic the video streams
broadcast in real open-loop networks.

To cover all possible burst schedules that can be used in current base stations, we vary the α value
of the VBRα algorithm from 48% to 98% and we vary the β value of the RVBRβ algorithm from 1 to
64 sec. If not otherwise specified, we concurrently broadcast 20 video streams for 60 min using each
burst scheduling algorithm, and we compute three performance metrics: missed frames, number of
concurrent video streams, and energy saving.

The missed frames include video frames that cannot be broadcast due to shortage of bandwidth
reserved to video streams, and frames that are late and cannot be decoded. We define the missed
frame ratio as the number of missed frames to the number of total frames, which is an important QoS
metric because higher missed frame ratios result in more playout glitches that are annoying to users.
We define the number of concurrent video streams as the number of streams that can be broadcast by
each scheduling algorithm without resulting in too many missed frames. More precisely, we choose a
target missed frame ratio and we try to achieve this target using different scheduling algorithms. We
start by broadcasting 20 video streams using the considered scheduling algorithms for 60 min. For each
algorithm, we compute the average missed frame ratio over the whole broadcast period. If the average
missed frame ratio is higher than the target ratio, we reduce the number of concurrently broadcast
video streams by one and repeat the 60-min broadcast, until we achieve the target missed frame ratio.
We note that, at each iteration, we drop the video stream with the smallest bit rate. The rationale is
that video streams with lower bit rates may be less important, and dropping them earlier may allow
us to achieve higher goodput. Finally, we consider the system-wide energy saving as a performance
metric.

We then evaluate the SMS algorithm in closed-loop networks. We use the same network parame-
ters mentioned earlier. We instruct the simulator to jointly encode 10 VBR video streams, based on
the video traces from a Video Trace Library [Seeling et al. 2004]. The simulator employs Lagrangian
optimization method [Sullivan and Wiegand 1998] to maximize the average video quality under the
bandwidth constraint. It then concurrently broadcasts these coded streams for 60 min using various
scheduling algorithms. We consider the SMS and DVBRτ algorithm, and we vary τ value from 1 to

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:13

84 86 88 90
1
3
5
7
9

11
13
15
17
19

Time (sec)

T
V

C
ha

nn
el

s

(a)

84 86 88 90
1
3
5
7
9

11
13
15
17
19

Time (sec)

T
V

C
ha

nn
el

s

(b)

84 86 88 90
1
3
5
7
9

11
13
15
17
19

Time (sec)

T
V

C
ha

nn
el

s

(c)

Fig. 4. Burst schedules produced by considered algorithm: (a) SMS, (b) VBR70%, and (c) RVBR1.

0 20 40 60
0

10

20

30

40

Time (min)

M
ea

n/
M

ax
M

is
se

d
Fr

am
e

(%
)

SMS
VBR70%
RVBR1

(a)

0 20 40 60
0

2

4

6

8

10

12

Time (min)

A
ve

ra
ge

M
is

se
d

Fr
am

e
(%

)

VBR98
VBR94
VBR86
VBR70
VBR48

(b)

0 20 40 60
0

2

4

6

Time (min)

A
ve

ra
ge

M
is

se
d

Fr
am

e
(%

)

RVBR1
RVBR4
RVBR16
RVBR32
RVBR48

(c)

Fig. 5. Missed frame ratio produced by: (a) all considered algorithms, (b) the VBRα algorithm with various α values, and (c) the
RVBRβ algorithm with various β values.

2 sec. For all considered algorithms, we compute the energy saving for each channel. We report the
mean, maximum, and minimum per-channel energy saving. For the DVBRτ algorithm, we also calcu-
late the number of overflow/missed frames.

5.3 Simulation Results

Visual validation. We first plot the burst schedules computed by each considered algorithms in Figure 4
to visually validate their correctness. We zoom into a short period of 7 sec; burst schedules during
other time periods are similar. We observe that the bursts scheduled by the SMS algorithm are in
variable size and they come in various frequencies. This is because the SMS algorithm quickly adapts
to the instantaneous bit-rate variations of VBR streams. In contrast, the current algorithms, both
VBR70% and RVBR1, schedule burst in round-robin fashion. We can draw two observations on the
burst schedules computed by the current algorithms. First, they contain slack time, for example, the
air medium is idle around the time 86 sec in Figure 4(b). This means the current scheduling algorithms
are not optimal in terms of goodput. Second, due to the round-robin nature of current algorithms, video
streams with lower bit rates, such as stream 20 in Figure 4(c), have very short bursts, which lead to
low energy saving. Therefore, current scheduling algorithms are not optimal in terms of energy saving
either.

Missed frames. We compute the mean and maximal missed frame ratios of all video streams in 5-min
intervals for the considered algorithm. We report the results in Figure 5(a), which shows that the SMS
algorithm produces almost no missed frames, while VBR70% results in up to 33% missed frame ratio
and RVBR1 leads to up to 12% missed frame ratio. Clearly, the current scheduling algorithms may
lead to unacceptable QoS: a playout glitch every 1 and 3 secs for VBR70% and RVBR1, respectively.
This experiment shows that the SMS algorithm results in much better perceived quality than the
current scheduling algorithms.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:14 • C.-H. Hsu and M. Hefeeda

0 5 10 15 20
0

2

4

6

8

10

Number of Video Streams S

A
ve

ra
ge

M
is

se
d

Fr
am

e
(%

)

SMS
RVBR1
VBR70%

Target Missed
Frame Ratio (0.5%)

(a)

SMS 1 4 16 32 48% 98%
0

5

10

15

20

Scheduling Algorithm

N
um

be
r

of
V

id
eo

St
re

am
s
S

SMS
RVBRβ

VBRα

(b)

Fig. 6. (a) Missed frame ratio achieved by various scheduling algorithms with different number of video streams. (b) Maximum
number of video streams that can be broadcast.

Next, we vary the α and β values and compute the missed frame ratio for each of them. Our SMS
algorithm is not shown in the figures as it does not depend on α and β, and as indicated by Figure 5(a)
it produces almost no missed frames. We plot the results of VBRα algorithm with different α values
in Figure 5(b). This figure reveals that changing the α value does not solve the QoS issue at all: at
least 4% of missed frame ratio is observed no matter what α value is used. This means that even if
network operators exhaustively try all possible α values with the current VBRα algorithm, no burst
schedule with acceptable QoS is possible. Then, we plot results of the RVBRβ algorithm with various
β values in Figure 5(c). This figure shows that the average missed frame ratio decreases when the
preroll delay of the RVBRβ algorithm increases. However, we observe that a preroll delay of 48 sec
is required for a zero average missed frame ratio. Unfortunately, a 48-sec preroll delay significantly
degrades user experience, and thus is not acceptable for mobile video services. Therefore, the current
RVBRβ algorithm cannot achieve acceptable QoS either. This experiment confirms that the current
scheduling algorithms can only achieve inferior perceived quality than the proposed SMS algorithm in
open-loop networks.

Number of concurrent video streams. We next study how many video streams can the burst schedul-
ing algorithms concurrently broadcast for a given QoS target: 0.5% missed frame ratio. We itera-
tively reduce the number of concurrent video streams as outlined in Section 5.2, and we compute the
missed frame ratio at each step. We plot the average missed frame ratio throughout the broadcasts in
Figure 6(a). This figure shows that while the SMS algorithm can concurrently broadcast 20 video
streams, the RVBR1 algorithm can only broadcast 14 video streams and the VBR70% algorithm can
only broadcast 2 video streams. In Figure 6(b), we plot the maximum number of video streams that
can be concurrently broadcast by each scheduling algorithm. This figure shows that no matter what α

value is used in the VBRα algorithm, it can only broadcast 2 video streams. Moreover, a β value larger
than 16 is required for the RVBRβ to achieve the same number of video streams as the SMS algorithm,
which significantly degrades user experience due to its excessive preroll delay of 32 sec. This experi-
ment shows that the SMS algorithm allows network operators to broadcast many more video streams
under the same QoS requirements, which leads to higher revenues.

Near-optimality on energy saving. We next compare the energy saving achieved by the SMS algo-
rithm against the current burst scheduling algorithms. We also compare against a very conservative
upper bound on the maximum achievable energy saving. We use this upper bound because the burst
scheduling problem is NP-complete, and computing the exact optimal solutions may take long time.
We compute the upper bound as follows. For each video stream, we broadcast only this stream without
any other streams for 60 min. The resulting schedule achieves maximum energy saving by allocating
the largest possible bursts that can fit in receiver’s buffer. The receiving circuits of mobile devices are
put into sleep after getting a burst until that burst is completely consumed. Clearly, the schedule leads

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:15

1 4 7 10 13 16 19
75

80

85

90

95

100

Video Stream s

E
ne

rg
y

Sa
vi

ng
γ
s

(%
)

UB
SMS
RVBR16
VBR98%

Fig. 7. Energy saving achieved by considered burst scheduling algorithms and a conservative upper bound.

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Time (min)

C
h.

E
ne

rg
y

Sa
vi

ng
γ
s

(%
)

SMS
DVBR1

(a)

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Time (min)

C
h.

E
ne

rg
y

Sa
vi

ng
γ
s

(%
)

SMS
DVBR2

(b)

Fig. 8. Per-channel energy saving comparison between the SMS and DVBRτ algorithms, with: (a) τ = 1 and (b) τ = 2.

to a conservative upper bound on the energy saving, and we denote this upper bound as UB in the
figure. We repeat this experiment for 20 times: once for every video stream. Then, we run the SMS
and the current burst scheduling algorithms to compute the burst schedules for all 20 video streams
concurrently. Sample energy saving achieved by different burst scheduling algorithms are reported in
Figure 7; results for other video streams are similar. We draw two observations out of this figure. First,
the SMS algorithm achieves near-optimal energy saving: as close as 2% lower than the conservative
upper bound, and up to 7%. Second, the SMS algorithm achieves higher energy saving than the cur-
rent VBR98% and RVBR16 with a margin as high as 12% and 5%, respectively. This experiment shows
that the proposed SMS algorithm achieves energy saving that is very close to the optimal, and is better
than that of the current scheduling algorithms in open-loop networks.

Applicability in closed-loop networks. Next, we compare the performance of the SMS algorithm
against the current burst scheduling algorithm in closed-loop networks. We report the mean, maxi-
mum, and minimum per-channel energy saving of the SMS and DVBRτ algorithm in Figure 8. We
draw two observations on this figure. First, the SMS algorithm constantly results in higher energy
saving than the current algorithm. For example, Figure 8(a) shows that the SMS algorithm achieves
about 80% average energy saving at all time, while the DVBR1 algorithm only achieves about 45%. Sec-
ond, the DVBRτ algorithm achieves higher energy saving when τ increases. For example, Figure 8(b)
reveals that the DVBR2 algorithm achieves about 65% energy saving on average, which is better than
that of DVBR1. However, higher τ value may result in lost frames due to buffer overflow on mobile de-
vices, which in turn lead to playout glitches, and thus cannot be used in commercial base stations. To
understand whether DVBR2 produces a glitch-free burst schedule in the simulation, we plot the num-
ber of missed frames in Figure 9. This figure shows that while DVBR2 results in higher energy saving
than DVBR1, it also leads to playout glitches. This experiment illustrates that the current DVBRτ aal-
gorithm leads to low energy saving in closed-loop networks, and using our proposed SMS algorithm
can improve the average energy saving by about 80%/45% ≈ 1.7 times.

Running time. Finally, we report the running time of the SMS algorithm on a commodity PC with
a 2.33 GHz processor and runs Linux. It takes the proposed algorithms less than 1 sec to construct

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:16 • C.-H. Hsu and M. Hefeeda

0 10 20 30 40 50 60
0

5

10

15

20

25

Time (min)

N
o.

O
ve

rfl
ow

/M
is

se
d

Fr
am

e

DVBR1
DVBR2

Fig. 9. DVBR2 results in overflow/missed frames on mobile devices.

the burst schedule for the 60-min simulation. This clearly shows that the proposed algorithms incur
negligible processing overhead, and can run in real time.

6. CONCLUSIONS

We studied the problem of broadcasting multiple Variable-Bit-Rate (VBR) streams over a broadcast
network to many mobile devices. These streams are broadcast in bursts to enable mobile devices to
save energy by frequently putting their receiving circuits into sleep. We considered two types of the
broadcast networks: closed-loop, in which the aggregate bit rate of all video streams is controlled by a
joint video coder and never exceeds the network bandwidth, and open-loop, in which the video streams
may occasionally overload the broadcast network since their coding rates are not jointly controlled.
We formulated a burst scheduling problem that adopts: (i) goodput as the primary objective func-
tion, and (ii) energy saving as the secondary objective function. We showed that this burst scheduling
problem is NP-complete. We then proposed an efficient, approximation algorithm called Statistical
Multiplexing Scheduling (SMS) to solve the problem. We proved that the SMS algorithm achieves op-
timal goodput and it provides near-optimal energy saving. Our analysis indicates that a small energy
saving gap of at most 1.5% from the optimal is achieved under typical network parameters. We ana-
lytically showed that the SMS algorithm produces glitches-free schedules in closed-loop networks, and
minimizes the number of glitches in open-loop networks. The SMS algorithm is an online scheduling
algorithm with a small look-ahead window, and can handle the dynamic nature of the video broadcast
service.

We conducted extensive trace-driven simulations. For open-loop networks, we concurrently broad-
cast 20 VBR video streams using the SMS algorithm and the scheduling algorithms used in current
base stations. The simulation results reveal that the SMS algorithm outperforms the current burst
scheduling algorithms in terms of: (i) missed frame ratio, (ii) number of concurrent video streams, and
(iii) energy saving. For closed-loop networks, we broadcast 10 jointly coded VBR streams using the
SMS algorithm and the algorithm currently used in practice. Our simulation results showed that the
SMS algorithm can achieve much higher energy saving: about 1.7 times improvement was observed.

The proposed algorithm for efficiently broadcasting VBR video streams are general and can be em-
ployed in different broadcast networks. We achieve this generality by abstracting away the peculiari-
ties of different networks in the formulation of the problem and the proposed scheduling algorithm. To
demonstrate the practicality of our proposed algorithm, we have implemented the SMS algorithm in a
real testbed for mobile TV (DVB-H) services. We encoded different types of videos into VBR streams,
where each stream consists of both video and audio tracks. We concurrently broadcast 20 streams us-
ing the testbed to mobile phones, and we collected detailed logs for performance analysis. The results
from the testbed confirm that the SMS algorithm: (i) does not result in playout glitches, (ii) achieves
high energy saving, and (iii) runs in real time.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:17

APPENDIXES

A. EVALUATION IN MOBILE TV TESTBED

In this section, we evaluate the SMS algorithm in a real mobile TV network that complies with the
DVB-H standard [Faria et al. 2006; Kornfeld and May 2007].

A.1 Testbed Setup

We have implemented the proposed SMS algorithm in a complete testbed for mobile TV networks as a
proof of concept. We have set up this testbed in our lab [Hefeeda et al. 2008], and it consists of two parts:
a base station and several receivers. We use a commodity Linux PC as the base station, and install a
PCI modulator card in it. This modulator implements the physical layer of the DVB-H standard and is
connected to an indoor antenna via a low-power amplifier. In order to drive the modulator to transmit
DVB-H compliant signals, we have designed and implemented a software package for the base station.
In addition, we have implemented the SMS algorithm in the base station. We use Nokia N92 and N96
cellular phones as receivers, which allow us to assess the visual quality of video streams. We also use
a DVB-H analyzer to gather and analyze the low-level signals.

For the experiments, we configured the modulator to use an 8 MHz radio channel with QPSK
(Quadrature Phase-Shift Keying) modulation scheme. According to the DVB-H standard documents,
this leads to 8.289Mbps shared air medium bandwidth [ETSI 2007]. We set the overhead duration
To = 100 msec, and the receiver buffer size Q = 4Mb. To form a realistic set of video streams, we use
five production-quality video sequences provided by the Canadian Broadcasting Corporation (CBC).
CBC is the largest content provider and broadcaster in Canada. These video sequences include docu-
mentary, talk show, soap opera, TV game show, and sports event. Thus, the test sequences have quite
diverse video characteristics. Each sequence lasts for 5 min. We encode each video sequence into two
H.264/AVC coded VBR streams, with average bit rates of 250 and 768kbps, respectively. That is, we
get 10 coded streams in total. We also encode the audio at 96kbps using an MPEG-4 AAC encoder. We
then multiplex the video and audio tracks into mp4 files, which are supported by the streaming server
implemented in our testbed. We concurrently broadcast 20 video streams (each mp4 file is broadcast
over two channels) using the SMS algorithm for three min, and we collect detailed logs at the base
station. The logs contain the start and end times (in microsecond) of every burst of data and its size.
We developed several software utilities to analyze the logs for three performance metrics: cumulative
received bits, time spacing between successive bursts, and energy saving.

A.2 Results from Mobile TV Testbed

Correctness. We first validate the correctness of the SMS algorithm, that is, it produces burst schedules
that adapt to bit-rate variation in VBR streams, and results in no burst conflicts. To show the bit-rate
adaptation, we compute the cumulative received bits (from the broadcasting base station) as the time
progresses. Sample results are presented in Figure 10(a) for two video streams with different average
bit-rates; results for other streams are similar. The figure shows the dynamics of the received bits, and
reveals that the SMS algorithm adapts to the bit-rate variations quite well. For example, the bit rate
of video stream 6 between 25 and 35 sec is higher than other time periods. Furthermore, we notice the
SMS algorithm allocates dynamic inter-burst time to each video stream: bursts are further apart when
the instantaneous bit rate is lower, and they are closer otherwise. This is shown by the variable widths
of the steps in the staircase lines in the figure. Dynamic inter-burst time allows the SMS algorithm
to send bursts as long as possible, which results in high energy saving. Note that this figure shows
shorter time period, 90 sec, for the clarity. The results are similar for the whole streaming period.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:18 • C.-H. Hsu and M. Hefeeda

0 20 40 60 80
0

20

40

60

80

Time (sec)

C
um

ul
at

iv
e

D
at

a
(M

b)

Strm.1 (250 kbps)
Strm.6 (768 kbps)

15 20 25
0

10

20

(a)

0 200 400 600 80050
0

20

40

60

80

100

Spacing between Bursts (msec)

C
D

F
(%

)

(b)

Fig. 10. (a) Buffer dynamics for the SMS algorithm, and (b) time spacing between successive bursts.

0 50 100 150
50

60

70

80

90

100

Time (sec)

E
ne

rg
y

Sa
vi

ng
(%

)

Strm. 1 (250 kbps)
Strm. 3 (250 kbps)
Strm. 8 (768 kbps)
Strm. 9 (768 kbps)

Fig. 11. Energy saving of our algorithm.

Next, we compute the time spacing between all bursts to validate the nonexistence of burst conflicts.
We first sort bursts of all video streams based on their start times. Then, we sequentially compute
the time spacing between the start time of a burst and the end time of its immediate, previous burst.
Note that a negative time spacing indicates bursts intersect with each other. In Figure 10(b), we plot
the CDF of the time spacing between two adjacent bursts. This figure clearly shows that there are no
conflicts among the resulting bursts.

Energy saving. We report the energy saving achieved by receivers of different video streams when
the SMS algorithm is used. Figure 11 shows the energy saving of four representative video streams;
the energy saving of other streams are not shown for the clarity of the figure. We observe that the
energy saving for low bit-rate video streams (250kbps) can be as high as 96%, while it is at least 80%
for high bit-rate video streams (768kbps). This figure shows that the SMS algorithm achieves fairly
high energy saving in a real testbed.

Running time. In all of the preceding experiments, the SMS algorithm was running in real time on a
commodity PC. The running time of scheduling bursts for the whole experiment (5 min long) was in the
order of tens of milliseconds. Note that, in our testbed, the same PC also runs several video streaming
servers and modulation software as background threads. These threads impose realistic loads on the
PC, and confirm that the proposed algorithm is practicable and efficient.

B. SLOTTED AND DYNAMIC SCHEDULING ALGORITHMS

Slotted scheduling. In slotted scheduling, network operators specify a system-wide interburst time
period �T sec, and a burst size bs kb for each video stream s. The multiplexer then schedules a burst
every �T sec for every stream s, where each burst is bs kb long. Network operators may directly
broadcast VBR streams or add a rate regulator for each VBR stream. We describe both approaches
next.

—VBR (Variable-Bit-Rate): When choosing a streaming rate rs for video stream s, network opera-
tors face a trade-off between wasted bandwidth and video quality: high rs may lead to wasting of
bandwidth, while low rs may result in buffer underflow instances. To better quantify this trade-off,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:19

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Streaming Rate (Mbps)O
ve

rs
ub

sc
ri

be
d

B
an

dw
id

th
(%

)

Silence
Starwars
Olympic

(a)

0 0.2 0.4 0.6 0.8 1
0

200

400

600

Streaming Rate (Mbps)

M
in

P
re

ro
ll

D
el

ay
(s

ec
)

Silence
Starwars
Olympic

(b)

Fig. 12. Regulating VBR streams using buffers may cause: (a) high oversubscribed, wasted bandwidth, and (b) prohibitively
long preroll buffering delay.

we compute the CDF (Cumulative Distribution Function) curve Fs(r) of encoding bit-rate for each
stream s. We then define a VBR burst scheduling algorithm VBRα as streaming each video stream
s (1 ≤ s ≤ S) at the smallest bit-rate rs so that Fs(rs) ≥ α. Once the rs is determined, we compute
�T and bs to maximize the energy saving. Specifically, we set �T = Q/rS, where rS is the high-
est streaming rate among all videos. We then let bs = R rs∑S

i=1 ri
�T , where R kbps is the network

bandwidth.

—RVBR (Regulated-Variable-Bit-Rate): Traffic regulators absorb VBR traffic burstiness at the expense
of higher memory requirements, longer preroll delays, and oversubscribed bandwidth. Preroll delay
is the minimal buffering time to fill the regulator buffer before mobile devices can start getting data
out of it without risking for playout glitches. We use the H.264/AVC HRD (Hypothetic Reference
Decoder) model [Ribas-Corbera et al. 2003] to compute the oversubscribed bandwidth and minimum
preroll delay at various rs, and we plot the results in Figure 12. This figure indicates that long preroll
delay is required if network operators want to avoid wasting of bandwidth. For example, streaming
Silence of the Lambs at a bit-rate lower than 280kbps leads to no wasted bandwidth, but it results
in more than 6 min preroll delay. To better quantify the trade-off between wasted bandwidth and
user experience, we define a burst scheduling algorithm RVBRβ as streaming each video stream
using a rate regulator. The regulated stream has bit-rate rs that is the smallest bit rate such that
ds(rs) ≤ β sec, where ds(rs) represents the minimum preroll delay under streaming rate rs. Once the
rs is determined, �T and bs can be computed as mentioned.

Dynamic scheduling. The dynamic scheduling requires a joint video coder to work. It allocates each
video stream a burst with the size of its aggregate frame size in every �T scheduling window. The
joint coder does not monitor the buffer states of mobile devices, and network operators must manu-
ally choose a proper �T value to avoid buffer overflow instances. We describe a general approach to
determine �T next.

—DVBR (Dynamic-Variable-Bit-Rate): One way to avoid overflow instances is to set �T = Q/R, which
prevents multiplexers from sending any burst longer than Q kb. Doing so, however, may result in
too many short bursts and is not efficient in terms of energy saving. Therefore, network operators
may increase �T for higher energy saving at the expense of potential buffer overflow instances. We
define DVBRτ as the dynamic scheduling algorithm with a scheduling window size �T = τ Q/R,
where τ ≥ 1 is a system parameter. Once �T is determined, we let the size of each burst be the
aggregate frame size in every window.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:20 • C.-H. Hsu and M. Hefeeda

Busy Time Slack Time Busy Time Slack Time

· · · · · ·

v1u1 w1 = u2 v2 w2 = u3

Fig. 13. The resulting schedule of the SMS algorithm consists of interleaved busy and slack time periods. Different shaded
blocks indicate bursts of different video streams.

Deadline
zsp

L

Additional Burst

for Window p

Insert an

L∗

late Window p

of Stream s

Last Burst for

Move a Burst for Window p
of Stream s

ut vt wt

Fig. 14. Inserting a burst requires moving another burst, as there is no gap between bursts in busy time periods.

C. PROOFS OF THEOREMS

PROOF OF THEOREM 1. The for-loop in lines 7–11 produces a schedule that has no burst intersections.
This is because we assign every time interval [t, tn) to a single stream s in line 8, and we immediately
advance t to tn. Moreover, line 9 guarantees that ys

p ≥ ∑
∀ xs

p≤ f s
k <zs

p
bs

k holds, because it stops assigning
bursts to p if p is complete or late. To show that Eq. (7c) holds, we prove ys

p ≤ ∑
∀ xs

p≤ f s
k <zs

p
bs

k in the
following. Notice that the joint video coder in a closed-loop broadcast network prevents the aggregate
bit-rate of all video streams from exceeding the broadcast network bandwidth. Therefore, the multi-
plexer always has enough air medium time to broadcast all video streams ontime, that is, any burst
scheduling algorithm that achieves optimal goodput leads to no late data. Next, we borrow the result
from Theorem 2, which states the SMS algorithm maximizes the goodput. This means that the SMS
algorithm produces burst schedules with late data, that is, ys

p ≤ ∑
∀ xs

p≤ f s
k <zs

p
bs

k, which yields Eq. (7c).
Hence, the SMS algorithm finds a feasible schedule for the transformed problem. Since we divide the
receiver’s buffer into two halves and we make sure that the aggregate data received in each window
equals to half of the receiver’s buffer (see Eq. (2)), the resulting schedule leads to no buffer violation
instances in the original problem.

PROOF OF THEOREM 2. Observe that the for-loop starting in line 7 always schedules a burst as long
as there is at least one window that is outstanding and is not late. Therefore, the resulting schedule
L consists of interleaved busy time periods and slack time periods, as illustrated in Figure 13. Let the
t-th busy time period starts at time ut sec and ends at time vt sec, and the t-th slack time period starts
at time vt sec and ends at time wt sec. During slack time periods, there is no video data to be sent: all
data has been sent earlier in the corresponding busy time periods.

Next, any resulting schedule L falls into one of two cases. Case I: all windows complete in line 9.
Case II: there is at least one window late in line 9. In case I, since all windows complete on time,
the SMS algorithm meets all demands on time. Thus, SMS is optimal in case I. For case II, we only
need to show that there is no schedule better than L. We use proof by contradiction and illustrate the
argument in Figure 14. Consider an arbitrary window p of stream s in L, where p is not completed
in busy window [ut, vt). Assume there exists a better schedule L∗, which allocates an additional θ -sec
burst to window p, where θ > 0. By definition, goodput only considers video data that arrive on time,
so this additional burst (darkened in the figure) must be inserted before zs

p, otherwise L∗ would not be
a better schedule. Furthermore, as there is no gap among bursts in the busy time period, L∗ must move
another burst for window p′ of stream s′ (also darkened in the figure) to a time later than zs

p in order

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:21

to make room for the additional burst. However, line 9 says that the SMS algorithm always schedules
the window with the smallest deadline, thus we know zs′

p′ ≤ zs
p. This means that moving the burst for

window p′ of stream s′ after time zs
p renders it becoming a late burst, which cancels out the additional

goodput brought by the new burst! Therefore, the amount of ontime delivered bursts in L and L∗ are
the same, which contradicts the assumption.

PROOF OF THEOREM 3. Let n∗
s be the optimal number of bursts scheduled for video stream s. As each

burst contains no more than Q kb data, we have n∗
s ≥ ∑I

i=1 ls
i /Q. Then, following the definition of

energy saving, we write the energy saving of stream s as

γ ∗
s = 1 −

∑n∗
s

k=1

(
To + bs

k

/
R

)
I/F

≤ 1 − To
∑I

i=1 ls
i

/
Q+ ∑I

i=1 ls
i

/
R

I/F
= 1 −

(
To

Q
+ 1

R

)
rs,

where rs = ∑I
i=1 ls

i /(I/F) is the average coding bit-rate for stream s. Following the definition of system-
wide energy saving, we have

γ ∗ ≤ 1 −
(

To

Q
+ 1

R

) S∑
s=1

rs/S = 1 −
(

To

Q
+ 1

R

)
r.

Next, we let ns be the number of bursts scheduled for s by the SMS algorithm. Based on Eq. (2),
we use δs

p = Q
2 − ∑ms

p

j=ms
p−1+1 ls

j to represent a small portion of Q that is not fully utilized in window p.
We notice that δs

p � 0, because typical receiver buffers are much larger than frame size, for example,
media players buffer for several seconds of playout time, or hundreds of frames, before rendering
videos. Since δs

p is insignificant, we write ps = ∑I
i=1 ls

i

/
(Q/2). Then, we notice that the total number of

bursts among all video streams is bounded by the number of decision points, which are defined as the
time instances at which either a new window starts, completes, or becomes late. Observe that, except
for the boundary cases, a new window is only created when the previous window of the same stream
completes or becomes late. This means that the number of decision points is

∑S
s=1 ps + S �

∑S
s=1 ps.

Hence, we write
∑S

s=1 ns ≤ ∑S
s=1 ps. Then, we write the system-wide energy saving:

γ = 1 −
S∑

s=1

nsTo + ∑I
i=1 is

i /R
SI/F

= 1 − To
∑S

s=1 ns

SI/F
−

∑S
s=1 rs

RS
.

Since
∑S

s=1 ns ≤ ∑S
s=1 ps = 2

∑s
s=1

∑I
i=1 ls

i /Q, we have: γ ≥ 1 − (2To
Q + 1

R)r. Combining γ and γ ∗ yields
the theorem.

PROOF OF THEOREM 4. Since there are
∑S

s=1 ps + S decision points, and we check S windows at each
decision point, the complexity of line 8 is O(PS + S2), where P = ∑S

s=1 ps. Moreover, constructing
windows in lines 5 and 10 takes time O(

∑S
s=1 I) in total, which can be written as O(PS) as the receiver

buffer size Q and number of frames in each window are small constants. Thus, the SMS algorithm
runs in time O(PS + S2) + O(PS) = O(PS + S2).

REFERENCES

ATSC MOBILE DTV STANDARD. 2009. ATSC mobile DTV standard. http://www.openmobilevideo.com/about-mobile-dtv/

standards/

AT&T. 2007. AT&T sells wireless spectrum in southeast to Clearwire corporation. http://www.att.com/gen/press-room?pid=
4800&cdvn=news&newsarticleid=23428

CAMARDA, P., TOMMASO, G., AND STRICCOLI, D. 2006. A smoothing algorithm for time slicing DVB-H video transmission with band-
width constraints. In Proceedings of the ACM International Mobile Multimedia Communications Conference (MobiMedia’06).

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

12:22 • C.-H. Hsu and M. Hefeeda

CHARI, M., LING, F., MANTRAVADI, A., KRISHNAMOORTHI, R., VIJAYAN, R., WALKER, G., AND CHANDHOK, R. 2007. FLO physical layer:
An overview. IEEE Trans. Broadcast. 53, 1, 145–160.

CHOU, P. 2007. Streaming media on demand and live broadcast. In Multimedia Over IP and Wireless Networks, M. van der
Schaar and P. Chou Eds., Academic Press, Chapter 14, 453–502.

ETSI. 2004. Digital video broadcasting (DVB); transmission system for handheld terminals (DVB-H). European Telecommuni-
cations Standards Institute (ETSI) Standard EN 302 304 Ver. 1.1.1.

ETSI. 2007. Digital video broadcasting (DVB); DVB-H implementation guidelines. European Telecommunications Standards
Institute (ETSI) Standard EN 102 377 Ver. 1.3.1.

FARIA, G., HENRIKSSON, J., STARE, E., AND TALMOLA, P. 2006. DVB-H: Digital broadcast services to handheld devices. Proc.
IEEE 94, 1, 194–209.

HE, Z. AND WU, D. 2008. Linear rate control and optimum statistical multiplexing for H.264 video broadcast. IEEE Trans.
Multimedia 10, 7, 1237–1249.

HEFEEDA, M. AND HSU, C. 2008. Energy optimization in mobile TV broadcast networks. In Proceedings of the IEEE International
Conference on Innovations in Information Technology (Innovations’08). 430–434.

HEFEEDA, M. AND HSU, C. 2009. On burst transmission scheduling in mobile TV broadcast networks. IEEE/ACM Trans. Netw.
18, 2, 610–623.

HEFEEDA, M., HSU, C., AND LIU, Y. 2008. Testbed and experiments for mobile TV (DVB-H) networks. In Proceedings of the ACM
Multimedia’08 Demo Session.

HSU, C. AND HEFEEDA, M. 2009a. Broadcasting video streams encoded with arbitrary bit rates in energy-constrained mobile TV
networks. IEEE/ACM Trans. Netw. 18, 3, 681–694.

HSU, C. AND HEFEEDA, M. 2009b. On statistical multiplexing of variable-bit-rate video streams in mobile systems. In Proceedings
of the ACM Multimedia’09. 411–420.

HSU, C. AND HEFEEDA, M. 2009c. Time slicing in mobile TV broadcast networks with arbitrary channel bit rates. In Proceedings
of the Annual Joint Conference of the IEEE Communications Societies (InfoCom’09). 2231–2239.

JACOBS, M., BARBARIEN, J., TONDEUR, S., DE WALLE, R. V., PARIDAENS, T., AND SCHELKENS, P. 2008. Statistical multiplexing using
SVC. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB’08).
1–6.

KORNFELD, M. AND MAY, G. 2007. DVB-H and IP Datacast—Broadcast to handheld devices. IEEE Trans. Broadcast. 53, 1,
161–170.

LAI, H., LEE, J., AND CHEN, L. 2005. A monotonic-decreasing rate scheduler for variable-bit-rate video streaming. IEEE Trans.
Circ. Syst. Video Technol. 15, 2, 221–231.

LAKSHMAN, T., ORTEGA, A., AND REIBMAN, A. 1998. VBR video: Tradeoffs and potentials. Proc. IEEE 86, 5, 952–973.
LIN, J., CHANG, R., HO, J., AND LAI, F. 2006. FOS: A funnel-based approach for optimal online traffic smoothing of live video.

IEEE Trans. Multimedia 8, 5, 996–1004.
PARKVALL, S., ENGLUND, E., LUNDEVALL, M., AND TORSNER, J. 2006. Evolving 3G mobile systems: Broadband and broadcast services

in WCDMA. IEEE Comm. Mag. 44, 2, 30–36.
PINEDO, M. 2008. Scheduling: Theory, Algorithms, and Systems, 3rd ed. Springer.
REZAEI, M., BOUAZIZI, I., AND GABBOUJ, M. 2008. Joint video coding and statistical multiplexing for broadcasting over DVB-H

channels. IEEE Trans. Multimedia 10, 7, 1455–1464.
REZAEI, M., BOUAZIZI, I., AND GABBOUJ, M. 2009. Implementing statistical multiplexing in DVB-H. Int. J. Digital Multimedia

Broadcast.
RIBAS-CORBERA, J., CHOU, P., AND REGUNATHAN, S. 2003. A generalized hypothetical reference decoder for H.264/AVC. IEEE

Trans. Circ. Syst. Video Technol. 13, 7, 674–687.
SEELING, P. AND REISSLEIN, M. 2005. Evaluating multimedia networking mechanisms using video traces. IEEE Potentials 24, 4,

21–25.
SEELING, P., REISSLEIN, M., AND KULAPALA, B. 2004. Network performance evaluation using frame size and quality traces of

single-layer and two-layer video: A tutorial. IEEE Comm. Surv. Tutor. 6, 2, 58–78.
SULLIVAN, G. AND WIEGAND, T. 1998. Rate-Distortion optimization for video compression. IEEE Signal Process. Mag. 15, 6, 74–90.
TAGLIASACCHI, M., VALENZISE, G., AND TUBARO, S. 2008. Minimum variance optimal rate allocation for multiplexed H.264/AVC

bitstreams. IEEE Trans. Image Process. 17, 7, 1057–1143.
UBS. 2009. UBS DVB-H IP encapsulator DVE 6000. http://www.uniquesys.com/DVB-H-IP-Encapsulator-DVE-6000-SPEC

-VER1.2.pdf

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

Statistical Multiplexing of Variable-Bit-Rate Videos Streamed to Mobile Devices • 12:23

UDCast. 2008. UDCast DVB-H/DVB-SH encapsulator (IPE-10). http://www.udcast.com/products/downloads/DVB-H_DVB-SH_
IPE.pdf

WANG, F., GHOSH, A., SANKARAN, C., FLEMING, P., HSIEH, F., AND BENES, S. 2008. Mobile WiMAX systems: Performance and
evolution. IEEE Comm. Mag. 46, 10, 41–49.

WANG, L. AND VINCENT, A. 1996. Joint rate control for multi-program video coding. IEEE Trans. Consumer Electron. 42, 3,
300–305.

YANG, X., SONG, Y., OWENS, T., COSMAS, J., AND ITAGAKI, T. 2004. Performance analysis of time slicing in DVB-H. In Proceedings
of the Joint IST Workshop on Mobile Future and Symposium on Trends in Communications (SympoTIC’04). 183–186.

Received October 2009; accepted December 2009

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 2, Article 12, Publication date: February 2011.

