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Abstract—The Multicast/Broadcast Service (MBS) feature of
mobile WiIMAX network is a promising technology for providing
wireless multimedia, because it allows the delivery of multimedia
content to large-scale user communities in a cost-efficient manner.
In this paper, we consider WiMAX networks that transmit mul-
tiple video streams encoded in scalable manner to mobile receivers
using the MBS feature. We focus on two research problems in
such networks: 1) maximizing the video quality and 2) minimizing
energy consumption for mobile receivers. We formulate and
solve the substream selection problem to maximize the video
quality, which arises when multiple scalable video streams are
broadcast to mobile receivers with limited resources. We show
that this problem is NP-Complete, and design a polynomial time
approximation algorithm to solve it. We prove that the solutions
computed by our algorithm are always within a small constant
factor from the optimal solutions. In addition, we extend our
algorithm to reduce the energy consumption of mobile receivers.
This is done by transmitting the selected substreams in bursts,
which allows mobile receivers to turn off their wireless interfaces
to save energy. We show how our algorithm constructs burst
transmission schedules that reduce energy consumption without
sacrificing the video quality. Using extensive simulation and
mathematical analysis, we show that the proposed algorithm:
1) is efficient in terms of execution time, 2) achieves high radio
resource utilization, 3) maximizes the received video quality, and
4) minimizes the energy consumption for mobile receivers.

Index Terms—Energy efficiency, mobile multimedia, scalable
video coding, video streaming, WiMAX, wireless scheduling.

1. INTRODUCTION

HE demand for mobile multimedia streams has been in-
T creasing in the past few years as indicated by multiple
market analysis studies [1], [2]. Multimedia streams can be de-
livered to mobile devices over different wireless networks, in-
cluding 3G, WiFi, and WiMAX networks. In this paper, we
focus on multimedia streaming over WiMAX networks, which
are specified by the IEEE 802.16 standard [3]. Although the
currently deployed WiMAX networks are mostly used to pro-
vide wireless Internet access to subscribers, the WiMAX stan-
dard supports various network services. One of these services is
the Multicast and Broadcast Service (MBS), which can be used
to deliver multimedia traffic to large-scale user communities.
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For example, Yota Telecom [4] has recently started a mobile
TV service with 25 channels over its 10 Mbps mobile WiMAX
network, and UDCast [5] has announced plans for developing
broadcast TV service supporting around 50 channels over mo-
bile WiMAX. It is expected that more WiMAX deployments
will offer mobile multimedia services in the near future. Al-
though considerable amount of work has been done to make
these deployments feasible, several research problems remain
to be addressed in order to optimize the quality of the offered
multimedia services.

In this paper, we address two important problems in multi-
media streaming over WiMAX networks: 1) maximizing the
video quality and 2) minimizing energy consumption for mobile
receivers. In particular, we consider broadcasting multiple scal-
able video streams to mobile receivers. A scalable video stream
is composed of multiple layers, where each layer improves the
spatial, temporal, or the visual quality of the rendered video
to the user. Because of their flexibility, scalable video streams
can efficiently support heterogeneous receivers, adapt to net-
work conditions, and utilize the available wireless bandwidth.
We mathematically formulate the problem of selecting the best
set of substreams (or layers) from the scalable video streams in
order to maximize the quality for mobile receivers. We show
that this problem is NP-Complete. Thus, optimally solving it in
real time may not be computationally feasible. We propose an
approximation algorithm that produces near-optimal solutions
and runs in real time. We analytically show that the approxima-
tion factor is close to one.

In addition, since many subscribers of the WiMAX multi-
media services are expected to be mobile users with energy-con-
strained devices such as smart phones, minimizing the energy
consumption of these devices becomes an important problem in
order to extend the viewing time. To address this problem, we
extend our algorithm to reduce the energy consumption of mo-
bile receivers. The extended algorithm first selects the best sub-
streams and then transmits these substreams in bursts. The burst
transmission of the video data enables mobile receivers to turn
off their wireless interfaces for longer periods of time in order to
save energy. Our algorithm carefully constructs the burst trans-
mission schedules that reduce the energy consumption without
sacrificing the video quality or introducing any buffer overflow
or underflow instances. We rigorously evaluate the proposed al-
gorithm using simulation and mathematical analysis. Our results
show that the proposed algorithm can efficiently run in real time,
achieves high utilization of the wireless bandwidth, minimizes
the energy consumption for mobile receivers, and maximizes
the video quality.

The rest of this paper is organized as follows. In Section II,
we present a brief background on video streaming over WiMAX
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Fig. 1. Frame structure in WiMAX.

networks, and we summarize the related works in the literature.
We state the substream selection problem and present the analyt-
ical formulation for it in Section IIL. In Section IV, we present
the proposed approximation algorithm to efficiently solve the
substream selection problem. In Section V, we present our ex-
tended algorithm which reduces the energy consumption for
mobile receivers. Section VI describes our simulation setup and
results. Finally, we conclude the paper in Section VII. A prelim-
inary version of this paper appeared in [6].

II. BACKGROUND AND RELATED WORK

A. Brief Background

A video streaming service over WiMAX networks is com-
posed of three main entities: 1) content source, 2) WiMAX base
station, and 3) WiMAX subscribers. Content sources are na-
tional TV broadcasters, local broadcasters, Internet TV opera-
tions, and other video broadcast service providers. Multimedia
contents are aggregated from different sources and sent to the
WiMAX base station. The WiMAX base station constructs a
schedule to transmit the incoming data to the subscribers.

In the WiIMAX physical layer, data are transmitted over mul-
tiple carriers in time division duplex (TDD) frames. As illus-
trated in Fig. 1, each frame contains header information and
upload/download maps followed by bursts of user data. Since
video dissemination is expected to be a prevalent traffic pat-
tern in future networks, the WiMAX standard defines a service
called MBS in the MAC layer to facilitate broadcast and mul-
ticast. Using MBS, a certain area in each TDD frame can be
set aside for multicast-only or broadcast-only data, as shown
in Fig. 1. The entire frame can also be designated as a down-
load-only broadcast frame. A major task of the MBS module is
to allocate video data from multiple streams to the MBS data
area in each frame such that the real-time nature of all video
streams is maintained. Further, the allocation algorithm must
consider that the receiver devices have limited buffer capacity
which may cause data loss due to buffer overflow. These con-
straints impose stringent QoS and efficiency demands on the al-
location algorithm. In the first part of this paper, we present an
algorithm to select the best subset of scalable video streams and
allocate them in the MBS area.

The WiMAX standard has defined different sleep mode op-
erations to facilitate power conservation for mobile subscribers.
In the sleep mode operation, the base station informs the mobile
subscriber about the sleep interval, during which the mobile sub-
scriber switches off its RF circuitry. To utilize the energy con-

servation mechanism of the sleep mode, the data are sent out
in bursts, instead of continuous transmission. After receiving a
burst of data for a short time, receivers go into sleep mode for a
pre-computed period of time. Once we compute a transmission
schedule, the sleep intervals for different streams are embedded
in the last frame of a burst. At the start of transmission, each mo-
bile subscriber receives the first burst and comes to know about
its sleep and active intervals. It then accordingly switches its
receiver on or off to receive only the relevant frames. This pro-
cedure is continuously repeated for each scheduling window. In
the second part of this paper, we design a burst transmission al-
gorithm to reduce the energy consumption of mobile devices.

B. Related Work

1) Video Streaming Over WiMAX: Wang et al. [7] discuss
an architecture for video broadcasting in a multi-base-station
WiMAX system. Their work focuses on coverage and spec-
tral efficiency issues and considers only temporal video scal-
ability. Cohen et al. [8] combine a group of TDD frames to-
gether into a super-frame. They describe a cost-based scheme
where a cost function is associated with each user-channel pair.
Three user interaction models are considered: 1) user can ei-
ther be statically hooked to a channel, 2) user can choose to
listen to a channel, or 3) the user channel association can keep
changing based on the transmission medium conditions. The
work in [8] does not consider the delay requirements which are
central to video streaming. Hosein [9] describes the frame al-
location problem for broadcasting variable bit rate video over
WiMAX, but does not consider scalable video content.

Jiang et al. [10] propose a scheme to transmit scalable video
streams in which two layers of each video are transmitted sepa-
rately. The base layer is transmitted as one stream over a reliable
channel while the enhancement layer is transmitted as a different
stream over a less reliable channel. Conceptually, this work im-
plements a rate adaptive multiple description coding. However,
it describes only one stream and it does not address the resource
management problem arising in multistream transmission sce-
narios. Reguant et al. [11] consider splitting a video stream into
two streams and transmitting them over two different broadcast
networks. The first stream is transmitted over a DVB-H net-
work at all times while the second stream is transmitted over
WiMAX network most of the time. If the user wants to use some
other non-video application in parallel, the stream going through
WiMAX is degraded to accommodate that application. This en-
sures a minimum video quality at all times while maintaining
the flexibility of using other applications. While this approach
has its benefits, it is not very attractive from a deployment point
of view since the service provider has to install and manage the
infrastructure for two different kinds of networks. Also the so-
lutions described in both [10] and [11] evaluate the performance
of video streaming as an application along with other WiMAX
applications and do not utilize MBS. In contrast, our approach
considers a multimedia-intensive system with extensive use of
MBS.

2) Energy Efficient Scheduling: Power-aware scheduling
schemes for general WiMAX networks have been proposed in
[12]-[15]. For example, Seo et al. [12] propose a scheme that
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utilizes subscriber information available at the base station.
They describe a sleep interval algorithm based on queuing
analysis of the packet arrival rate of subscribers. In contrast,
Kim et al. [13] describe a sleep interval scheme based on the
remaining battery life of a mobile subscriber device. Shi et al.
[14] propose a burst scheduling algorithm for energy minimiza-
tion on per subscriber basis for unicast data. The algorithm
arranges the mobile subscribers in ascending order based on
the ratio of the current data arrival rate to the required data rate.
If the current rate is significantly higher than the required rate,
the mobile subscriber can go to sleep for some interval. After
computing the sleep intervals for all mobile subscribers, the
bursts are scheduled in a longest interval first manner. After
transmission of each burst, the algorithm checks to ensure
that the data requirements of all mobile subscribers are being
satisfied. The work in [14] is designed for unicast streaming of
video and does not consider the multicast/broadcast service.
Also the algorithm requires maintaining state information of all
mobile subscribers served by a base station.

Liao and Lee [15] suggest a scheduling scheme where the
unicast data are clustered around the multicast data bursts for in-
creased energy efficiency. They assume that the burst length and
positions for a particular stream is the same in all super-frames.
Then they present an enhancement to the longest virtual buffer
first scheduling algorithm proposed by Shi ef al. [14] by clus-
tering the unicast data around the multicast data bursts. Their
work evaluates the energy efficiency in a multi-class traffic sce-
nario, whereas our work is focused on the energy efficiency of
the video broadcast service.

III. PROBLEM STATEMENT AND HARDNESS

Our work focuses on optimally utilizing the WiMAX Multi-
cast/Broadcast Service to stream multiple scalable videos to mo-
bile receivers. In this section, we state the considered problem
and show that it is NP-Complete. We also present the mathe-
matical formulation of the problem. For quick reference, we list
all symbols used in the formulation in Table I.

A. Problem Statement

We consider a scenario where a number of scalable video
streams are available at a WiMAX base station. Each stream is
to be broadcast using MBS to a group of mobile subscribers. At
the WiMAX base station, the MBS module allocates a fixed-size
data area in the download section of each TDD frame. All video
streams are to be allocated only within this MBS data area.
As per the mobile WiMAX standard, each MBS data area can
transmit a different amount of data depending on the modulation
scheme chosen, which is in turn selected based on the wireless
channel conditions. For broadcast applications, a common mod-
ulation scheme is selected for a group of subscribers. Thus, each
MBS area transmits a fixed amount of data, in effect, creating
a fixed bandwidth broadcast channel. We consider a scheduling
window composed of a number of MBS data areas. Data from
the video streams are to be allocated to the MBS areas in the
scheduling window. Due to the variable bit rate (VBR) nature
of the video streams, the aggregate data rates may exceed the
broadcast channel capacity. Hence, in each scheduling window,
we need to decide which layers to send for each stream. We as-
sume that the base station has enough buffer space to hold the
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TABLE 1
LIST OF SYMBOLS USED IN THIS PAPER

Symbol Description

S Number of streams

L Number of layers

qst PSNR of substream sl
Tst Data rate of substream sl
bt Number of frame sized blocks of substream sl
Nl Number of frame bursts for substream sl
tk, Start of burst k of substream sl
wk, Width of burst k£ of substream si
T Duration of a TDD frame

F Capacity of MBS data in a TDD frame

P Number of frames in scheduling window
c Data capacity of scheduling window
B

Buffer size at the receiver

Us Initial buffer level for stream s

E, Receiver energy consumption in active state

Ey Energy consumption for wake up from sleep state
€ Approximation Parameter

VBR traffic for one scheduling window. This way, the data rates
can be assumed to be constant during a scheduling window, but
they vary across scheduling windows. Since the bit rates and the
receiver buffer states change in each scheduling window, the al-
location has to be computed for every scheduling window. We
also assume that all subscribers served by the base station have
a fixed amount of buffer which is used to temporarily store the
incoming video data before playing it out. Thus, the optimal
substream selection problem we need to solve can be stated as
follows.

1) Problem 1 (Optimal Substream Selection Problem): Se-
lect the optimal subset of layers from each scalable stream to
broadcast over a WiMAX network such that: 1) the total data
transmitted in a scheduling window does not exceed the window
capacity, 2) the average quality of all selected substreams is
maximized, and 3) the subscriber playout buffer does not suffer
from overflow or underflow instances.

B. Problem Hardness

Let us assume that for a given radio modulation scheme, the
MBS data area in each frame can accommodate F' amount of
data and the TDD frame takes 7 time to be transmitted. Let the
scheduling window consist of P such frames. Then, the max-
imum amount of data that can be transmitted within the sched-
uling window is given as C' = PF. We have S scalable video
streams. Each scalable stream s, 1 < s < S, has at most L
layers. The value of L can be different for each stream. There-
fore, for each stream, we have L substreams to choose from,
where a substream [ includes layer [ and all layers below it.
Let the data rates and quality values for selecting substream [
of stream s be 75 and gy, respectively. Here r11 denotes the
data rate of the base layer of the first stream. Thus, we have
the problem of choosing the substreams such that the average
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quality across the video streams is maximized subject to the fol-
lowing constraints. The first constraint is that the total data to be
transmitted must fit into the MBS area in the current scheduling
window. The second constraint is that the buffers at the sub-
scribers must not run out of data anytime during the scheduling
window, and the third constraint is that the base layer of each
stream must be transmitted to guarantee a basic service level
agreement.

Theorem 1: The Optimal Substream Selection Problem is
NP-Complete.

Proof: First, we consider a relaxed version of the problem
with no buffer overflow or underflow constraints. Thus, we are
left with the problem of selecting the substreams such that the
average quality is maximized. We assume that in each sched-
uling window at least, all the base layer streams have to be trans-
mitted due to service level agreement. Thus, we further modify
the problem by eliminating the base layer constraints, which can
be trivially done by reducing the scheduling window capacity by
the sum of data rates of all base layers. Therefore, the modified
data capacity can be given as C' = C'— ) _o7,1.

Now we are left with the problem of deciding which sub-
streams to chose from each stream. We show that this problem is
equivalent to the NP-Complete 0—1 Multiple Choice Knapsack
Problem (0-1-MCKP) [16], which is defined as follows. There
are M classes Ny,..., N of items to pack in some knapsack
of capacity W. Each item (i, j), where ¢ € M, j € N;, has a
profit p(7,j) and a weight w(i, 7). The problem is to choose
at most one item from each class such that the profit sum is
maximized without having the total weight exceed W. We re-
duce the 0—1-MCKP problem to the Optimal Substream Selec-
tion Problem in polynomial time as follows. We make the data
rates of choosing a substream represent the item weight and the
corresponding quality values represent the profit of choosing an
item. We also make the streams represent the multiple choice
classes and the scheduling window capacity represents the knap-
sack capacity. Thus, we have an MCKP instance with S classes,
L — 1 items per class, and a knapsack capacity of C’. This
means that an efficient solution for the simplified Optimal Sub-
stream Selection Problem could be employed to efficiently solve
the NP-Complete 0—1-MCKP problem. In other words, the sub-
stream selection problem is NP-Hard.

In addition, clearly a solution for the simplified Optimal Sub-
stream Selection Problem can be verified in polynomial time.
Thus, the simplified Optimal Substream Selection Problem is
NP-Complete. Consequently, the more general Optimal Sub-
stream Selection Problem subject to buffer overflow and under-
flow constraints is also NP-Complete. [ |

C. Mathematical Formulation

We assume that all subscribers have B amount of buffer
available for the video streaming application, and the data
rate and quality values for all substreams of each stream are
known ahead of the scheduling window. This information can
either be obtained as a separate metadata for each stream, or
if the scalable video is encoded using H.264/SVC [17] and
the base station is media-aware, this information can be ob-
tained directly from the encoded video stream itself using the
Supplementary Enhancement Information (SEI) messages. Let

the data rate values of substreams be {rs1,7s2,...,7sr} and
the corresponding quality values be {gs1,¢s2,---,qsr}. Each
scheduling window is of duration 7 P. If substream [ of stream
s is selected, the amount of data to be transmitted during a
scheduling window can be given as 7 Prg;. Let binary variables
x4 take the value 1 if substream [ of stream s is selected for
transmission in the current scheduling window and O otherwise.
For a substream, we define a burst as a consecutive set of MBS
data areas allocated to the substream in the scheduling window.
For any schedule, let ns; be the number of bursts for substream
l of stream s. We denote by variables t* , the starting frame
number and by variable w¥, the number of MBS data areas in
burst k for substream [ of stream s.

The solution of the optimum substream selection problem
should generate a list <l n, < E ;l> see, (th,w >) for each
stream. In the list, { denotes the selected substream n denotes
the number of bursts required for transmitting substream [/, and
(tk, wk)) denote the starting point and width of burst k, respec-
tively. For a subscriber receiving channel s, let the buffer level
at the beginning of scheduling window be us. We need to en-
sure that all data received during a scheduling window are also
consumed in the same window. In other words, F' > ;= wk, =
7Prg. At the same time, we need to ensure that buffer overflow
and underflow do not occur. At the end of each burst, the total
data received is given by F Zle w’,. During that period, the
total data consumed is given by 7 (t¥, + w¥,) 5. Now in order
to avoid underflow, the difference of these two terms must be
greater than zero for all bursts. Similarly, the overflow condi-
tions can be applied by constraining the difference never to be
greater than B. Our objective is to maximize the average video
quality over all the streams. We use the peak signal-to-noise
ratio (PSNR) values of the streams to denote quality and take an
arithmetic average of the PSNRs of the selected streams to de-
note the average video quality. Let us assume that the data to be
transmitted for each substream can be divided into bs; number of
F sized data blocks. In other words, 75, = bg F'. Consequently,
we have the following optimization problem:

S L
1
Maximize Z szlqsl (P1)
s=11=1
S L
such that Z Z Tabg < P (1a)
Z -
Y za<i (1b)
=1
k
Ug+ Z wh F—7 (t5 +wk)ra <B  (lo)

i=1
Ug+ ZwilF—T (f’:l_l + wfl_l) re > 0 (1d)
/‘—1

[ty th  wh] 0 et 4 wb] =0

(Ie)
an

Nsi
§ : k

U)S = :Eslbsl.
k=1
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Fig. 2. High-level diagram of the substream scheduling algorithm (SSA).

In the above formulation, the constraint (1a) makes sure that
the selected substreams can be transmitted within the broadcast
bandwidth. Constraint (1b) ensures that at most one substream
is selected for each stream. Constraints (1c) and (1d) represent
the buffer overflow and underflow constrains, respectively. Con-
straint (1e) implies that no two bursts of data blocks should be
allocated to the MBS area of the same TDD frame. Here the op-
erator [...] denotes integer interval. This constraint is required
because the streams are transmitted over a time-shared, mul-
tiple-access wireless channel where only one burst can be trans-
mitted at a time. Constraint (1f) implies that if a layer is selected,
then all the data blocks corresponding to the layer must be allo-
cated in the schedule.

IV. PROPOSED APPROXIMATION ALGORITHM

A. Overview of the Proposed Algorithm

The proposed algorithm is called Substream Selection Algo-
rithm and is denoted by SSA. The high level idea of the algo-
rithm is depicted in Fig. 2 and is described as follows. We first
find a set of near-optimal substreams given the data capacity of
a scheduling window. Then, we allocate them to the MBS areas
in the frames of the scheduling window. If no feasible alloca-
tion is found, we reduce the problem instance by discarding the
substream with lowest quality among all substreams. We solve
the optimal substream selection problem again for the reduced
set of substreams. This cycle is repeated until either a feasible
solution is found, or none of the substreams is selected. Once
a solution is found, the frame allocation is done in a modified
weighted round robin manner.

As shown in Theorem 1, the problem of selecting optimal
scalable substreams is similar to solving the 0-1 Multiple
Choice Knapsack Problem. This problem has been studied
in the mathematical programming community, and several
near-optimal solution schemes exist. The reader is referred
to the survey by Lin [18] for a summary of the main results.
Dynamic programming is one of the techniques used for de-
signing approximation algorithms for the O—1 Multiple Choice
Knapsack Problem. However, dynamic programming solutions
are often memory intensive and may involve large constants. In
our algorithm, we derive both an upper bound and lower bound
on the value of the solution. These bounds significantly reduce
the solution search space.

B. Details of the Proposed Algorithm

Fig. 3 summarizes the pseudo-code of the SSA algorithm.
There are three main steps of the algorithm: 1) finding an
approximate solution to the substream selection problem, 2)
allocating the selected substreams to the MBS data areas of the
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Substream Selection Algorithm (SSA)

Input : Substreams, MBS capacity, Frame duration

Scheduling window size
Output : Data burst allocation in the MBS area of

the current scheduling window

—_

. For each enhancement layer ¢ across all streams do

2. Compute p; = rg — 751 and ¢; = (¢s — gsi—1)
3. Select k largest % such that % pi < PF — 27’51
4. Determine lower bound Qo = Y. ¢; + > qs1

5. Compute scale factor K = €Qo/S

6. Scale the quality values such that ¢/, = g,/ K

7. For ¢ =1 to 2Qq do

8. Fors=1to S do

9. If s is 1, Compute R(s,q) using equation (2a)
10. Else, Compute R(s,q) using equation (2b)

11. Backtrack table R(s,q) to find the substreams s*
12. Until all streams are allocated do

13. Arrange substreams in ascending order of B, /7
14.  Allocate o5 = min B, /7, frames to stream s
15. Update Bs = Bs+ 05 % F — 05775

16. If no valid allocation found do

17.  Find substream ([, §) such that ¢ = min {qq}

R seS,leL
18.  Discard substream (1, §)

19. Go to step 3

Fig. 3. Proposed substream selection algorithm.

scheduling window, and 3) validating the schedule to confirm
that there are no buffer underflow or overflow conditions. In
Fig. 3, the first 11 lines describe the steps of the dynamic
programming algorithm for finding the substreams. Lines
12—-15 describe the steps for allocating the selected substreams
to the MBS areas, and lines 16-19 describe the allocation
validation step. Each of these steps are discussed in details in
Sections IV-BI-1V-BIII.

1) Approximate Substream Selection: In a naive dynamic
programming solution, we construct a table of all possible data
rates for the given streams (i.e., 1...Y  rgr) and their resulting
quality values. For any valid selection of substreams, we de-
fine the term aggregate data rate as the sum of data rates of the
selected substreams. We note that multiple quality values can
result for a single aggregate data rate value depending on the
composition of the substreams selected. Then, we search for the
highest quality entry in the table such that the aggregate data
rate is less than the scheduling window capacity. In our pro-
posed algorithm, we first derive bounds on the solution value
which will reduce the size of the search space. Then, we con-
struct a dynamic programming table for all quality values within
the bounds and find the solution substreams using backtracking.

Bounding the Optimum Solution Value: Solution to the linear
programming relaxation of the 0—1 MCKP problem is an upper
bound on the optimal solution. Now we derive a lower bound
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on the optimal solution as follows. A solution . to the linear
relaxation has the following two properties: 1) x contains at
most two fractional values and 2) when there are two fractional
values in 2%, they belong to substreams of the same stream. For
the proof of these properties, the reader is referred to [19]. Let
z% be the value of the objective function corresponding to z7.
Let Qg be the maximum of 1) the objective function value when
both the fractional values are dropped from the solution and 2)
maximum of the quality values of the fractional variables. If
the optimal solution for the integer problem is QQ*, it is evident
that Q¢ < Q*. From the properties of z}, it is evident that at
most two variables are dropped. Since at most two variables
are dropped, 2z} can be bounded as z} < 2Q). Also, since the
solution obtained by the linear relaxation must be greater than
or equal to the solution obtained by the integer program, we
have an upper bound on the optimum integer solution as Qp <
Q* < zF < 2Qg. We note that although the bound is obtained
from linear programming theory, we do not require an LP solver
to calculate g. Qo can be calculated using the median finding
algorithms in linear time [20].

Recursive Table Generation: Now that we know the bounds
of the optimal solution value, we define a dynamic programming
formulation as follows. For all streams s € {1,...,5} and all
quality values ¢ €,{0...,2Q}, we define V (s, ¢) as the set of
substreams from streams 1,..., s such that no two substreams
are selected from the same stream and the total quality of the
selected substreams is q. If for a quality value g the at most one
substream per stream constraint is violated, we set the corre-
sponding sum of weights to infinity. Let R(s, ¢) denote the sum
of data rates selected in V (s, ¢). We assume that the sum of data
rates to produce zero quality is zero, i.e., R(s,0) = 0. Also,
for the first stream, the data rate values can be computed easily
as just the data rate of the substream, or the minimum of the
data rates if more than one substream has the same quality, i.e.,
R(1,¢) = min; {rs } where ¢g5; = ¢. In mathematical terms, the
first stream data rates can be expressed as in (2a). The data rates
for the other quality values and other streams can be computed
by the recursive definition described in (2b) and the optimum
quality can be expressed by (2c¢):

min{ry}, wherel € L and gy = q,
R(1.q) = { 00, ) otherwise ! ! (22)
min{R(s — 1, q), minjer{rs
R(s,q) = +R(s — 1,9 —qs)}}, when g5 < ¢,
R(s—1,q), otherwise
(2b)
Q* = max{q|R(s,q) < PF}. (2¢)

However, the size of the table can still be very large as it is
bounded only by Q. Therefore, we select a scaling factor K =
€Qo/S, and scale down the quality values to ¢%;, = ¢« /K. This
operation considerably reduces the table size while admitting
only a small error factor. We bound the quality degradation due
to scaling in our mathematical analysis in Section IV-C.
Backtracking: Once we have computed the dynamic pro-
gramming table, the solution quality value is obtained by a
simple scanning of the table as in (2c). The solution substream
vectors are found using a backtracking mechanism as follows.

While constructing the recursive table, we store the compo-
sition of substreams leading to the data rates R(s,q) as a list
for each table cell. The solution substream vector is found
using the additional information by backtracking from the cell
containing the solution quality value.

2) Data Allocation: Once the substreams are selected, it re-
mains to allocate them to the MBS data area such that the sub-
scriber’s playback buffers do not overflow or underflow. We use
a modified version of the weighted round robin algorithm to al-
locate data to frames. The weighted round robin has been used
for scheduling constant bit rate traffic before [21]. However, for
a variable bit rate stream, the stream priorities are not static. We
derive the priority of a stream based on its buffer level at the sub-
scriber. At the beginning of the scheduling window, for a stream
s, let the data rate of the selected substream be 74 and the buffer
level be B;. Then stream s is assigned priority Bs/rs. A lower
value of B;/rs denotes higher priority. We also need to allo-
cate the number of frames to a stream in the current round, that
is, the length of the burst. The burst length is chosen such that
none of the other streams suffers from starvation, nor does it
cause overflow or underflow at the receiver buffer. For a stream
s, the length of the burst is given by min { Bs/775}.

3) Buffer State Validation: After the schedule is constructed,
we check if any buffer constraint is violated. This can be easily
determined by verifying the buffer overflow and underflow con-
straints described in (1c¢) and (1d). If the buffer constraints are
violated, the current substreams cannot be allocated within the
current scheduling window. Hence, we reduce the problem size
and re-compute substreams. The problem size is reduced by dis-
carding the substream with minimum quality value among all
substreams. This process is repeated until a feasible solution is
found or none of the substreams is selected. We note that even
though the scheduler is located at the base station, it is aware of
the subscriber buffer size and stream data rates. From this infor-
mation, it can calculate the change in buffer states for a given
schedule without any involvement from the subscribers.

C. Correctness and Performance Analysis

We first prove in Lemma 1 that the data rate and quality values
of substreams of a scalable stream constitute a non-dominated
set. In Lemma 2, we prove the correctness of the recursive for-
mulation described in (2a) and (2b). Using Lemmas 1 and 2, we
prove the correctness of SSA.

Lemma 1: Data rates and quality values of substreams ex-
tracted from scalable streams constitute non-dominated set.

Proof: Let [ and I’ be two substreams of a given stream s.
Substream [ is said to be dominated by substream [’ if including
!’ in the solution always leads to better quality than including
substream [. For example, let 7, r; ; be the data rates and g,
¢, be the quality values of substreams [ and I’. If ro; > 7/, and
gs1 < ¢l then ! is dominated by I’. Greet et al. [22] have shown
that, for the H.264 PSNR scalability, when there is sufficient
variability in a video, its rate-distortion characterization will be
close to a quadratic function which is convex. In our problem,
since the streams are variable bit rate videos and layer encoded,
the data rate and quality value pair of the layers within a stream
can be assumed to form a convex set. [ ]
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Fig. 4. Rate-distortion characteristics of scalable videos. (a) Foreman sequence. (b) Non-dominating property of scalable videos.

Therefore, Lemma 1 indicates that our problem instances
are already in non-dominated form and we can easily solve
the linear relaxation of the best quality substream selection
problem. Efficient solution to the linear relaxation will help us
in efficiently computing the final solution value. We empirically
validate the assumption of rate variability and convexity. In
Fig. 4(a), we plot the sizes of frames of one of our test streams
to show the high data rate variability. In Fig. 4(b), we plot the
data rate and PSNR values of three test streams and validate
that they indeed form a convex envelope.

Lemma 2: The recurrence relations described in equations
(2a)—(2c) produce a near-optimal substream selection solution.

Proof: According to Lemma 1, all instances consist of only
non-dominated substreams. Thus, we only need to prove the cor-
rectness of the recurrence relation. We can prove the correct-
ness of the recursive expression by induction. The basis step
where s = 1 is true since it will lead to the selection of the max-
imum quality substream such that the data rate is less than the
scheduling window capacity. Now let us assume that it is also
true for the case of s — 1 streams. For stream s, the expression
R(s—1,q—qs) retrieves the weight of the solution and updates
it by adding the current data rate. Then all such data rates are
compared which can result in quality ¢ and only the minimum
is chosen. Since R(s — 1, q) is already minimum, this results in
R(s, q) also being minimum for every quality value. Since only
selections from the set V' (s, ¢) can have non-infinite values, it
ensures that only one substream per stream is selected. ]

Theorem 2 (correctness): The Substream Selection Algo-
rithm described in Fig. 3 returns a valid solution for the Sub-
stream Selection Problem.

Proof: By Lemma 2, the solution to the dynamic pro-
gramming formulation selects substreams such that the average
quality is close to the optimal and the total data requirement
is less than the scheduling window capacity. Therefore, the
capacity constraint and the at most one substream per stream
constraint are satisfied. The round robin algorithm assigns MBS
data areas to streams one frame at a time. Thus, it guarantees
that no two frame bursts are assigned to the same frame. Fi-
nally, the buffer state validation step of the algorithm ensures no
buffer overflow or underflow instances occur in the schedule.
Hence, the SSA algorithm generates a valid solution for the
substream selection problem. [ |

Next we analyze the approximation factor and time com-
plexity. We define an approximation algorithm for maximiza-
tion problems as the following. For every instance / of a maxi-
mization problem II, let TI(I : OPT) be the optimal objective
function value and let II(I : ALG) be the objective function
value obtained by the algorithm ALG. ALG is an approxima-
tion algorithm for the problem II with an approximation factor
«a if, for any input size, II(I : OPT)/II(I : ALG) < «. For
the problem under discussion, I corresponds to the substream
selection problem.

Theorem 3 (Approximation Factor): The Substream Selec-
tion Algorithm described in Fig. 3 is a constant factor approxi-
mation algorithm.

Proof: In Section IV-BI, we derived the upper bound and
lower bound of the optimal solution in terms of (). For a small
nonzero constant €, we selected a scaling factor K as €Qy/S.
Let us consider an instance I of problem II which has data rate
values r; and quality values ¢5;. We obtain a scaled down in-
stance I’ from I by dividing each quality value g¢; by K. There-
fore, I’ has quality values ¢, which are obtained as

qgl = |—QSI/K_] :

All other aspects of I and I’ remain identical. Let II(I’ : ALG)
be the best solution obtained by any algorithm ALG on the
scaled down instance I’ and TI(I" : SSA) be the solution ob-
tained by our SSA algorithm. Since we rounded up the quality
values during the scaling operation, we have

I(I: ALG) < TI(I' : ALG).

Also, since our algorithm finds the optimum solution for the
scaled down problem, we have

(I : ALG) < TI(I’ : SSA).

From the above two equations, we have

(I : ALG) < TI(I' : SSA).
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Now, since each quality value in the solution of II(I" : SSA)
is at most K times bigger than the quality values in solution of
II(I : SSA), and we can have only S number of such quality
values in a valid solution, we have

I(]: ALG) <TI(I' : §SA) <TII(I : SSA) + SK.

Replacing the value of K, we have

(I : ALG) < TI(I : SSA)+€Qo.

Now, since (g is a lower bound to our solution, we have

TI(I : SSA)+eQo < TI(I : SSA)+e€ll(1 : SSA).

From the above two equations we have

(I : ALG) < (1+€)II(I : SSA).

ALG can be any algorithm including O PT’, the optimal algo-
rithm. Therefore, we have

II(I : OPT)

(7 s54) = U+e

In other words, the solution obtained by the SSA algorithm is
always with a factor of (1+€) of the optimal algorithm for every
instance I of the problem II. Therefore, the SSA algorithm is
a constant factor approximation algorithm with approximation
factor (1+¢). ]
Theorem 4 (Time and Space Complexity): The SSA algorithm
in Fig. 3 has a time complexity of O((nS/€)+ Pnlogn), where
n = O(Y_ L) is the total number of substreams, L is the max-
imum number of substreams within a stream, P is the sched-
uling window size, and € > 0 is a small constant. The space
complexity is O(SQ*), where S is the number of streams and
Q* is the optimum quality value
Proof: The dynamic programming algorithm computes
S x 2@ entries for constructing the R(s, ¢) table. Computing
each entry takes O(L) time. Hence, the table can be completely
constructed in O(L - S - 2Q) time or O(nQ*) time. Com-
putation of Qg takes O(nlogn) time, leading to a total time
complexity of O(nlogn + nQ*). This is not polynomial in n
since the value of Q* may not be bounded polynomially in 7.
For a small constant €, we selected a scale factor X and scaled
quality value for each substream ¢’; according to (3a) and (3b):

K =eQo/S
q/sl = [qsl/K—|'

(3a)
(3b)

Since Q* < 2Qo, we have Q*/K < 2S/e. Thus, the table
computation can now be computed in O(n.S/¢) time. The round
robin allocation takes O(nlogn) time for sorting the buffer
levels in each round. The number of rounds depends on the size

of the scheduling window P. Hence, the total time complexity
is O((nS/e€) + Pnlogn).

Since the optimum solution value Q* is upper bounded by
2Qo, there can be at most 2()y columns in the dynamic pro-
gramming table. Also since there is one row for each stream,
the number of rows in the table is S. Thus, the table requires
O(SQ*) space for storing the minimum aggregate data rate
values pertaining to each quality value. Each cell in the table also
needs a constant amount of space to store the backtracking in-
formation, but this does not increase the asymptotic space com-
plexity. Hence, the space complexity of the SSA algorithm is
o(SQ*). [ |

V. ENERGY EFFICIENCY FOR MOBILE SUBSCRIBERS

For mobile receivers, energy savings is one of the major con-
cerns. In this section, we extend our work to provide energy
efficient streaming to mobile subscribers. Let the energy con-
sumption for a mobile subscriber while receiving a burst be E,
per TDD frame. Additionally let us assume £, amount of addi-
tional power consumption every time a subscriber has to wake
up to receive bursts. We consider the average energy efficiency
(AEE) metric which is defined as the ratio of energy consump-
tion due to data transfer to the total energy consumption. This
AEE metric has been used in previous works such as Shi et al.
[14]. Our goal is to maximize the AEE metric across all mobile
subscribers receiving different streams. To achieve this goal, we
add a secondary objective function to the optimization problem
given in (P1). This secondary objective function is given by

5. bE,

e e — P2
S 2= b By + nuBy *2)

Maximize

Clearly, adding the secondary objective function does not re-
duce the hardness of the problem; it is still NP-Complete. Thus,
we propose an approximation algorithm to solve this problem.
For the rest of this section, we omit the substream subscripts [
from the corresponding terms (e.g., bs instead of by, etc.) for
simplicity.

A. Proposed Approximation Algorithm

1) Overview of the Proposed Algorithm: The proposed ap-
proximation algorithm is called Energy Efficient Substream Al-
location and is denoted by EESA. The EESA algorithm is exe-
cuted after determining the substreams to be transmitted to the
subscribers using the SSA algorithm. Thus, instead of sending
the selected substreams in a continuous manner, the EESA al-
gorithm will transmit them in bursts in order to save energy for
mobile subscribers. The high level idea of the algorithm is as
follows. We first assume that the receiver buffer B can be di-
vided into two buffers of size B/2 each and the two buffers can
be accessed in parallel. This is known as the double-buffering
scheme [23]. Since one half of the buffer can be drained while
the other half is being filled up in parallel, the scheme always has
one buffer for receiving the current burst. Thus, if we stipulate
the burst sizes to B/2, the buffer overflow problem is resolved.
Now if we construct the frames in such a way that the data re-
ceived in the previous burst is equal to the data consumed during
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Energy Efficient Substream Allocation (EESA)

Input : Selected substreams, Initial buffer values,

Scheduling window size
Output : Data burst allocation in the MBS area of

the current scheduling window

1.For s=1to S do
Determine ns; = [2bsF/B]
For k =1 to ng do

.Let A=0

3
4
5. Determine x";, yfj, and z§ using Equations (4a)-(4c)
6
7. For each decision point do

8

Add a burst from frames t. to t, to stream s, where w'§

9. has the smallest zf among outstanding bursts, %,

10. is current time, and ¢, is time of the next decision point
11. Let ¥ be the actual finish time of burst k

12. If max{e¥ — 25} < 0 // complete on time

13. Return A

14. Return no feasible schedule

Fig. 5. Energy efficient substream allocation algorithm.

the current burst, then we can avoid buffer underflow. Thus, our
problem is reduced to finding the number and size of bursts for
each stream.

2) Details of Proposed Algorithm: Fig. 5 summarizes the
pseudo-code of the EESA algorithm. We calculate the number
and size of the bursts for each stream as follows. Since the buffer
size is B/2, it can accommodate a burst size of at most | B/2F |.
Therefore, we divide the data blocks of each streams into bursts
of length B/2F'. There has to be at least [2bsF'/ B] number of
bursts for each stream. We note that the last burst in a sched-
uling window might have less than B/2F data blocks. We fix
the number of bursts n to be [2bsF'/ B]. For each burst k € n,
there are a starting frame number, length of burst, and dead-
line. These are denoted by J;’S‘ y§ , and z§, respectively. The
starting frame number ensures that no data are transmitted be-
fore there is sufficient buffer space available in the receiver.
Thus, it eliminates the possibility of an overflow. Similarly, the
deadline frame numbers ensure that the current burst is trans-
mitted before the receiver buffer runs out of data, eliminating
the underflow possibilities. The values of z*, y*, and 2* can be
derived using the following equations:

. max < 0, ;_‘ST}, fork=1
Ty = ° (4a)
(k2_rsliBJ for 1 <k < mn,
B
kL [2—J, forl <k < ng b
ys_{bs—(k—l)[%J, for k = n, (4b)
Sk — 2’;?7 forl <k < n, (4¢)
P, for k = n,.
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We also define e* as the actual completion frame number
for burst k of stream s. When the buffers are initially empty,
the starting frame number of the first burst of all streams is
zero. However, if the buffers are not empty, the bursts need to
wait until the buffers are drained. Each subsequent burst starting
point is [B/2r,7| frames away, since this is the time required
for the previous burst to be consumed. The end time of each
burst can also be derived in a similar way. We define decision
points as the time instances at which either a new burst starts, or
all frames of a burst has been allocated. These are the two points
when we need to decide which burst to send next. At each such
decision point, we keep on allocating the burst which has the
smallest z* among outstanding bursts.

B. Correctness and Performance Analysis

In the EESA algorithm described in Fig. 5, we use double
buffering scheme and fixed length burst to satisfy the buffer
overflow and underflow constraints. Also, since the final
schedule is constructed by appending the bursts one after
the other, there can be no overlap between bursts. Thus, the
algorithm produces a valid solution to the energy efficient burst
allocation problem.

Theorem 5 (Approximation Factor): The EESA
algorithm described in Fig. 5 is a constant factor
approximation  algorithm  with  constant given as

where nl s

S0 0By +4nE,) [ (b By + niE,),
the optimum number of bursts for stream s.
Proof: To compute the approximation factor, we first de-
termine the number of bursts in the optimal schedule and in the
schedule produced by the EESA algorithm. To prevent buffer
underflow instances, any optimal burst schedule must have at
least [bs £’/ B] number of bursts for stream s, thatis, [bs F'B| <
ns. On the other hand, because of applying double buffering,
the minimum number of bursts required by the EESA algo-
rithm is at least [2bsF/B]. Now we derive an upper bound
on the maximum number of bursts that can be constructed by
the EESA algorithm. From the definition of the decision points,
each burst derived by (4a)—(4c) can cause at most one interrup-
tion in rest of the bursts. This happens when all frames of the
current burst are not allocated but the current frame number is
the starting frame number of a different burst. Therefore, these
interruptions may cause additional [2b, F'/ B| number of bursts
for the EESA algorithm. Therefore, the maximum number of
bursts created by the EESA algorithm is 2([2bs F'/ B]), in other
words, ns < 4[bsF'/B]. Comparing this with the value of n*,
we have ny < 4n’. The approximation factor can be given as
the AEE achieved by the optimal algorithm to that achieved by
our EESA algorithm. Ignoring the common terms in both ex-
pressions, we have the following approximation factor:

AEE(OPT) <~ b,E, +4n*E,

AnwTD) : 5
AEE(EESA) — &= b.E, + 3B, ©)

We note that since the number of bursts in the optimal solution
n% is a constant, the approximation factor is also constant. H
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TABLE II
DATA RATES (KBPS) AND PSNR VALUES (dB) OF THE SCALABLE
VIDEOS USED IN EVALUATION

Name 1 Layer 2 Layers 3 Layers 4 Layers
T1 q1 T2 a2 T3 a3 T4 g4
CREW 306 3292 | 578 3499 | 814 365 | 1184 3741
FOOTBALL | 442 30.50 | 827 3291 | 1114 3398 | 1621 35.55
MOBILE 189 3576 | 322 37.87 | 442 3893 | 649 40.36
CITY 448 29.62 | 923 3221 | 1288 33.28 | 1943 34.88
FOREMAN | 170 329 | 407 3486 | 589 360 | 890 37.43
BUS 185 33.17 390 3543 567 36.41 857 37.65
HARBOUR | 577  31.8 | 1025 3346 | 1379 34.67 | 1929 36.25
NEWS 121 356 | 259 3755 372 3863 | 564 405
SOCCER 385 2992 | 795 32.18 | 1095 33.13 | 1651 34.68
ICE 277 3235 548 34.71 767 35.82 | 1123 37.32

The allocation algorithm for mobile subscribers, EESA, in-
volves a sorting of the bursts to assign their priorities. Since
the number of bursts depends on the length of the scheduling
window, sorting takes O(P log P) time. Therefore, the overall
running time of the algorithm EESA is O(SP log P).

VI. TRACE-DRIVEN EVALUATION

A. Simulation Setup

We have implemented a point-to-multipoint WiMAX mul-
timedia broadcast simulator and evaluated our algorithm in it
using actual scalable video traces. For the WiMAX network pa-
rameters, we use the 16-QAM modulation scheme with 3/4 con-
volution turbo coding and 10-MHz channel. Since each TDD
frame is 5 ms, for a 1-s scheduling window, we will have to
allocate data to 200 TDD frames. Also we assume that within
each TDD frame, we have an MBS data area of 50 kb. This
gives us a broadcast channel bandwidth of 10 Mbps [24]. At
the receiver side, we assume a buffer limit of 512 kb. For gener-
ating the video traffic, we use 10 raw (YUYV files in 4:2:0 format)
video files from the video trace repository of Arizona State Uni-
versity [25]. For each video, we generate a 10-min workload
by starting from a random initial frame and then repeating the
frame sequences. Then we encode the videos into H.264/SVC
format using the JSVM reference software version 9.18 [26].
We encode each stream into four PSNR scalable layers using
the medium grain scalability (MGS) feature of the H.264/SVC
coding standard [17]. We tune the encoding parameters such that
the substreams have average bit rate between 100 kbps and 2.5
Mbps. In Table II, we summarize the information of the data
rates and quality values of each layer of the different video files.

B. Simulation Results

1) Video Quality: In our first experiment, we compare the
performance of the SSA algorithm versus the optimum algo-
rithm in terms of video quality. We perform this comparison
over a period of 100 consecutive scheduling instances. We keep
the receiver buffer size fixed at 512 kb, the scheduling window
size at 1 s, and vary the number of streams from 10 to 50.
Sample results are given in Fig. 6; other results are similar.

Fig. 6(a) shows the average quality across all the video streams,
whereas Fig. 6(b)—(d) shows individual qualities for the Foot-
ball, Foreman, and News video sequences, respectively. The fig-
ures show that our SSA algorithm produces near-optimal solu-
tions, which are less than 1 dB from the absolute optimal so-
lutions computed using the optimization software GLPK [27].
We also observe that the proposed SSA algorithm scales well
when the number of streams increase. In another experiment,
we keep the number of streams fixed at 20 and vary the sched-
uling window from 1 to 10 s. As we can see from the results of
this experiment in Fig. 7, the solution quality improves as the
scheduling window grows. Again, Fig. 7(a) shows the average
quality across all the video streams, whereas Fig. 7(b)—(d) shows
individual qualities for the Football, Foreman, and News video
sequences. These two experiments show that our algorithm pro-
duces close to optimal solutions and it scales well, which means
that it can support large-scale WiMAX streaming services.

2) Time Efficiency: We evaluate the running time of our algo-
rithms by changing the problem size in two ways. First we keep
the scheduling window capacity fixed and increase the number
of streams. In a second experiment, we keep the number of
streams fixed and increase the scheduling window. We compare
the execution times of our algorithms to that of the optimum.
For deriving the optimum solution, we first use the GLPK LP
solver [27] to determine the substreams that can be scheduled
and then sequence the frames within a scheduling window in a
weighted round robin manner. For the SSA algorithm, we com-
pute the running time with approximation parameter ¢ = 0.01.
For a 1-s scheduling window, we vary the number of streams
from 10 to 50 and observe their behavior. The execution times
of these algorithms are measured on a computer with 1.6-GHz
dual-core processor and 1 GB of memory. The results of the first
experiment are shown in Fig. 8(a). As expected, computing the
optimum solution using GLPK takes much longer as the number
of streams increases. The SSA algorithm runs well within the
time window even for large problem instances. For the second
experiment, we keep the number of streams fixed at 20 and vary
the scheduling window size from 1 to 10 s. From the results of
the second experiment, depicted in Fig. 8(b), we can see that the
SSA algorithm scales efficiently with increase in window size.
For real-time operation, the algorithm needs to compute the so-
lution within the scheduling window duration. From Fig. 8(b),
we see that with every 1-s increment in the scheduling window
size, the execution time increases by only a few milliseconds.
This shows that the SSA algorithm scales well for large problem
instances under real-time constraints.

3) Significance of the Approximation Parameter: Next we
investigate the effect of the approximation parameter € on the
quality of solution and also on the time efficiency of the SSA
algorithm. The approximation parameter can be thought of as a
knob for tuning the trade-off between solution quality and solu-
tion computation time. We first vary the approximation param-
eter from 0.01 to 0.10 in steps of 0.01 and as seen in Fig. 9(a), the
average quality of the received videos degrades as the approxi-
mation parameter increases. In Fig. 9(b), we see that when the
approximation parameter is increased, the running time of the
algorithm decreases. This means that approximate schedules for
very large-scale problems can be computed, which can be used
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for preliminary analysis of network deployments. However, in
all cases, our algorithm can easily run in real time, even with
very small approximation parameters. This is shown in Fig. 9(b)
for e = 0.01, and the schedule is computed in less than 0.3 s for
a scheduling window of 1 s.

4) Resource Utilization and Buffer Validation: Next, we
evaluate the resource utilization of the SSA algorithm in
terms of the scheduling window capacity used. Let the total

schedulable data capacity of a scheduling window be PF.
If {r1,...,75} are the data rates of the chosen substreams,
the total data sent in the schedule is ) 7P7. The capacity
utilization is then given by > 7P7;/PF. As seen in Fig. 10,
the resource utilization of the SSA algorithm remains close to
optimal for different scheduling window capacity sizes.

Next we verify that the buffer conditions are satisfied by the
SSA algorithm. That is, we check if the SSA algorithm causes
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any buffer overflow or underflow. We found neither overflow
nor underflow occurrences for any of the streams. In Fig. 11,
we display the buffer level dynamics of subscribers receiving
different streams, which show that the buffer level never exceeds
500 kb, that is, there are no overflow instances. It also shows
that the buffer level never goes below zero, which means there
are no underflow instances. Similar results were obtained for
subscribers receiving other video streams.

5) Energy Savings: We evaluate and compare the energy sav-
ings resulted from our EESA algorithm to that of the Weighted
Round Robin Allocation (WRRA) scheduler. We assume that
equal number of mobile stations are receiving each stream. For
evaluating the energy saving, we use the Average Energy Effi-
ciency metric. In Fig. 12(a) and (b), we display the comparison
between the two algorithms when, respectively, the number of
streams and window size are varied. The figures show that the

EESA algorithm achieves high values for the AEE metric (close
to 1) and remains significantly more efficient than the WRR al-
location when the window size increases. The results of another
simulation are displayed in Fig. 13 where the impact of receiver
buffer size on energy efficiency is measured. We see that the
energy efficiency increases when the buffer size is increased.
This is directly linked to the fact that the number of switching
in a schedule has a high impact on energy savings, because large
buffers can absorb larger bursts, which reduces the total number
of bursts needed.

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for multicasting scalable video
streams over mobile WiMAX networks. We mathematically an-
alyzed the problem of selecting the optimal substreams of scal-
able video streams under bandwidth constraints. Solving this
problem is important because it enables the network operator to
transmit higher quality videos or more number of video streams
at the same capacity. We showed that the substream selection
problem in presence of bandwidth limitation is NP-Complete.
We proposed a novel approximation algorithm for this problem.
We proved that our algorithm has a small approximation factor
of (14¢), and it has a time complexity of O(n.S/e), where n =
O(>_ L) is the total number of layers, and L is the maximum
number of layers in a scalable stream. We implemented and val-
idated our algorithm in a simulation setup and studied the im-
pact of a wide range of parameters using multiple video traces.
Our simulation results show that the approximation factor of the
proposed algorithm is very close to one for practical scenarios.
We also verified that our algorithm can run in real time and that
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it scales well to large scheduling problems. In addition, we ex-
tended our formulation to consider the energy constraints of mo-
bile receivers. We presented an algorithm to transmit the data in
bursts in order to conserve energy of mobile receivers. Using
simulation, we showed that our algorithm achieves high energy
savings.

The work in this paper can be extended in different directions.
For example, we are currently extending our algorithm to con-
sider the probability distribution of hardware profiles of active
receivers. The algorithm takes into account the diverse parame-
ters like buffer size, display resolution, and energy consumption
profiles such that the produced solution not only optimizes the
video quality but also enhances the quality of experience for the
majority of mobile subscribers.
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