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A Framework for Cross-Layer Optimization of Video
Streaming in Wireless Networks
CHENG-HSIN HSU and MOHAMED HEFEEDA, Simon Fraser University

We present a general framework for optimizing the quality of video streaming in wireless networks that are composed of mul-
tiple wireless stations. The framework is general because: (i) it can be applied to different wireless networks, such as IEEE
802.11e WLAN and IEEE 802.16 WiMAX, (ii) it can employ different objective functions for the optimization, and (iii) it can
adopt various models for the wireless channel, the link layer, and the distortion of the video streams in the application layer.
The optimization framework controls parameters in different layers to optimally allocate the wireless network resources among
all stations. More specifically, we address this video optimization problem in two steps. First, we formulate an abstract optimiza-
tion problem for video streaming in wireless networks in general. This formulation exposes the important interaction between
parameters belonging to different layers in the network stack. Then, we instantiate and solve the general problem for the recent
IEEE 802.11e WLANs, which support prioritized traffic classes. We show how the calculated optimal solutions can efficiently be
implemented in the distributed mode of the IEEE 802.11e standard. We evaluate our proposed solution using extensive simula-
tions in the OPNET simulator, which captures most features of realistic wireless networks. In addition, to show the practicality
of our solution, we have implemented it in the driver of an off-the-shelf wireless adapter that complies with the IEEE 802.11e
standard. Our experimental and simulation results show that significant quality improvement in video streams can be achieved
using our solution, without incurring any significant communication or computational overhead. We also explain how the gen-
eral video optimization problem can be applied to other wireless networks, in particular, to the IEEE 802.16 WiMAX networks,
which are becoming very popular.
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1. INTRODUCTION

Wireless networks offer convenience, mobility, and low-cost infrastructure. As wireless networks pro-
vide higher throughput and quality of service (QoS), video streaming over wireless networks has be-
come an important application. The optimization of video streaming over wireless networks, however,
is a challenging task because of the heterogeneity and dynamic nature of the channels among wireless

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and in part by
the British Columbia Innovation Council.
Authors’ address: C.-H. Hsu and M. Hefeeda, School of Computing Science, Simon Fraser University, Canada;
email: mhefeeda@cs.sfu.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2011 ACM 1551-6857/2011/01-ART5 $10.00

DOI 10.1145/1870121.1870126 http://doi.acm.org/10.1145/1870121.1870126

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 1, Article 5, Publication date: January 2011.



5:2 • C.-H. Hsu and M. Hefeeda

Wireless Medium
(WiFi, WiMAX, Cellular)

High−Speed
Link

Streaming Server or
Video Procecssing Server

Laptop

Camera

Wireless Station Wireless Station

PDA

Wireless Station

Base Station

Wireless Station

Fig. 1. A general model for video optimization in wireless networks.

nodes [Katsaggelos et al. 2005]. In this article, we seek to optimize the quality of video streaming in
wireless networks with energy-constrained devices.

We consider a general wireless network model, which is depicted in Figure 1. In this model, there
are multiple wireless stations sharing a common wireless medium. These wireless stations can, for ex-
ample, be notebook computers, PDAs, or video sensors. The wireless medium can be cellular networks,
IEEE 802.16 WiMAX networks, or IEEE 802.11e WLANs. The wireless stations can be sending and/or
receiving video streams to/from the video server through a wireless base station. For example, in video
surveillance systems, video sensors capture and transmit their streams over a WLAN to a processing
server for further analysis. As another example, wireless stations can be receiving video tutorials, de-
mos, or movies from a video-on-demand streaming server over a WiMAX network. The model assumes
that the video streaming or processing server is connected to the wireless base station through a high-
speed link, for example, Fast or Giga bit Ethernet link. Therefore, the server–base station link is not
the bottleneck in the system. This is a typical setting for local and wide area setups for video stream-
ing. For example, in streaming over a cellular network, the server–base station bandwidth is usually
several order of magnitudes higher than the wireless channel bandwidth. In WLANs, the server can
be attached to the base station through wired high-speed Ethernet switches, while all wireless sta-
tions compete with each other for the wireless channel, which has higher bit error rates and smaller
bandwidth. Moreover, we consider battery-powered wireless stations that have power constraints. To
cope with the power constraints, stations employ complexity scalable video coders that may selectively
skip some encoding optimization modules to save power. To optimize quality at a given power budget,
we employ models that relate power consumption, encoding bit rate, and resulting distortion. Power
considerations are critical in wireless devices. Previous measurement studies indicate that modern
video coders consume about two-thirds of the system power in video wireless communication systems
[He et al. 2005].

We approach the video optimization problem in wireless networks in two steps. First, we formulate
an abstract video optimization problem for general wireless networks composed of multiple stations.
Second, we instantiate and solve the general problem for IEEE 802.11e networks. We present key
models for different layers, and we formulate and solve the video optimization problem in the IEEE
802.11e networks. We then show how to enforce the calculated optimal allocation in the IEEE 802.11e
networks, which leads to an efficient, distributed video optimization algorithm. We extensively evalu-
ate the proposed algorithm using both simulations and real experiments, to cover various setups and
system parameters, and show the practicality of the algorithm. The specific contributions in this article
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can be summarized as follows.

—We propose a general model for formulating video optimization problems to allocate the wireless
resources in wireless networks. This model exposes the important interaction between parameters
belonging to different layers in the network stack, and is fairly general. For example, various opti-
mization criteria, such as minimizing average distortion and minimizing maximum distortion among
wireless stations can be adopted.

—We use the general model to instantiate an optimization problem for IEEE 802.11e networks, which
support differential QoS. We chose IEEE 802.11e networks because they are distributed, and thus
much more challenging than the centrally controlled networks such as cellular and the IEEE 802.16
WiMAX networks.

—We present key models for different layers in the IEEE 802.11e standard. More importantly, we de-
velop a simple, closed-form, analytic model to estimate airtime allocation achieved by different MAC
parameters. While this airtime model provides us an efficient way to differentially allocate network
resources among wireless stations, it could be of interest in its own right for other applications in
the IEEE 802.11e networks.

—We solve the optimization problem for the IEEE 802.11e networks, and we propose a distributed
algorithm, which is based on analytically derived closed-form formulas. This algorithm is in contrast
to computationally intensive numerical methods used in previous works. In addition, we show how
the calculated optimal allocations can be enforced using the airtime model in the distributed mode
of the IEEE 802.11e standard.

—We implement the distributed algorithm in the OPNET simulator, which captures most features of
realistic wireless networks. We then use the OPNET simulator to extensively evaluate the algorithm
under various channel conditions and video characteristics.

—We implement the proposed distributed algorithm in the Linux driver of an off-the-shelf wireless
adapter that is compliant with the IEEE 802.11e standard, that is, supports quality differentia-
tion. We then setup a real WLAN testbed, and use it to show the practicality and efficiency of the
algorithm.

—We also explain how our general model of the video optimization problem can be applied to other
wireless networks, in particular, to the IEEE 802.16 WiMAX networks.

Remark. Our modeling and solution of the video optimization problem are applicable only to wire-
less networks that do support some QoS differentiation among competing traffic streams. We build
our cross-layer solution on top of the basic QoS differentiation scheme provided by such networks. In
WiMAX networks [Cicconetti et al. 2006; Ghosh et al. 2005], for example, the base station can allocate
different portions of the wireless channel to different stations. Also, as detailed in Section 4, the recent
IEEE 802.11e standard [IEEE Std 802.11 2005] supports prioritized traffic classes. We should men-
tion that our work is not applicable to the common IEEE 802.11 a/b/g networks, because they do not
support link-level traffic differentiation. Also, our work is not targeted towards the general Internet
streaming systems in which some receivers are attached to the Internet via a WLAN.

A preliminary version of this article appears in Hsu and Hefeeda [2009]. The current article con-
tains significant additional materials and experiments, including a closed-form analytic model to es-
timate airtime allocation in IEEE 802.11e networks, more comprehensive simulation designs and re-
sults, and generalization of the proposed model to consider different objective functions, among other
improvements.

The rest of this article is organized as follows. In Section 2, we present the general model for video
optimization in wireless networks. We then instantiate the video optimization problem for the IEEE

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 1, Article 5, Publication date: January 2011.



5:4 • C.-H. Hsu and M. Hefeeda

Table I. Notations Used in This Article
Notation Definition Notation Definition

S number of wireless stations. μs picture complexity.
B(·) air medium capacity. g(ps) = p1/γ

s power consumption.
D(·) P-R-D function. αs = σ 2

s P-R-D parameter.
ps power level. βs = μs ys p1/γ

s P-R-D parameter.
rs application layer rate. xs TXOP limit.
V video characteristics. ls average payload length.
bs link layer bandwidth. os average overhead length.
φs airtime fraction. tl slot time.
EA effective airtime. tb beacon interval.

CWmin minimum contention window. ts short inter-frame space.
CWmax maximum contention window. td distributed inter-frame space.

CW contention window size. ta average time to send ACK.
σs standard deviation of raw picture.

802.11e networks by first presenting the key models for various network layers in Section 3. We for-
mulate and solve the video optimization problem in Section 4. In Section 5, we evaluate the proposed
distributed algorithm using extensive simulations and experiments. We summarize the related works
in the literature in Section 6. Last, Section 7 concludes the paper.

2. GENERAL SYSTEM MODEL

In this section, we introduce a general system model for video streaming in single-hop wireless net-
works, where we demonstrate the interaction among parameters in different layers. Then, we for-
mulate a cross-layer video optimization problem under this general model. Table I summarizes the
notations used in this article.

As shown in Figure 1, the model has S ≥ 1 wireless stations sharing a common wireless medium.
The wireless stations are battery-powered. For concreteness, we focus on the case where the wireless
stations transmit video streams to a video processing server that is colocated with the wireless base
station, as in video surveillance systems. Similar analysis can be done when the base station trans-
mits video streams to wireless stations. Each station encodes its video stream and competes with other
stations for the wireless medium to send the video data to the server. The wireless stations are, in gen-
eral, heterogeneous in their energy level and they are transmitting different streams. Furthermore,
they could be at different distances from the base station and/or experiencing different noise and inter-
ference levels. Therefore, the channel rates between individual wireless stations and the base station
are also heterogeneous. The goal is to optimize the overall video quality of all streams received by the
server by properly allocating the wireless medium resources while not exceeding the energy constraint
of each station.

We adopt a cross-layer approach to achieve this goal, as summarized in Figure 2. In particular, our
optimization scheme uses and sets parameters in three layers: application, link, and physical. In the
application layer, complexity scalable video coding techniques, [He et al. 2005; Lu et al. 2003] are em-
ployed. These coding techniques are abstracted by the so-called Power-Rate-Distortion (P-R-D) models
[Cheng et al. 2006; He et al. 2005]. A P-R-D model relates the expected distortion in the reconstructed
video with the encoding rate and the power allocated to the encoding process. More power allocated to
the encoding process allows it to use more sophisticated video encoding and compression algorithms,
and thus results in better quality (i.e., lower distortion) at the same bit rate. Also, higher bit rates
usually produce higher video quality, according to the shape of the P-R-D curve. Therefore, in our
problem, a wireless station s (1 ≤ s ≤ S) employs a P-R-D model in the application layer to estimate
the distortion D(ps, rs, V ) as a function of the allocated power level ps, the coding rate rs, and the
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Fig. 2. The interaction among different layers to optimize video quality. Solid arrows indicate inputs to our algorithm, while
dotted arrows show the outputs. Notice that the inputs and outputs belong to different layers.

video characteristics V . Our optimization method takes the function D(·), ps, and V as inputs, then
computes the optimal encoding rate rs. We emphasize that D(·), ps, and V are not determined by our
algorithm. For example, mobile devices often have a dedicate battery level monitor, which can deter-
mine the proper ps based on current battery level and other factors like per-bit energy consumption of
the current modulation and channel coding scheme.

The link and physical layers depend on the wireless medium technology. But in general, the physical
layer can be modeled by the bit rate of the channel between the wireless station and the base station.
The objective of the link layer is to coordinate the access to the shared wireless medium. That is, it
needs to allocate the optimal share of bandwidth bs to each station s such that the aggregate bandwidth
does not exceed the link capacity B. After computing the bandwidth share of each station, the system
needs to enforce this allocation, that is, allows each station to actually obtain its computed bandwidth.

The allocation enforcement scheme is much easier in centrally controlled wireless systems, such
as TDMA or FDMA cellular networks, than in distributed wireless systems, such as IEEE 802.11e
WLANs. This is because in TDMA systems, for example, the base station can appropriately allocate
time slots among wireless stations. Whereas, in a WLAN each station independently competes for
bandwidth according to the distributed 802.11e MAC protocol. As shown in Figure 2, the link layer
parameters and the physical channel rate are given to our optimization method, the optimal share of
bandwidth for each station is produced by the optimization method. Furthermore, our optimization
method specifies how these bandwidth shares can be achieved by wireless stations. As will be detailed
later, we present simple and distributed solution for this optimization problem in which the base sta-
tion and wireless stations cooperate to compute the optimal solution without imposing any significant
traffic overhead.

Finally, the cross-layer video optimization problem considered in this paper can be mathematically
stated as follows. Find the optimal policy �∗ = {φ∗

s = (r∗
s , b∗

s ) | 1 ≤ s ≤ S} such that:

PG : �∗ = arg min
�

S∑
s=1

D(ps, rs, V ) (1a)

s.t.
S∑

s=1

bs ≤ B(·); (1b)

s = 1, 2, . . . , S. (1c)
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The objective of this formulation is to minimize the overall distortion for all wireless stations. The
wireless medium capacity B(·) is a function of the number of wireless stations, the protocol used in the
link layer, and the channel physical rates between wireless stations and the base station. Since B(·)
captures the physical and link layer parameters and D(·) captures the application parameters, solving
the general problem PG in Equation (1) will yield a cross-layer optimized solution for video streaming
in wireless networks.

Problem PG is fairly general, and various models for D(·) and B(·) can be plugged into it. The solution
may be obtained analytically for some cases and can be computed numerically for others. We show in
the rest of this paper how we instantiate PG for the IEEE 802.11e WLANs and how we solve it. As we
have discussed solving the problem for the IEEE 802.11e standard is challenging due to the distributed
nature of the protocol, which makes estimating the wireless medium capacity B(·) and enforcing the
computed optimal bandwidth allocations more difficult. Solving the problem for centrally controlled
networks such as TDMA and WiMAX can be done in a similar, but much easier, way, as outlined in
Section 7. We also mention that PG is applicable in solving the video optimization problem when the
base station is transmitting to multiple stations. In this case, ps represents the power spent by station
s to receive and decode its video stream. Therefore, this abstract formulation of the video optimization
problem in wireless networks could be useful in different settings.

We should mention that to transmit multiple traditional, nonscalable video streams to different
wireless stations at different bit rates, the base station must transcode each video stream to its target
bit rate, which is computationally intensive. In contrast, adopting scalable coded streams allows the
base station to efficiently scale each stream to its target bit rate [Schwarz et al. 2007]. Since the
stream scaling is efficient, a base station can provide real-time rate adaption for a large number of
wireless stations. Sending scalable coded streams also enables wireless stations to selectively decode
partial streams to save energy. More precisely, a recent paper proposes a complexity model for decoding
scalable streams [Ma and Wang 2008], which enables video decoders to opt for partial streams for lower
computational complexity, thus lower energy consumption.

Different Objectives. Problem PG employs an objective function Equation (1a) that minimizes the
average reconstructed video distortion among all mobile stations. This objective function, also known
as MMSE (minimum average distortion), is the most widely used objective function in many video
optimization problems [Ortega and Ramchandran 1998]. However, other objective functions, such as
MMAX (minmax distortion) that minimizes the maximum distortion among all mobile stations, may
be more appropriate in other applications. Problem PG can adapt to these applications by replacing
Equation (1a) with the new objective function; for example, in the MMAX case, the following objective
function should be used.

�∗ = arg min
�

S
max
s=1

D(ps, rs, V ).

With a proper objective function, the general system model and Problem PG can be used in those
applications as well, while the resulting formulation can be solved using similar techniques presented
in this paper.

3. MODELS FOR 802.11E WLANS

The IEEE 802.11 wireless LAN standard is widely deployed in many real systems. Although the legacy
IEEE 802.11 a/b/g standards [IEEE Std 802.11 1999] do not support link layer QoS, the recently-
finalized IEEE 802.11e standard [IEEE Std 802.11 2005] enables QoS differentiation among differ-
ent applications [Kim et al. 2007; Gao et al. 2005; Ni 2005]. The IEEE 802.11e standard defines
two medium access modes: contention-based and polling-based contention-free. In the contention-free
mode, a station sends its QoS requirements (e.g., mean rate, peak rate, and maximum burst size) to
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Fig. 3. The parameters used in optimizing video quality in IEEE 802.11e WLANs.

the base station, which decides whether to admit or reject the station’s request based on the available
resources. The contention-free mode requires centralized admission and scheduling algorithms, thus
is not flexible [Chou et al. 2005]. In addition, it may not fully utilize the channel bandwidth, because
it relies on resource reservations, which are typically made for worst case scenarios. In this work, we
build our solution on top of the more flexible contention-based access mode, which is known as the
Enhancement Distributed Channel Access (EDCA) mode. Our work can easily be extended to support
the contention-free mode as well. In this case, the base station solves the optimization problem and
centrally allocates the bandwidth to wireless stations.

Figure 3 lists the parameters used in the video optimization problem in IEEE 802.11e WLANs.
We discuss each of these parameters in details in the following sections. We start by introducing the
physical layer model employed in this article. Then, we present the main QoS features of the EDCA
mode of the IEEE 802.11e link layer standard, where we describe the controlling parameters used in
our optimization problem. Finally, we propose a simple model for estimating the wireless link capacity,
which we will use in our optimization problem.

3.1 Physical Layer Model

Most modern WLAN adaptors support multiple physical modes to cope with different channel condi-
tions, such as various signal fading and interference levels. Each physical mode specifies a modulation
scheme and a channel coding algorithm. A channel adaptation algorithm determines the optimal phys-
ical mode that maximizes the effective throughput. This channel adaptation algorithm is usually based
on signal strength measurements and bit error rates, and does not depend on information from upper
layers. Thus, our video optimization problem does not try to control the physical layer rate, in order
to avoid interfering with the channel adaptation algorithm typically implemented in the firmware. We
use ys to denote the physical rate at station s (1 ≤ s ≤ S), which is decided by the channel adaptation
algorithm. ys is not assumed to be static, rather, it varies based on channel conditions and character-
istics of station s itself, such as its mobility pattern and its distance from the base station. We do not
control ys in our optimization problem.

We denote the application layer rate of station s by rs. To analyze the interaction between rs and
ys, let us ignore overheads such as protocol headers and acknowledgment frames. We will relax this
assumption later. Define φs = rs/ys. Since there is at most one successful transmission at any moment
without colliding with other transmissions, φs can be seen as the fraction of airtime assigned to station
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s. For illustration: to stream a 1Mbps coded stream over a 10Mbps channel, the station has to acquire
at least 10% of the airtime. Clearly, the total effective airtime (EA), that is, the airtime during which
useful data is transmitted and no collision occurs, is limited. The value of EA depends on the details of
the link layer protocol and the number of stations, as described in the following sections.

3.2 Link Layer Model

In EDCA mode, packets are categorized into prioritized classes, called access categories (ACs). For ex-
ample, audio, video, and best effort traffic could make three different ACs. Traffic sessions compete
with each other for the wireless medium. In EDCA mode, airtime allocation among traffic session in
different ACs is differentiated by assigning each AC different EDCA parameters. Differential alloca-
tion of airtime to different ACs is essential for QoS-enabled applications. For example, some traffic
sessions belonging to the video AC may need to be allocated larger fractions of the airtime than traffic
sessions belonging to the best-effort AC. There are two sets of EDCA parameters that can achieve air-
time differentiation. The first set controls the frequency of acquiring a transmission opportunity on the
wireless medium, while the second set controls the duration of an acquired transmission opportunity.

The frequency of transmission opportunities is determined through three parameters: arbitration
interframe space (AIFS), minimum contention window size (CWmin), and maximum contention win-
dow size (CWmax). Each AC maintains a contention window size variable (CW), which is initialized
to CWmin. The CW is incremented after transmission failures until it reaches CWmax, and is reset to
CWmin after a successful transmission. To avoid collisions, a backoff timer is independently chosen
from the range [0, CW] for each AC. Since smaller CWmin and CWmax generally lead to smaller CW
values, they result in shorter backoff timer and higher transmission opportunity frequency. Moreover,
the backoff timer is decremented once the wireless medium is sensed idle for at least AIFS seconds.
Smaller AIFS values enable wireless stations to start decrementing backoff timers earlier, and thus
increase the transmission opportunity frequency. On the other hand, the maximum allowed dura-
tion for each acquired transmission opportunity is determined by a parameter called the TXOP limit.
Once a station acquires a transmission opportunity, it may transmit multiple frames within the as-
signed TXOP limit. Assigning different TXOP values to ACs, therefore, achieves differential airtime
allocations.

The above mentioned EDCA mode supports per-class (AC) differentiated service, but it does not sup-
port per-session QoS, which is important to video communications. For example, some video sessions
may need to be allocated larger fractions of the airtime than others in the same AC, because the wire-
less stations transmitting them are farther away from the base station or they have poorer channel
conditions. To cope with this limitation of IEEE 802.11e EDCA mode, we propose to control the EDCA
parameters of different traffic sessions in the same AC such that the differential airtime allocation
among traffic sessions is achieved.

More precisely, to achieve a given airtime allocation φs, we can either fix the frequency-related
parameters among stations and use the transmission opportunity limit as the control knob, or fix
the transmission opportunity limit among stations and use the frequency-related parameters as the
control knob. The experiments in Chou et al. [2005] indicate that both approaches result in similar
airtime differentiation behavior. However, the frequency-based approaches incur high computational
complexity because modeling the AIFS, CWmin and CWmax values and their impacts on throughput is
complicated. There are several models in the literature for throughput estimations. All these models
require solving nonlinear equation systems that are extremely computationally demanding and not
suitable for real-time applications, see, for example, Hui and Devetsikiotis [2005] and the references
cited therein. In our video optimization problem, we control the TXOP limit of wireless stations, and
we fix all frequency-related parameters (AIFS, CWmin, and CWmax). As shown in the next section,
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controlling the TXOP limit allows us to derive a simple, closed-form equation for the effective airtime,
which makes our optimization problem less complex without sacrificing the optimal solution. In the
evaluation section, we use a real 802.11 testbed to verify that controlling the TXOP limit is practically
easier and it indeed achieves the desired differential allocation of the wireless medium.

3.3 Effective Airtime Model

In the previous section, we discussed how the TXOP limit parameter of the IEEE 802.11e standard can
be used to differentially allocate airtime among wireless stations. In our video optimization problem,
we need to determine the total effective airtime (EA) of the wireless medium so that we can divide
it among stations, and to avoid over/under allocation of the wireless medium. We develop a simple,
closed-form, analytic model to estimate EA. The model accounts for the number of wireless stations in
the system as well as the detailed operation of the EDCA mode, including collisions, backoffs, and the
minimum and maximum sizes of the contention window.

Our analysis is based on the analytic model proposed in Ge et al. [2007], which has been verified
by its authors using extensive simulations. The model in Ge et al. [2007], however, does not work in
the considered video streaming network for two reasons. First, their model assumes that the TXOP
limit is fixed at small values and uniform across wireless stations. Our system, however, explicitly
varies the TXOP limit to achieve per-stream airtime differentiation. The variability of the TXOP limit,
as discussed below, is an important factor in determining accurate EA values. Second, their model
analyzes the airtime for mixed traffic from multiple access categories, which renders it too complex
to be run in real-time. Therefore, their algorithm in not suitable for video streaming networks. In
contrast, we develop a new EA model in the following, which considers TXOP limit variability and can
be efficiently calculated.

LEMMA 1 (EFFECTIVE AIRTIME MODEL). Consider S wireless stations compete for the shared air
medium of a wireless LAN using the IEEE 802.11e EDCA protocol. These wireless stations transmit
video data to/from the base station at different bit rates. The video traffic is the dominating traffic
in this wireless LAN, and the rate differentiation is achieved by varying the TXOP limits for individ-
ual wireless stations. The effective airtime can be approximated by: EA = 1

1+
(

2S
CWmin+2

)(
CWmin

CWmin+2

)S−1 , where

CWmin is the minimum contention window size.

PROOF. We consider a p-persistent version of the EDCA protocol, which employs a backoff timer se-
lection scheme different from the standard EDCA [Ge et al. 2007]. While the standard EDCA uniformly
selects backoff timers from an exponentially growing contention window, the p-persistent
EDCA draws its backoff timers from a geometric distribution with parameter p. The p-persistent
EDCA is more tractable than the standard EDCA because of its stateless nature. In addition, it has
been shown that the standard EDCA minimum contention window size CWmin can be converted to the
p-persistent EDCA contention parameter p using the equation: p = 2

CWmin+2 . This enables us to use the
p-persistent EDCA to develop the performance model, and then obtain the performance model of the
standard EDCA using simple substitution.

In the p-persistent EDCA, we define the virtual transmission time v j as the time duration between
the j-th and the ( j + 1)-th successful transmissions. Each virtual transmission consists of three peri-
ods: idle, collision, and transmission. The idle period happens when all wireless stations are waiting
for their backoff timers to expire. The collision period happens when more than one station initiate
transmissions. The idle and collision periods may appear more than once in a virtual transmission,
while a single transmission period occurs during a virtual transmission. We use E[x] to denote the
average transmission opportunity limit for all wireless stations, and E[v] to denote the average virtual
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transmission time. Then, the effective airtime can be given by: EA = E[x]/E[v]. That is, the effective
airtime is given by the ratio of the actual (useful) transmission time to the total transmission time
after including all contention overheads, which are modeled by the virtual transmission time.

We next compute E[v], by averaging the durations of collision and idle periods during a virtual
transmission time. First, let us denote the number of collisions in a virtual transmission time by C.
We also define ik to be the duration of the k-th idle period, and similarly, ck to be the duration of the
k-th collision period. Then E[v] is given by:

E[v] = E
[ C∑

k=1

(td + ik + ck + ts + ta)
]

+ E[iC+1] + E[x] + td

= E[C](E[c] + td + ts + ta) + (E[C] + 1)E[i] + E[x] + td, (2)

where td is the distributed inter-frame space (DIFS), ts is the short inter-frame space (SIFS), and ta
is the average time of sending an acknowledgment. In Equation (2) [Chou et al. 2005]: (i) the first
summation represents the total time occupied by the idle and collision time before the transmission
period; (ii) the second term represents the idle time just before the transmission period; (iii) the third
term represents the successful transmission opportunity; (iv) the last term represents the DIFS inter-
val between two adjacent virtual transmissions. Following Ge et al. [2007] and using our single EDCA
access category assumption, E[C], E[i], and E[c] can be shown to be given by the following equations:

E[C] = 1 − (1 − p)S

Sp(1 − p)S−1
− 1, E[i] = tl

(1 − p)S

1 − (1 − p)S
,

E[c] =
S∑

j=2

E[ f ]

(S
j

)
pj(1 − p)S− j

1 − (1 − p)S − Sp(1 − p)S−1
, (3)

where E[ f ] is the average frame transmission time.
This calculation of E[v] and its components does not consider the length variability of the TXOP

limit. Specifically, it does not consider the situation when a wireless station freezes its backoff timer
because another station is transmitting during its TXOP limit, which may not be a small constant in
our system. We call this freeze period as blocking duration. Note that, this blocking is different from
the collision time duration E[c] in the sense that a collision only lasts for a frame-time but blocking
lasts for up to a complete transmission opportunity limit, which can be significantly longer than the
frame time. We compute the average blocking duration as follows. The probability that only one station
is transmitting is: Sp(1 − p)S−1. Since the average length of transmission opportunity limit is E[x],
the expected value of the blocking duration is thus: Sp(1 − p)S−1 E[x]. Adding this blocking duration
to the E[v] in Equation (2), and re-arranging the formula, we get: E[v] = ρ + E[x](1 + pS(1 − p)S−1),
where ρ = E[C](E[c] + td + ts + ta) + (E[C] + 1)E[i] + td. Substituting p = 2/(CWmin + 2) in E[v], we get
the effective airtime of the standard EDCA system as:

EA = E[x]
E[v]

= 1

ρ

E[x]
+

[
1 +

(
2S

CWmin + 2

)(
CWmin

CWmin + 2

)S−1] . (4)

Equation (4) can further be simplified by choosing any CWmin ≥ 3, which is quite practical consider-
ing the range of CWmin is between 1 and 1024. Under this assumption, the first term in the denomina-
tor is much smaller than the second term, and therefore, can be ignored. For example, if CWmin = 3,
the ρ/E[x] values are 0.0046, 0.0105, 0.0200 for 2, 3, 4 wireless stations, respectively. Moreover, the
second term in the denominator of Equation (4) is always greater than 1.
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Fig. 4. The average values of ρ/E[x] for different numbers of wireless stations and various sizes of the minimum contention
window.

To further validate this simplification, we numerically compute the values of ρ/E[x] with typical
wireless system parameters and with random TXOP limits. We vary the CWmin values and number
of stations, and repeat the experiments 1000 times. We then compute the average value ρ/E[x], and
we plot the results in Figure 4. The figure shows that the ρ/E[x] values are indeed very small. Fur-
thermore, the minimum contention window size can be chosen to make the expected value of ρ/E[x]
arbitrary small for a given number of stations. This does not impact the operation of the EDCA protocol,
because CWmin is fixed in all wireless stations belonging to the same access category, and the airtime
differentiation comes from controlling the TXOP limit. Hence, we ignore ρ/E[x] in Equation (4), which
yields this lemma.

We use the model presented in this lemma to solve the video optimization problem, in which the video
traffic is the dominating traffic in the wireless LAN. We mention that the considered video streaming
system controls the EDCA parameters for all access categories, and it sets the parameters in a way
that video traffic has the highest priority. Since other traffic types are not as bandwidth intensive as
video streams, and are given lower priority, they would not interfere with the video traffic. Finally, if
a certain amount of bandwidth should be reserved for background traffic, we can reduce the EA value
computed by Lemma 1. This is because the computed EA value is the maximum airtime that can be
achieved by the wireless LAN assuming the background traffic is insignificant.

4. VIDEO OPTIMIZATION IN 802.11E WLANS

In this section, we instantiate and solve the general video optimization problem presented in Section 2
for the IEEE 802.11e WLAN. We start by presenting the problem formulation, followed by our solu-
tion. Then we show how the computed optimal solutions can be enforced by setting the appropriate
parameters in the wireless stations. Finally, we present a simple algorithm to coordinate the interac-
tion between the wireless stations and the base station to implement the computed optimal airtime
allocations.

4.1 Problem Formulation

Using the notations developed in Section 3, our problem can be stated as follows. Find the optimal
airtime allocation �∗ = {φ∗

s = r∗
s /ys|1 ≤ s ≤ S} that achieves the minimum average distortion for all
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wireless stations. Mathematically,

P : �∗ = arg min
�

S∑
s=1

D(ps, rs, σs, μs) (5a)

s.t.
S∑

s=1

φs ≤ EA; (5b)

rs = φsys; (5c)

0 ≤ φs ≤ 1; (5d)

s = 1, 2, . . . , S. (5e)

In the first constraint Equation (5b), EA is given by Equation (4). This constraint prevents us from
over-allocating the airtime. The second constraint Equation (5c) follows from our discussion in
Section 3.1 on the relationship between the application layer rate rs, the physical channel rate ys

and the airtime fraction allocated to each station s. Solving this optimization problem yields an allo-
cation that specifies the optimal airtime fraction φ∗

s for each station s, from which we can compute the
application layer rate r∗

s . Therefore, the solution of our optimization problem jointly determines the
best airtime allocation in the link layer and the best video coding rate in the application layer.

4.2 Problem Solution

To solve the optimization problem in Equation (5), we need to specify the P-R-D model to compute
D(·). Any P-R-D model can be used in this problem. We present below the solution for the recently
proposed model in Cheng et al. [2006], which has been shown to be accurate for different types of
video sequences [He et al. 2005]. Solutions for other P-R-D models can be done in similar ways. We
emphasize that our video optimization problem is not restricted to the P-R-D model in Cheng et al.
[2006]. However, developing new P-R-D models is outside the scope of this article, and is considered as
a future work.

We consider that each station s allocates a power budget ps to its video coder to encode its raw
sequence at rate rs. The P-R-D model gives the distortion estimation as [Cheng et al. 2006]:

D(ps, rs, σs, μs) = σ 2
s 2−μsrsg(ps), (6)

where σ 2
s is the video sequence variance, μs represents the encoder efficiency, and the function g(ps)

models the mapping between the video coder complexity and the microprocessor power consumption.
This function is given by: g(ps) = p1/γ

s , where 1 ≤ γ ≤ 3 is a system parameter. Both σs and μs are
sequence dependent variables. σ 2

s is the variance of raw pictures, which can be derived at different
aggregation levels, such as frame, group of picture, scene, and sequence. μs indicates the hardness of
compressing the subject sequence, which can be estimated based on the observation on the correla-
tion between μs and the degree of motion activities. Details of efficiently estimating σs, μs and more
discussion on their characteristics are given in Cheng et al. [2006].

We first show that our optimization problem is a convex programming problem in the following
lemma, which will enable us to develop an efficient solution for it.

LEMMA 2. The video optimization problem in Equation (5) is a convex programming problem, whose
local minimum is also a global minimum, when the P-R-D model in Equation (6) is used. That is, this
optimization problem has a unique optimal solution.

PROOF. We notice that all constraints are linear functions. The proof is, therefore, reduced to show
that the objective function is a convex function. Recall that the P-R-D model is given as:
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D(ps, ysφs, σs, μs) = σ 2
s 2−μsrsg(ps). For ease of presentation, we rewrite it as: D(ps, ysφs, σs, μs) = αs2−βsφs ,

where αs = σ 2
s , and βs = μsys p1/γ

s .
We observe that αs is always positive. This is because natural video sequences do not have zero-input

variance. In addition, a zero input variance synthetic sequence is simple to compress at virtually zero
power consumption, and therefore it is not of interest to the optimization problem. Furthermore, βs is
also positive. This is because the compression hardness parameter μ is positive as shown by the esti-
mation method given in Cheng et al. [2006]. Meanwhile, zero ys or ps indicate that the wireless station
s has no transmission or processing power. Thus, nothing can be done to improve its video quality. We,
therefore, can exclude that station from the optimization problem without negatively affecting the op-
timality of the resulted optimal airtime allocations. Given that αs, βs > 0, we know that the distortion
αs2−βsφs is a convex function with respect to φs. Hence, the objective function Equation (5a), which is a
nonnegative weighted sum of convex functions, is also a convex function.

This lemma enables us to solve our optimization problem as a convex programming problem. We
present our solution in the next lemma.

LEMMA 3. The optimal airtime allocation �∗ for the video quality optimization problem in
Equation (5) is given by:

φ∗
s = − 1

βs
log2

λ̂

αsβs ln 2
, where log2 λ̂ =

( S∑
s=1

log2 αsβs ln 2
βs

− EA
)/( S∑

s=1

1
βs

)
. (7)

PROOF. This is a budget-constrained convex programming problem, which can be solved using La-
grangian relaxation techniques [Ortega and Ramchandran 1998]. We write the following Lagrangian-
relaxed formulation:

PLB : �∗ = arg min
�

[ S∑
s=1

D(ps, φsys, σs, μs) + λ

( S∑
s=1

φs − EA
)]

,

where 0 ≤φs ≤ 1; s = 1, 2, . . . , S. (8)

for a nonnegative Lagrangian multiplier λ. Observe that for a given λ value, every wireless station s
can compute its optimal airtime fraction, denoted as φ∗

s , in a distributed manner. Mathematically, φ∗
s

at station s is given by solving this subproblem:

PS : φ∗
s = arg min

φs
D(ps, φsys, σs, μs) + λφs, where 0 ≤ φs ≤ 1, (9)

where the only information shared among wireless stations is the λ value. Thus, solving this problem
requires a very small communication cost and is efficient. The optimal solution, φ∗

s , can be derived by:
∂(αs2−βsφs + λφs)/∂φs = 0, which yields

φ∗
s = − 1

βs
log2

λ

αsβs ln 2
. (10)

This formula gives us the unique extreme point φ∗
s for station s. It is straightforward to see that the

second derivative of the objective function of problem PS is larger than zero. Thus, φ∗
s is indeed the

airtime fraction that minimizes the distortion of the video sequence sent by station s. Since the total
distortion is computed by the linear summation operator, minimizing distortion at each station will
yield the minimal total distortion.

We next search for the optimal λ value. In the Lagrangian-relaxed problem Equation (8), tightening
the constraint

∑S
s=1 φs ≤ EAresults in an optimal solution for the original problem Equation (5) as long
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as the solution is feasible in the original problem. This is intuitive because higher airtime fractions lead
to lower distortion. We use λ̂ to denote this optimal λ value. We then derive λ̂ as follows:

S∑
s=1

φs =EA

⇒
S∑

s=1

− 1
βs

log2
λ̂

αsβs ln 2
= EA

⇒ log2 λ̂ =
∑S

s=1
log2 αsβs ln 2

βs
− EA∑S

s=1
1
βs

. (11)

Notice that the optimal value φ∗
s for any station s can be computed locally by that station if it knows

λ̂. Furthermore, the computation is very simple and requires no matrix operations. Therefore, optimal
airtime allocation among all stations can be achieved efficiently and in a distributed manner using a
simple algorithm (presented in Section 4.4).

4.3 Parameter Setting

After solving the optimization problem, we need to set the parameters in the application and link
layers to enforce the computed optimal allocations. In the application layer, the optimal encoding rate
is set as r∗

s = φ∗
s ys for each station s. In the link layer, we need to allocate the airtime. As mentioned in

Section 3, we use the transmission opportunity limit TXOP as the control knob to assign airtime among
wireless stations. TXOP limits are set every beacon interval, which is defined by the standard. We fix
all other parameters, so that the wireless stations have equal probability to obtain a transmission
opportunity.

We define x∗
s as the TXOP limit for station s. Following similar derivation in the literature, such as

[Shankar and van der Schaar 2007; Chou et al. 2005], we compute x∗
s as a function of φ∗

s and protocol
overheads as follows. We use ls to denote the average payload length of video packets sent by station
s. We define os to be the mean header overhead of packets from station s. The overhead os includes
headers from all network layers, such as application, transport, and data link headers. The frame size
is, therefore, ls + os on the wireless channel. Since the physical rate of station s is given as ys, it takes
ls+os

ys
seconds to transmit a frame. We define tb to be the beacon interval, tl to be the slot time, ts to be

the short inter-frame space (SIFS), td to be the distributed inter-frame space (DIFS), and ta to be the
average time of sending an acknowledgment. Since WLANs cover a short range, propagation delays
are negligible. To achieve the target application rate r∗

s , the number of data frames need to be sent
in each beacon interval is given as: � r∗

s tb
ls

�, where r∗
s tb represents the application data amount. Since

φ∗
s = r∗

s /ys, the number of data frames is given as: �φ∗
s ystb
ls

�.
In each transmission opportunity, the sender sends a data frame and waits for an acknowledgment

frame from the receiver. Upon receiving a data frame, the receiver waits for a SIFS period, then sends
an acknowledgment frame. Once this frame arrives at the sender, the sender waits for a SIFS period
and sends another data frame given that its transmission opportunity limit is sufficient to accommo-
date that data frame and the expected acknowledgment frame. Otherwise, the current transmission
opportunity ends. x∗

s is therefore given by:

x∗
s =

⌈
φ∗

s ystb
ls

⌉
ls + os

ys
+

(
2

⌈
φ∗

s ystb
ls

⌉
− 1

)
ts +

⌈
φ∗

s ystb
ls

⌉
ta. (12)
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In Equation (12), the first term accounts for the transmission time of data frames, the second term
represents all SIFS periods, and the last term considers the transmission time of acknowledgment
frames.

4.4 Optimal Allocation Algorithm

In the previous sections, we showed how the cross-layer optimization problem can be solved and how
the parameters can be set in different layers. Now we present an algorithm to implement the optimal
solution by the wireless stations and the base station. The allocation algorithm is executed periodi-
cally. This period is set as multiple of the system beacon interval, because the EDCA parameters are
announced using beacon frames. Clearly, the length of this period poses a trade-off: the more often the
allocation algorithm is executed, the more responsive it is to channel and station conditions, but with
higher computation and communication costs. Each wireless station s reports to the base station its
αs and βs parameters, which depend on current power level, channel conditions, and sequence charac-
teristics. The αs, βs values are reported initially and whenever they change. If there is no change in
them, the station does not send anything, and the access point uses previous values. The access point
computes λ̂ from Equation (11), which is the only information needed by wireless stations to compute
their optimal allocations. Each station s uses Equation (10) to computes φ∗

s , from which it can set r∗
s as

φ∗
s ys, and compute x∗

s from Equation (12).
There are two types of overheads imposed by our allocation algorithm: computation and commu-

nication. Since the solution is computed from closed-form equations, the computation cost is negligi-
ble compared to the video compression operations. The communication cost involves two parts. First,
broadcasting the λ̂ value to all stations. This single value can be included in the beacon frame (in the
64-bit information element field of the frame [Ge et al. 2007]) that is automatically sent by the access
point every beacon period, or in the worst case, an additional packet is broadcast every beacon period.
The second communication cost is transmitting αs, βs from each station to the access point. These val-
ues are sent by a station only whenever they change. In the worst case, there is a single packet for each
station every beacon period. This is again a negligible cost compared to the video traffic. Therefore, our
proposed method can optimize the video quality without incurring any significant overhead.

5. EVALUATION

In this section, we first evaluate our allocation algorithm using the OPNET simulator under dynamic
and realistic environments. Then we show that our algorithm is practical by implementing it in off-
the-shelf wireless adapters as a proof-of-concept.

5.1 OPNET Simulation Setup

We evaluate our proposed allocation algorithm using the OPNET Modeler simulator version 12.1 The
OPNET Modeler provides a simulation environment that accounts for the detailed operation of wire-
less networks, and is the most widely used commercial simulation environment. OPNET Modeler is
written in C++, supports a comprehensive list of protocols, and allows users to develop customized, ex-
tended network nodes. We have implemented two new OPNET Modeler nodes: power-aware wireless
station (WS) and intelligent base station (BS). We construct a wireless network with a BS and several
WSes. Upon joining the network, each WS continuously streams a video sequence to the video server
co-located with the BS. This video streaming traffic is tagged as video access category, as defined in
the 802.11e standard. To simulate more realistic wireless environments, we have implemented the
log-normal path loss model [Rappaport 1996, Chap 3.11] in OPNET. OPNET uses the much simpler

1http://www.opnet.com/solutions/network rd/modeler.html.
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free-space signal propagation model by default. We choose the path loss exponent to be 2.2 and the
log-normal standard deviation to be 8.7dB based on the recommendations in Rappaport [1996, p. 127].
Using this more elaborate path-loss model allows us to conduct simulations that are closer to real
wireless systems.

If not otherwise specified, we program each WS to join the network at the start of simulation and
stay in the network until the simulation is finished. Upon joining the network, each WS sends a current
status report to the BS. This status report consists of several parameters, such as P-R-D characteris-
tics and the current modulation scheme of that WS. The BS, once receiving this report, invokes one
of the considered airtime allocation algorithms and constructs a reply to that WS. This reply contains
the assigned airtime allocation that instructs individual WSes to gauge their streaming rates and
link-layer QoS parameters to achieve the highest average streaming quality for all WSes. In order to
accommodate the dynamic environments, WSes periodically (every five seconds) send update reports
to BS. We then collect statistics at the video server for individual WSes. Furthermore, we simulate sce-
narios where there is cross-traffic running through the WLAN and interfering with the video sessions.
Next, we consider dynamic channel conditions due to node mobility. We also simulate another dynamic
condition, in which several (up to 32) WSes sequentially joining the streaming network. Finally, we
show the potential of energy saving using the considered P-R-D model.

We have implemented four airtime allocation algorithms in OPNET. We first consider a scheme that
equally divides available airtime among all WSes. This scheme is equivalent to using the IEEE 802.11e
EDCA mode and assigning all video traffic a higher priority class than other traffic. That is, all video
traffic session will belong to the same access category (AC), and will receive preferential access to the
wireless channel than other types of traffic. However, since all video traffic sessions belong to the same
AC and share the same EDCA parameters, they have similar chance to acquire the shared air medium.
We refer to this algorithm as EDCA in the figures, because it represents what the IEEE 802.11e stan-
dard can achieve if it is used in a QoS-enabled WLAN. We have implemented our algorithm that is
provably optimal as shown in Section 4.2. We denote our algorithm as OPT in the figures. We have also
designed two other algorithms that improve upon EDCA, but not in a complete cross-layer manner, as
our OPT algorithm does. These two algorithms are referred to as Ap-only and Link-only. The Ap-only
algorithm allocates the wireless medium bandwidth among WSes in R-D optimized fashion, without
considering the physical layer conditions. Whereas the Link-only algorithm only accounts for the link-
layer status and it does not consider the R-D characteristics of the video streams. Comparisons with
Ap-only and Link-only algorithms show the importance of considering information from multiple lay-
ers in optimizing the video quality in wireless networks. We should mention that we are not aware
of any existing algorithms that solve our optimization problem, which considers real-time nonscalable
video streaming from heterogeneous wireless stations to a base station over contention-based wireless
networks (see Section 6 for details). Nevertheless, this is not an issue, as our OPT algorithm is provably
optimal. Moreover, we compare OPT algorithm against Ap-only and Link-only algorithms, which are
not naively designed: They follow the traditional divide-and-conquer approach and search for optimal
solutions within one layer of the network stack.

5.2 OPNET Simulation Results

Potential Quality Improvement. We first compare our OPT algorithm against the EDCA algorithm.
We deploy a BS and six WSes in a 300-meter by 300-meter area, as illustrated in Figure 5. We let
CWmin = 7. We consider heterogeneous channel conditions and P-R-D characteristics. WSes that
are closer to the BS have better channel conditions and thus can choose more aggressive modula-
tion and coding schemes. Therefore, WSes closer to the BS have higher physical rates. Furthermore,
each WS randomly chooses its P-R-D model parameters ps, αs, and βs from [0.1, 1.0], [50.0, 300.0], and
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Fig. 5. The simulated WLAN setup to evaluate the potential quality improvement.
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Fig. 6. Comparison between our OPT algorithm and the EDCA algorithm, which is used by standard 802.11e EDCA networks.
(a) Wireless stations stream CIF video sequences, and (b) wireless stations stream 4CIF video sequences.

[50.0 ∗ ys p1/3
s , 300.0 ∗ ys p1/3

s ], respectively. These ranges are computed from the typical ranges of tex-
ture variance and motion vector values given in He et al. [2005; Cheng et al. [2006]. We also exercise
different video resolutions by considering both CIF and 4CIF sequences.

We measure the streaming quality in MSE (mean squared error), which is defined as the average
squared error between the original and the reconstructed video sequences. MSE is closely related
to another quality metric called PSNR (Peak Signal-to-Noise Ratio), which is defined as: PSNR =
10 log10(2552/MSE). In general, MSE values higher than 650 are considered unacceptable, between 65
and 650 are poor, between 6.5 and 65 are good, and below 6.5 is excellent [Wang et al. 2001, pp. 29]. We
stream video sequences for 10 minutes from all six WSes, and compute the streaming quality achieved
by individual WSes. We then compute the average quality among all WSes. We repeat the same sim-
ulation for two algorithms: OPT and EDCA. Figure 6 illustrates that our OPT algorithm outperforms
the EDCA algorithm by up to 20% in quality improvement. Notice that the distortion values of the
4CIF sequences are higher than those of the CIF sequences, which have smaller resolutions. This is
because the channel conditions and bit rates are kept the same in the experiments. Nonetheless, our
algorithm improves the quality in all cases. Furthermore, this quality improvement comes at negligi-
ble cost, because the optimal solution is computed using simple (scalar) equations and communicated
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Fig. 7. Using our allocation enforcement scheme, the effective airtime consumed by all wireless stations is very close to the
estimation computed by our analytic model. Sample results shown for streaming CIF sequences.

Fig. 8. The simulated WLAN setup to evaluate the impact of cross traffic.

to the wireless stations in the beacon messages that are periodically broadcast by the base station
anyway. Therefore, the only communication overhead for each WS is sending the P-R-D parameters to
the BS, which only happens once every five second and is negligible.

To validate our allocation enforcement scheme, we collect the airtime usage of each WS in this
simulation setup. We then compute the aggregate effective airtime. Figure 7 shows a sample result,
all other simulations yielded similar results. Our OPT algorithm estimated the effective airtime to be
69% using Equation (4), which is achieved using our allocation enforcement scheme. We note that only
about 3% error is incurred with the simplfied model in Lemma 1. This figure also shows that the EDCA
algorithm leads to a slightly lower effective airtime.

Impacts of Cross Traffic. Next, we consider the impact of cross traffic. In addition to the six power-
aware wireless stations and the base station, we include an application server and four wireless sta-
tions that randomly generate cross traffic in our experiments. We plot the network topology in Figure 8.
The wireless stations start generating cross traffic from the beginning till the end of the simulation. We
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Fig. 9. (a) The imposed Poisson-arrival background traffic amounts with different Poisson mean value λ and (b) the performance
of OPT and EDCA algorithms with and without Poisson-arrival background traffic.

first assume the interarrival time between packets in the cross traffic follows a Poisson distribution,
and the packet size follows a normal distribution. The Poisson distribution is given as:

Pk = λk

k!
e−λ,

where λ is the Poisson mean value. We consider λ values: 1, 0.5, 0.25, 0.125, and 0.0625, and mean
packet size of 1500-byte with a variance of 150. We plot the accumulated background traffic amounts
in Figure 9(a), which shows smaller λ value in general leads to more background traffic. We, however,
observe that when we reduce λ from 0.125 to 0.0625, the background traffic reduces. This is because
the Poisson background traffic has saturated the available bandwidth that wasn’t consumed by the
high priority, preferential video traffic. Hence, we effectively cover the complete range of λ values in
this experiment.

For each λ value, we run the streaming simulation with the OPT algorithm for three minutes, and we
measure the average streaming quality achieved by all wireless stations. For comparison, we also run
OPT and EDCA algorithms without background traffic. We plot the results in Figure 9(b), which shows
that the OPT algorithm significantly outperforms the EDCA algorithm. More importantly, the impact
of different λ values on the average streaming quality is marginal. This shows that the streaming
network does achieve differential service: it treats video as high priority traffic. In addition to Poisson
distributed cross traffic, we also consider Pareto background traffic, which is given as:

P ′
k,a(x) = kak

xk+1
,

where k is the shape factor and a is the location factor. We repeat the same experiment with Pareto
background traffic with k = 0.95, and a = 1, 0.5, 0.25, 0.125, and 0.0625. We plot the results in
Figure 10, in which we can draw similar observations. This experiment shows that the cross traffic
does not impose negative consequences on our OPT algorithm and our allocation enforcement scheme.
Therefore, our OPT algorithm can work in real environments where cross traffic always exists.

Comparison with Ap-only and Link-only Algorithms in a Dynamic Environment. We then consider a
dynamic environment, where channel conditions are changed over time due to the mobility of WSes.
We simulate this by randomly moving wireless stations around during the simulation. WSes that
move closer to the BS will have better channel conditions and thus can transmit at higher rates.
Similarly, WSes that move further from the BS will have worse channel conditions and have to reduce
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Fig. 10. (a) The imposed Pareto-arrival background traffic amounts with different location factor a and (b) the performance of
OPT and EDCA algorithms with and without Pareto-arrival background traffic.

Table II. Rate in Mbps of Mobility Profile Used in the Simulation
Time Period (sec) WS 01 WS 02 WS 03 WS 04 WS 05 WS 06

0∼11 12 36 24 24 18 36
12∼23 36 12 24 24 18 36
24∼35 36 12 12 12 18 36
36∼47 18 18 18 36 18 18
48∼59 18 9 18 6 18 18

0~11 12~23 24~35 36~47 48~59
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Fig. 11. The relative quality improvement resulted by all allocation algorithms over the EDCA algorithm in a dynamic envi-
ronment. Our OPT algorithm consistently outperforms Link-only and Ap-only algorithms.

their sending rates. The sending rates of individual WSes are given in Table II. We run all considered
allocation algorithms to see how they perform in dynamic environments.

We collect the average distortion among all WSes for each algorithm. We use the EDCA algorithm
for base-line comparisons, and we normalize the quality improvement achieved by the OPT, Ap-only,
and Link-only algorithms by the quality achieved by the EDCA algorithm. More specifically, we com-
pute the quality gain of each algorithm by dividing its MSE improvement over the EDCA algorithm
by the MSE value of the EDCA algorithm. Figure 11 illustrates the quality gain of the considered al-
gorithms, where our OPT algorithm consistently outperforms the other algorithms. The results in this
experiment show that: (i) our OPT algorithm functions properly in dynamic environments, and (ii) the
cross-layer solution of the video optimization problem consistently provides better video quality than
solutions that only consider information from individual layers.
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Fig. 12. The simulated WLAN setup to evaluate the impact of dynamically adding wireless stations.

0 200 400 600 800 1000 1200
0

20

40

60

80

100

Time (second)

D
is
to

rt
io

n
(M

SE
)

OPT

Fig. 13. The average streaming quality achieved by the OPT algorithm with increasingly more wireless stations in the stream-
ing network.

Dynamically Adding Wireless Stations. We then study the implications of adding wireless stations to
the streaming network on the average streaming quality. We deploy 32 wireless stations, as illustrated
in Figure 12. Wireless stations are configured with a sending rate of 12 Mbps, and they all share the
same P-R-D model parameters: α = 100, β = 100, and p = 1. We instruct the wireless stations to
sequentially join the streaming network, so that we have one more wireless station every 30 sec. We
continuously add wireless stations until all of them are in the streaming network. We run the simula-
tion for 20 minutes. We measure the average streaming quality of all wireless stations that have joined
the network, and we plot the results in Figure 13. We draw a couple of observations from this figure.
First, more wireless stations lead to higher distortion, as the air medium bandwidth (or equivalently
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Fig. 14. The OPT algorithm allows users to save energy by reducing the video coding complexity.

airtime) is shared among a large number of wireless stations. Hence, the average distortion increases
every 30 sec. Second, and more importantly, after adding a wireless station, the distortion immediately
increases, which means that the convergence time for adapting to network dynamics is negligible. This
is because the OPT algorithm is given as closed-form formulas (in Lemma 3), and we may simply re-
compute the airtime allocation upon facing any network dynamics. Hence, this experiment confirms
that the OPT algorithm efficiently adapts to network dynamics. Furthermore, since the OPT algorithm
is simple, it can scale to a large number of wireless stations.

Potential of Energy Saving. Last, we show the potential of energy saving using the considered P-R-D
model. We configure four wireless stations in a WLAN, where each wireless station has a sending rate
of 12 Mbps. We set the P-R-D parameters in a way that all wireless stations have α = 225 and β = 75,
and each of them has a different ps value: 1, 0.5, 0.25, and 0.125, respectively. We run the simulation
for 10 minutes. We compute the streaming quality of each wireless station, and we plot the results in
Figure 14. This figure shows that spending less energy on video coding results in higher distortion.
In other words, the P-R-D model allows wireless stations to opt for lower streaming quality in order
to save energy. We notice that, validating the accuracy of the P-R-D model and developing a more
comprehensive model is out of the scope of this article. We consider them as our future works.

5.3 Wireless LAN Testbed

We have setup a QoS-enabled WLAN testbed with three nodes: one base station and two wireless
stations. We have configured a commodity Linux box into the base station and two other Linux boxes
into the wireless stations. In each node, we installed a WLAN adaptor that uses the Atheros AR5005G
chip. We chose this wireless chip because it complies with the 802.11e standard for QoS support. More
importantly, this chip implements a minimal set of functionalities in hardware. It relies on the software
to implement most features and algorithms, which allows us to customize the driver software. The
driver for Linux is available at the Madwifi Web Page.2 We implemented the OPT and EDCA allocation
algorithms in this driver.

We configured the three nodes to form an experimental WLAN for our experiments. These nodes are
placed in an office environment, and any two of them are separated by about 20 meters. We configured
the wireless cards to 9 Mbps fixed physical rate. We chose 9 Mbps mode because of the interference
from our campus networks: there are more than 20 wireless access points in our building, and the high
traffic volume on them prevents us from transmitting at higher bit rates on the experimental WLAN.

2http://madwifi.org.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 1, Article 5, Publication date: January 2011.



A Framework for Cross-Layer Optimization of Video Streaming in Wireless Networks • 5:23

0 20 40 60 80
0

0.5

1

1.5

2

Time (sec)

T
hr

ou
gh

pu
t

(M
bp

s)

STA1
STA2

φ2 = 15% φ2 = 10%
φ2 = 20%

φ1 = 10% φ1 = 20% φ1 = 5%

Fig. 15. The actual throughput achieved by streams sent from two wireless stations in the WLAN testbed. This figure confirms
the effectiveness and simplicity of using the TXOP limit to control throughput of individual wireless stations.

We note that our WLAN testbed is realistic in the sense that real WLANs are always interfered by
other access points, and cannot achieve their theoretical transmission rates.

In our first experiment, we demonstrate the effectiveness of controlling the throughput of individual
video streams by setting the TXOP parameter in the link layer. We conduct the experiment by assign-
ing different airtime fractions to senders during various periods. For example, during the period [0, 30]
second, WS1 is assigned φ1 = 10% of the airtime and WS2 is assigned φ2 = 15%. These airtime frac-
tions are changed in the period [30, 60] second to be φ1 = 20% and φ2 = 10%. We compute the TXOP
value from Equation (12) for each station based on the allocated airtime fraction. Then we start a UDP
video streaming client on each station. We measure the achieved throughput by each station at the
base station which should reflect the allocated airtime to that station. We fix CWmin = 1, AIFS = 50μs,
and packet size at 500 bytes (payload data). Figure 15 illustrates the throughput of individual stations.
Since all wireless cards are in 9 Mbps mode, this figure shows that both stations achieve the target
throughput. For example, in the first 30 seconds, station 1 is assigned 10% of airtime. Given that the
total system throughput is 9 Mbps, we expect to see 0.9 Mbps streaming rate, which is indeed met in
our experiments.

In the next experiment, we compare our optimal allocation algorithm versus the EDCA algorithm,
which allocates airtime equally among stations. The two stations report their P-R-D parameters and
physical rates to the base station every 10 seconds. The base station computes the optimal λ̂ and
sends it back to the two stations. Each station computes its optimal airtime fraction φ∗

s , from which it
determines the application sending rate r∗

s and the link layer parameter x∗
s which specifies the TXOP

limit, as described in Section 4.4.
Each station s starts streaming video at rate r∗

s using the UDP protocol. We collect throughput
statistics at the base station and we compute the video quality using the P-R-D model. The P-R-D
model parameters are generated as described in the previous section. The allocation problem is solved
every 10 seconds. We repeat the whole experiment for the EDCA algorithm. We plot the average dis-
tortion in Figure 16. As the figure shows, significant quality improvement (up to 70% in MSE) can
be achieved using our optimal allocation algorithm. We also measure the raw (physical) throughput
of the two stations, and plot the results in Figure 17. Our algorithm transmits fewer number of bits
over the wireless channel, yet achieves much better video quality as shown in Figure 16. These results
from the QoS-enabled WLAN testbed demonstrate the practicality and efficiency of our algorithm in
improving video quality.
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Fig. 16. The video quality achieved by streams sent from two wireless stations in the WLAN testbed. The figure shows that our
OPT algorithm outperforms the EDCA algorithm by up to 70% reduction in distortion.
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Fig. 17. Raw throughput used by streams sent from two wireless stations in the WLAN testbed. Our algorithm transmits less
data but achieves better video quality.

6. RELATED WORK

Video optimization in wireless environments has been addressed by several works in the literature;
see Katsaggelos et al. [2005] for a survey. However, unlike the general setting considered in this arti-
cle, some of the previous works [Lu et al. 2003; He and Wu 2006; Wu and He 2007; Zhai et al. 2005;
Eisenberg et al. 2002] assume only one wireless station, while others [Khan et al. 2006; Huang et al.
2006; van der Schaar et al. 2006; Shankar and van der Schaar 2007] consider multiple wireless sta-
tions but do not account for energy constraints. Furthermore, many of the previous works solve the
optimization problem numerically using exhaustive search or dynamic programming, while we solve
our problem analytically.

Several works quantify the correlation between the power consumption of video coders and the per-
ceived video quality. The Lu et al. [2003] study the power consumption of a complexity scalable H.263
coder. They employ the video distortion model over wireless links proposed in Stuhlmuller et al. [2000],
and formulate an optimization problem to minimize the power consumption without exceeding a given
minimum video distortion. This system considers only one station, and uses exhaustive search to find
the optimal solution, which is computationally expensive. He and Wu [He and Wu 2006; Wu and He
2007] formulate a problem to maximize the video quality by gauging the coding rate and the power allo-
cation between the video coder and the wireless transmitter in battery-powered systems. Their system
utilizes the P-R-D model developed by He et al. [2005], the wireless effective capacity model proposed
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by Wu and Negi [2003], and the transmission distortion models proposed by Dani et al. [2005] and He
et al. [2002] to estimate the video quality. This system only consider one station, is highly-nonlinear,
and is computationally intensive to solve. Khan et al. [2006] consider a wireless video streaming system
with multiple wireless stations that receive a video sequence sent from a base station. They formulate
an optimization problem to maximize the average perceived quality for all stations. They use empir-
ically precomputed rate-distortion information, which is sent as meta data to the wireless stations.
The solution of the optimization problem is based on exhaustive search, and does not consider power
consumption constraints.

Zhai et al. [2005] study a problem of maximizing performance by jointly choosing video coding pa-
rameters and classifying video packets into different traffic classes. They consider a workstation that
streams a real-time video sequence over networks that support differentiated services (DiffServ). Two
dual formulations are proposed: one to minimize the video distortion subject to the cost and delay con-
straints, and another to minimize the total cost subject to the distortion and delay constraints. They
solve the problems using Lagrangian relaxation and dynamic programming techniques. Eisenberg
et al. [2002] study an optimization problem to minimize the transmission energy consumption under
given distortion and delay constraints in wireless networks. In contrast to these works, we consider
the problem of allocating shared resource among multiple wireless stations to optimize user-perceived
quality. In addition, we derive a closed-form, efficient, algorithm to solve our problem. Huang et al.
[2006] investigate a multiuser video streaming system in a CDMA cell, where each user uploads a
video sequence to the base station. Because 2G cellular networks, unlike WLANs, typically have low
bandwidth, video summarization techniques are employed to adaptively skip frames in order to achieve
low bitrates. They formulate an optimization problem to maximize user perceived video quality with-
out considering power constraints. They solve this problem using dynamic programming approach
with empirical rate-distortion data. Unlike Huang et al. [2006], our work considers high quality video
streaming applications, where skipping frames is not desirable.

As the dominating WLAN technology, IEEE 802.11 standards attract significant attention in
academia. Haratcherev et al. [2006] leverage a hybrid link adaptation algorithm in the link layer
and a rate scalable video coder in the application layer. The link adaptation algorithm utilizes both
channel statistics and signal-to-noise ratio (SNR) to adjust its physical layer mode. The scalable H.263
coder continuously adapts to the target coding rate sent from the link adaptation algorithm. This work
only employs one-way cross-layer signal, that is, from the link adaptation algorithm to the scalable
video coder. This is different from our work in that we consider the whole system as an integrated opti-
mization problem. van der Schaar et al. [2006] study the problem of maximizing the number of 802.11e
wireless stations that are receiving scalable video streams from a base station using the HCCA access
mode. They formulate and solve this problem with linear programming techniques. Their key idea is
to divide a global stream into several scalable substreams. Sending individual substreams with het-
erogeneous QoS parameters enables matching the packet arrival time with the playout deadline. Since
packets are not needlessly delivered earlier than their deadlines, the number of receiving stations can
be increased. Our work is different from the work of van der Schaar et al. [2006], because we consider
the de-centralized EDCA access mode that is more flexible and less complicated to be implemented
in commercial products [Shankar and van der Schaar 2007]. Finally, Shankar and van der Schaar
[2007] and Chou et al. [2005] propose the concept of effective airtime, and empirically derive it us-
ing simulations, which allows them to achieve airtime fairness among wireless stations. We further
couple the effective airtime with video coding parameters and video sequence properties to optimize
perceived quality for heterogeneous video sequences. Moreover, we analytically, rather than empiri-
cally, estimate the effective airtime under given EDCA parameters to efficiently solve our optimization
problem.
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7. CONCLUSIONS AND FUTURE WORK

We have formulated a cross-layer optimization problem to optimally allocate the wireless network re-
sources among multiple energy-constrained wireless stations. The objective of the optimization prob-
lem is to optimize the video quality of all streams given different power levels and channel conditions
of the wireless stations transmitting (or receiving) these streams. We employed a power-rate-distortion
model to capture the trade-off between the encoding rate, the consumed power by the encoder, and the
resulting video distortion. We solved our optimization problem for the IEEE 802.11e wireless networks
to minimize the average video distortion. We described how various link layer parameters of such net-
works can be controlled to achieve differential allocation of wireless resources among wireless stations.
In particular, we showed and experimentally validated that controlling the transmission opportunity
(TXOP) limits of wireless stations is a simple and effective scheme to achieve differential allocation of
the wireless medium.

In addition, we presented an analytic model for the effective airtime in WLANs, in which wireless
stations are allowed to employ variable TXOP limits. This effective airtime model has closed-form
equations and can be computed efficiently, and therefore it could be of interest in its own right for
other works in IEEE 802.11e networks. We used this airtime model in solving our video optimization
problem in IEEE 802.11e networks. We developed an algorithm to realize the proposed cross-layer op-
timized solution, and we actually implemented our algorithm in a QoS-enabled WLAN testbed. The
results from experiments performed on this testbed show that a quality improvement of up to 70% in
terms of the mean squared error (MSE) can be achieved using our algorithm over the allocation algo-
rithm currently used in IEEE 802.11e EDCA networks. This quality improvement comes at negligible
cost, because the optimal solution is computed using simple (scalar) equations and communicated to
the wireless stations in the beacon messages that are periodically broadcast by the base station any-
way. Furthermore, we simulated various wireless networks with diverse channel and video conditions
in the OPNET simulator. The simulation results show that: (i) our allocation algorithm functions prop-
erly in dynamic environments, (ii) the proposed cross-layer solution of the video optimization problem
consistently provides better video quality than solutions that only consider information from individ-
ual layers, and (iii) the allocation algorithm is scalable and supports many wireless stations.

The formulation and solution of the video optimization problem presented in this article is not re-
stricted to the IEEE 802.11e WLANs. It can easily be applied to IEEE 802.16 WiMAX [Cicconetti et al.
2006; Ghosh et al. 2005] metropolitan area networks and cellular networks. In fact our solution is
easier to apply in such (centrally controlled) networks than in the distributed WLANs. For example,
in most common WiMAX networks, the wireless channel is divided using time division into frames.
Each frame is divided into downlink subframe and uplink subframe. The downlink subframe is used
by the base station to broadcast to all wireless stations. The uplink subframe is further divided into
variable-length transmission periods, where each period is allocated to a wireless station to transmit
data to the base station. The length of each transmission period is computed by the base station and
is included in the beginning of each frame. Using our optimal allocation algorithm, the base station
can determine the optimal lengths of these periods to optimize video quality for all wireless stations.
In addition, unlike the somewhat complex allocation enforcement scheme in WLANs (see Sections 3
and 4.3), the allocation in WiMAX is included in each frame, which the wireless stations have to obey
according to the standard.
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