
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008 121

Optimal Coding of Multilayer and
Multiversion Video Streams

Cheng-Hsin Hsu and Mohamed Hefeeda, Member, IEEE

Abstract—Traditional video servers partially cope with hetero-
geneous client populations by maintaining a few versions of the
same stream with different bit rates. More recent video servers
leverage multilayer scalable coding techniques to customize the
quality for individual clients. In both cases, heuristic, error-prone,
techniques are currently used by administrators to determine ei-
ther the rate of each stream version, or the granularity and rate of
each layer in a multilayer scalable stream. In this paper, we propose
an algorithm to determine the optimal rate and encoding granu-
larity of each layer in a scalable video stream that maximizes a
system-defined utility function for a given client distribution. The
proposed algorithm can be used to compute the optimal rates of
multiversion streams as well. Our algorithm is general in the sense
that it can employ arbitrary utility functions for clients. We im-
plement our algorithm and verify its optimality, and we show how
various structuring of scalable video streams affect the client util-
ities. To demonstrate the generality of our algorithm, we consider
three utility functions in our experiments. These utility functions
model various aspects of streaming systems, including the effective
rate received by clients, the mismatch between client bandwidth
and received stream rate, and the client-perceived quality in terms
of PSNR. We compare our algorithm against a heuristic algorithm
that has been used before in the literature, and we show that our
algorithm outperforms it in all cases.

Index Terms—Multimedia communication, scalable coding,
video quality optimization, video streaming.

I. INTRODUCTION

CLIENTS in video streaming systems are, in general,
heterogeneous in terms of network bandwidth and pro-

cessing capacity. The heterogeneity comes from many sources,
including different Internet access technologies used by clients,
unequal network distances between the server and individual
clients, and different screen resolutions and CPU speeds of the
clients’ machines. To partially cope with this heterogeneity,
traditional video servers maintain a few versions of the same
stream with different bit rates. The bit rate of each stream
version is heuristically chosen by the administrators based on
pre-assumed client bandwidth distribution.

More recent video servers employ scalable coding techniques
to produce a single stream that can easily be customized to
serve heterogeneous clients. These coding techniques compress

Manuscript received May 1, 2007; revised August 23, 2007. This work was
supported in part by the Natural Sciences and Engineering Research Council
(NSERC) of Canada under Discovery Grant 313083 and RTI Grant 344619.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Marco Roccetti.

The authors are with the School of Computing Science, Simon Fraser Uni-
versity, Surrey, BC, V3T 0A3, Canada (e-mail: mhefeeda@cs.sfu.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2007.911224

Fig. 1. General structuring of a scalable video stream with L layers. Each
layer l has a coding rate r and a scalability type g which can be either coarse
grain (CGS) or fine grain (FGS). This structure can be produced by H.264/SVC
coders. Our proposed algorithm computes the optimal rate and granularity of
each layer for a given client distribution.

video data into a base layer that provides basic quality, and
multiple enhancement layers that add incremental quality re-
finements. Current scalable video coders, e.g., H.264/SVC [1],
allow the enhancement layers to be either coarse-grained scal-
able (CGS) or fine-grained scalable (FGS). Fig. 1 shows the
general structure of a scalable video stream that can be pro-
duced by the H.264/SVC reference software [2]. Because partial
CGS layers cannot be decoded, CGS layers provide limited rate
scalability. FGS layers, on the other hand, provide quality re-
finements proportional to the number of bits received [1], [3],
[4]. FGS layers, thus, support wider ranges of client bandwidth
and it can fully utilize available bandwidth of individual clients,
which results in better video playback quality and ultimately
higher user satisfaction. The fine rate scalability of FGS, how-
ever, comes at a cost of lower coding efficiency: FGS layers
yield lower quality compared to CGS layers coded at the same
bit rate [1], [5]. Similar to the multiversion case, selecting the
granularity of different layers and setting their encoding rates in
scalable coding systems are currently done manually by the ad-
ministrators based on rule-of-thumb, error-prone, techniques.

In this paper, we propose an algorithm to determine the op-
timal rate and encoding granularity (CGS or FGS) of each layer
in a scalable video stream that maximizes a system-defined
utility function for a given client distribution. The proposed
algorithm can be used to compute the optimal rates of multi-
version streams as well. Our algorithm is general in the sense
that it can employ arbitrary utility functions for clients. We
implement our algorithm and verify its optimality, and we show
how various structuring of scalable video streams affect the
client utilities. To demonstrate the generality of our algorithm,
we consider three utility functions in our experiments. These
utility functions model various aspects of streaming systems,
including the effective rate received by clients, the mismatch
between client bandwidth and received stream rate, and the
client-perceived quality in terms of PSNR. We compare our al-
gorithm against a heuristic algorithm that has been used before

1520-9210/$25.00 © 2008 IEEE

122 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

Fig. 2. Relationship between our algorithm and the video encoder in video streaming systems.

in the literature, and we show that our algorithm outperforms
it in all cases.

The rest of this paper is organized as follows. In Section II,
we discuss various applications of our algorithm in realistic en-
vironments. In Section III, we summarize the related works. In
Section IV, we discuss and model the overhead associated with
scalable streams. Then, we formulate an optimization problem
to determine the optimal encoding rates and granularities of dif-
ferent layers in scalable streams. We also present an efficient
algorithm to solve this optimization problem. We evaluate the
proposed algorithm in Section V, and we conclude the paper in
Section VI.

II. MOTIVATIONS AND APPLICATIONS

Our proposed algorithm optimally solves the stream struc-
turing problem in the order of seconds on a commodity PC.
Searching for a good stream structures is not an easy task, as
client distributions are heterogeneous and dynamic. Therefore,
administrators of video servers may only find suboptimal stream
structures using manual, rule-of-thumb, techniques, while our
algorithm guarantees optimal stream structures.

Our algorithm assumes a fairly general model for stream
structure (as shown in Fig. 1). Therefore, it can be used by
streaming systems that employ various scalable as well as
nonscalable video coders. Examples of such systems include
the following.

• H.264/SVC streams: The emerging H.264/SVC standard
aims to support highly heterogeneous clients over the In-
ternet. It does so by providing flexible stream structures
that enables multilayer coded stream, where each layer can
be coded at a different rate with different granularity. Our
algorithm produces the optimal structuring of these layers.

• MPEG-4 FGS streams: An MPEG-4 FGS stream consists
of a nonscalable base layer and a single FGS enhancement
layer. Streaming systems using such streams need to com-
pute the rates of the base and enhancement layers. Our al-
gorithm solves this problem by setting the number of layers
to 2, and the granularity of the enhancement layer to FGS.

• Traditional (MPEG-2) multilayer streams: A traditional
layered coded stream supports a few discrete decoding
rates. Our algorithm solves the optimal structuring problem
for these streams by fixing all layers to be CGS-encoded.

• Multiversion nonscalable streams: The widely-deployed
multiversion streaming systems encode the same video into
several versions at different rates. In such systems, admin-
istrators need to find the optimal rate for each version to

achieve the best system performance. Our algorithm solves
this problem as follows. We find the optimal structure of
a stream with CGS layers, where is the desired
number of versions. Then instead of actually encoding the
stream into layers, we create versions, each version

is encoded at rate , where is
the rate of layer .

Our algorithm (referred to as ScsOpt) can be placed in the
big picture of video streaming systems as follows. The algo-
rithm is to be implemented in a video server that serves either
multilayer or multiversion streams. Fig. 2 shows the relation-
ship between our algorithm and the video encoder. Our algo-
rithm takes as input information about the bandwidth distribu-
tion of current clients as well as the number of desired layers
(in case of scalable streams) or versions (in case of multiver-
sion streams). It also takes into account the models describing
the utility achieved by the clients and the overhead imposed
by the scalable coding techniques. Our algorithm outputs the
needed parameters for the video encoder to produce either a
single multilayer scalable stream, or multiversions of the same
stream but with different rates. Our algorithm can easily cope
with the dynamic changes in client distributions, because it has
short running time, and therefore, can re-compute the optimal
stream structure for the updated client distribution with negli-
gible overhead on the streaming server. For example, in a long
live streaming session (e.g., sports events), the streaming server
may collect statistics on clients during the session. Then, the
server periodically (e.g., every 5 minutes) invokes our algorithm
to compute the optimal stream structure for the current client
distribution.

In addition, our algorithm can be used in unicast and multi-
cast video streaming systems. In unicast, the server chooses the
appropriate number of layers (or the closest version) for each
client based on the client’s capacity. In multicast with multi-
layer streams, the server transmits all layers through the distri-
bution tree(s) and the clients obtain as many layers as their ca-
pacities allow. Depending on the details of the employed mul-
ticast protocol (e.g., IP or overlay multicast), not all layers will
necessarily be transmitted through all branches of the tree(s).
For multiversion streams, each version can have its own multi-
cast session.

III. RELATED WORK

To cope with heterogeneous client populations, multistream
video systems have been proposed in the literature. In multi-
stream systems, a receiver subscribes to one or a few streams
that best-fit its bandwidth and processing power. This results

HSU AND HEFEEDA: OPTIMAL CODING OF MULTILAYER AND MULTIVERSION VIDEO STREAMS 123

in better client bandwidth utilization and higher video play-
back quality. Multistream systems can be classified into two
categories based on their stream structures: i) multiversion sys-
tems that encode a video sequence into several independent
streams at different rates and ii) multilayer systems that encode a
video sequence into several nonoverlapped, dependent, streams.
Readers are referred to [6] and [7] and references therein for a
comprehensive list of multistream systems.

The destination set grouping (DSG) protocol is a representa-
tive multiversion streaming system [8], where a client subscribes
to a stream that is coded at a rate no larger than its capability.
In DSG, an intra-stream protocol is used to gauge stream rate
within a pre-determined range, while an inter-stream protocol is
employed to switch receivers among different stream versions.
The receiver-driven layered multicast (RLM) is a representative
multilayer streaming system [9], where a client subscribes to the
base layer and a few enhancement layers, so that the total rate of
these layers does not exceed its capability. Our proposed stream
structuring algorithm iscomplementary to these multistream sys-
tems, because many of these systems, such as [8], [10], [11], con-
centrate on rate adaptation algorithms to minimize bandwidth
mismatch by associating receivers with streams coded at given
encoding rates. Our algorithm enables these systems to system-
atically find the optimal encoding rates (and granularity) that
further minimize bandwidth mismatch once the rate adaptation
algorithms converge. Hence, our algorithm improves bandwidth
utilization of these multistream systems.

Optimal stream structuring problems that maximize system-
wide video quality are considered in [12]–[16]. The authors
of [12] formulate an optimization problem to compute trans-
mission rates of individual stream versions that maximize a
system-wide fairness utility function in a DSG-based multi-
version streaming system. They propose a heuristic algorithm
to solve this problem. In contrast, our algorithm is optimal
and more general. A similar problem in multilayer streaming
systems is studied in [13], where an optimal layering algorithm
is proposed. However, the formulation does not model the lay-
ering overhead. The authors of [14] consider an optimization
problem to find optimal rates for individual streams that maxi-
mize a general utility function , where is client ’s
bandwidth and is its streaming rate. Two utility functions are
employed in their experiments: i) , which models
the bandwidth mismatch and ii) ,
which models the inter-receiver fairness. We use similar utility
functions in our work. Similar to our algorithm, the optimal
rates produced by their algorithm can be used to encode a video
stream into multiple layers, or multiple versions with different
rates. The work in [14], however, does not consider fine-grained
scalable streams, and ignores the coding inefficiency of scalable
streams. In [15], the authors consider broadcasting multilayer
video streams in a wireless cellular system with a given number
of channels and client capacity distribution. They determine
the optimal rate of each layer to maximize the average per-
ceived quality. In [16], the authors consider the rate assignment
problem in multiversion streaming systems. They determine an
optimal rate for each stream version. Unlike our work, these
works target coarse-grained scalable video streams, and do not
consider fine-grained scalable streams.

Streaming systems, e.g., [15], [17]–[20] account for the
coding inefficiency of scalable coders using a layering over-
head function, which represents the bit rate that does not
contribute toward the video quality. The authors of [17] uses
the square root rate-distortion model [21] to approximate the
layering overhead function. Several works assume a fixed
layering overhead that is independent of stream structures [15],
[18], [19]. The authors of [20] consider a dynamic layering
overhead function that only depends on the base layer coding
rate. Our formulation adopts a more elaborate scalability
overhead function that depends on the rate of the layer being
coded as well as the cumulative rate of preceding layers. More
importantly, our formulation accounts for different coding
granularity while previous works only consider coarse-grained
scalable streams.

Finally, in our previous work [22], we considered structuring
MPEG-4 streams which can have one base layer and one fine-
grained enhancement layer. The problem in [22] was to com-
pute the optimal width of the base layer. In the current paper,
we consider multiple-layer streams and each layer can have dif-
ferent scalability granularity.

IV. PROBLEM FORMULATION AND SOLUTION

In this section, we discuss and model the overhead associ-
ated with scalable streams. Then, we formulate the optimization
problem, and present our algorithm to solve it.

A. Modeling Scalability Overhead

We consider scalable streams that can be structured into
layers, as shown in Fig. 1. Compared to nonscalable coders, a
scalable coder imposes more overhead on streaming systems.
This overhead includes reduced compression efficiency, and ad-
ditional protocol headers. We collectively call these overheads
as the scalability overhead. We capture the effect of the scala-
bility overhead by using an overhead function and the effective
rate notion, which is formalized in the following definition.

Definition 1 (Effective Rate of a Scalable Stream): Consider
a scalable stream encoded at rate . The effective rate of that
stream is equal to the rate of the nonscalable stream that pro-
duces the same quality. Furthermore, is given by ,
where is a function that accounts for the scalability overhead.

In the above definition, the function specifies the fraction
of the total stream rate that does not contribute to the video
playback quality. Defining the effective rate in this way enables
us to compare various scalability methods, i.e., CGS and FGS,
against each other and against nonscalable encoding.

The scalability overhead function is an input to our stream
structuring algorithm, and it can be estimated using either exper-
imental or analytical methods. Some guidelines on estimating
this function are in order though. In general, the scalability
overhead function depends on three factors: i) characteristics
of the video sequence, ii) granularity of the scalable coding,
and iii) rate of the layer being encoded as well as the rates
of its preceding layers. We discuss each of these factors in
the following. First, the experimental study in [5] indicates
that video sequences with more temporal redundancy incur
higher scalability overhead. In addition, video sequences with

124 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

similar amount of temporal redundancy have similar scalability
overheads. This suggests categorizing video sequences based
on temporal redundancy and computing an overhead function
for each category. Second, as indicated by previous studies [1],
[5] fine-grained scalable coding imposes more overhead than
coarse-grained scalable coding. To model this difference, we
use two overhead functions: and for CGS and FGS layers,
respectively. Finally, the authors of [5] observe that encoding
the base layer of MPEG-4 FGS sequences at higher rates yields
lower scalability overhead for the enhancement layer. This
indicates that the overhead function of a layer will depend on
the cumulative rates of the preceding layers, in addition to the
rate of that layer itself. To model this dependence, we define
the effective rate of layer as follows:

(1)

In the above equation, we use to denote the encoding rate of
layer . Layer 1 (base layer) does not incur scalability overhead
(i.e.,), because it is typically encoded using a nonscal-
able method. For successive (enhancement) layers, the effective
rate of layer is computed recursively from the effective rate of
layer and the width of layer scaled down by the overhead
function . We scale down the width of layer to account
for the scalability overhead. We use the effective rate defined in
(1) in our problem formulation.

B. Problem Formulation

Our goal in this paper is to find the optimal structure of a
multilayer scalable video stream. That is, we want to compute
the coding method (CGS or FGS) and the coding rate of each
layer to maximize a system-wide utility function. We elaborate
on the utility function later in this section.

We consider heterogeneous client populations by dividing
clients into classes. All clients belonging to the same class

have the same bandwidth . We assume that
without loss of generality. The fraction

of clients in each class is given by a probability mass function
, where . No assumptions are made on the

number of client classes or on the probability function. Without
loss of generality, we assume that , where is
a pre-determined maximum rate of the video stream. If other-
wise, we combine all clients with bandwidth larger than
in a single class with bandwidth equal to . We can do that
because no matter how large the client bandwidth is, it cannot
receive more than the maximum rate .

For client class , its actual received rate is no larger than
. To account for scalability overhead, we define to be the

effective rate of client class where . is a function
of the adopted structuring policy , which is defined as

where determines the encoding
rate and decides the granularity for layer . We set if
layer is CGS-coded, and if it is FGS-coded. We assume

, because the base (first) layer is typically coded with
nonscalable coders, which do not incur scalability overhead. We
use to denote the highest layer that can be transferred to client

in its entirety (i.e.,), we write the effective rate
as

(2)

The effective rate of class is equal to that of layer , if layer
is CGS-coded. If layer is FGS-coded, the additional

rate can be received on top of , which contributes to
the effective rate of class after being scaled down by the FGS
overhead function .

Our problem can formally be stated as follows. Given a scal-
able stream that can be structured into up to layers, and a large
number of clients divided into classes with their distribution
given by the probability mass function , find the optimal
structuring policy that yields
the maximum system-wide utility , which is defined as the
average client utility over all classes. Mathematically, we write
our problem as

(3a)

(3b)

(3c)

(3d)

In the above formulation, the utility of a client is a nonde-
creasing function of the effective rate achieved by that client.
We use the effective rate in the utility function to account for
the scalability overhead. We do not impose any restrictions on
the utility function: It can be any arbitrary function that may,
for example, describe utilization of system resources, satisfac-
tion of clients, or a combination of both. Our algorithm, pre-
sented in the next section, works with any user-defined utility
function. In the evaluation section, we use three types of utility
functions. These utility functions have been used before in the
literature, and they model various aspects such as the effective
rate received by clients, the mismatch between client bandwidth
and received stream rate, and client perceived quality in terms
of PSNR.

The optimization problem in (3) has an exponential number
of feasible solutions, and exhaustively trying all of them to find
the optimal one is extremely expensive. In the next subsection,
we propose an efficient, yet optimal, algorithm to solve it. Our
algorithm uses a dynamic programming approach.

C. Efficient Algorithm

We first develop a few lemmas to reduce the search space of
the optimization problem . We define a subproblem
for (3) called , where , and .
For this subproblem, we find the optimal structuring policy

that yields the maximum
system-wide utility . We then solve this problem
iteratively by utilizing solutions of smaller subproblems. In
subproblem , we assume that the rate of layer 1 is higher
than the bandwidth of client class , and is no larger than
the bandwidth of client class . We also assume that the layer
1 is CGS-coded. Therefore, clients in class and below

HSU AND HEFEEDA: OPTIMAL CODING OF MULTILAYER AND MULTIVERSION VIDEO STREAMS 125

receive nothing and contribute zero system utility. We can write
this subproblem as as follows:

(4a)

(4b)

(4c)

(4d)

(4e)

In the above subproblem, constraint (4e) enables us to re-
duce the search space. We incrementally relax this limitation to
derive the optimal solution for the original problem .
Solving subproblem is still hard. For instance, there are
too many possible solutions to consider in order to determine the
optimal coding rate for layer 1 alone. We present the following
two lemmas to reduce the search space of the optimal structure
policy.

Lemma 1: For any given subproblem , there exists at
least one optimal solution that
has the following property: .

Proof: Let be an optimal
structuring policy of , with two or more layers coded at
rates in . Without loss of generality, we assume that
there are two layers coded in this interval, i.e.,

. The cases with more than two layers coded in
can be proved with the same technique. When is employed,
following (1), the clients in classes and above receive the ef-
fective rate from layers 1 and 2.
We notice that, if we were to adopt a structuring policy

, where ,
we still get optimal performance. This is because i) employing

allows clients in classes and above to receive at the effec-
tive rate , which is higher than the effective rate achieved
by as the overhead function is nonnegative and ii) clients in
classes and below receive at the same effective rate re-
gardless of whether or is employed. Thus, employing the
structuring policy achieves at least the same utility as , be-
cause utility is a nondecreasing function.

Lemma 1 states that if there is an optimal solution that has two
or more layers between two adjacent classes and , we can
find another optimal solution with only one layer between these
two classes. Therefore, we do not need to allocate two layers
between adjacent classes, which reduces the search space. The
following lemma further reduces the search space.

Lemma 2: There exists at least one optimal solution for the
subproblem with layer 1 coded at rate . That is, at least
one optimal solution has the following property:

.
Proof: Let be an optimal

structuring policy of , where . We notice
that setting still produces an optimal structuring. This is
because the utilities of clients in classes and below are not
affected, and the clients in class and above would achieve at
least the same utility because utility is a nondecreasing function
in terms of effective rate.

Fig. 3. Optimal structuring problem with C client classes and L layers can
be solved using dynamic programming by dividing it into subproblems. Each
problem is solved based on the results of preceding subproblems. Note that
Lemma 1 enables us to skip subproblems in the lower right part.

These two lemmas imply that to determine for an optimal
solution of subproblem , we only need to consider

. Next, we consider rates and granularity for other layers for an
optimal solution of subproblem . We do so by recursively
solving subproblem , where .

We present a simple example with three layers and five client
classes to demonstrate the basic idea of our algorithm. The ex-
ample is shown in Fig. 3. We take subproblem as ex-
ample, which finds the optimal 2-layer structuring policy, where
all layers are coded at rates higher than . From the previous
lemmas, we know that setting would result in an optimal
solution. The subproblem is then reduced to find the
best coding rate and granularity for layer 2, which can be deter-
mined from subproblems , and . These
three subproblems consider that the rate of layer 2 is in intervals

, and , respectively. This indeed covers
all possible rates for layer 2 because we know that . To
decide whether layer 2 should be FGS- or CGS-coded, we need
to evaluate the system-wide utility for both cases, and take the
maximum of them. Computing the system-wide utility for each
of these smaller subproblems and coding granularity leads to the
optimal solution for subproblem .

This example reveals that solving layer subproblems re-
quires optimal solutions for layer subproblems. There-
fore, we sequentially solve subproblems with 1 layer, 2 layers,
until layers. Notice that, we assign rates and granularity in de-
scending order. That is, we first determine the optimal rate and
granularity for layer by solving subproblem where

. We then recursively search for the optimal rates
and granularity for layers .

We present the details on solving a general subproblem
where and in the following. We

assume the effective rate of each client class is used as its utility
in our discussion. That is, we employ this utility function:

. We, however, emphasize that our algorithm
works with any utility function as we will demonstrate in
Section V. We first solve subproblem for .
The previous two lemmas tell us that setting in
leads to an optimal solution. As layer 1 is CGS-encoded, clients
in class and below receive nothing, and clients in class

126 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

and above receive layer 1, we compute the optimal system
utility as follows:

(5)

In the above equation, the first line represents the case where
layer 1 is indeed the base layer that has zero scalability over-
head. The second line represents the case where layer 1 is not a
base layer, and thus its width is scaled down using the overhead
function. In the latter case, we assume layer 1 is CGS-coded,
however, we have not determined its granularity. The granu-
larity of layer 1 will be addressed in a moment.

We then solve subproblem where and
. Again, following previous lemmas, we know that set-

ting leads to an optimal solution. To determine the rates
and granularity of other layers, we consider optimal solutions
for where . We do not con-
sider subproblems with , because solutions of
these problems have at least one bandwidth interval
that contains rates for two or more layers. Previous lemmas tell
us that considering stream structures with only one layer be-
tween any adjacent client classes is sufficient to find an optimal
solution, which enables us to ignore these subproblems. These
subproblems are located at lower right part in Fig. 3 in our il-
lustrative example. Next we explain how to construct an layer
structure from an layer structure.

We use to denote an op-
timal stream structure for subproblem . We add a
CGS-coded layer at rate into this optimal solution to form an
layer structure. Since is always equal to or larger than , the
rate is lower than the rates of all layers in an optimal solution
for . Therefore, we use to denote the rate of this new
layer, and let , where . That is, we
write as an -layer stream struc-
ture. We observe that this insertion of layer 1 classifies client
classes into three categories. For clients in classes and
below, they do not receive any layer even after adding layer 1.
That is, the system utility contributed by them remains zero. For
clients in classes , they start receiving streams
because of the addition of layer 1, and thus they contribute ad-
ditional system utility. We define this additional system utility
as function which is given as follows:

(6)

The above equation indicates that the additional system utility
depends on the granularity of layer 2. The first two lines con-
sider that layer 1 is the base layer that has no scalability over-
head, while the other two lines assume layer 1 is CGS-coded.
For clients in class and above, they receive layer 2 before and

after the addition of layer 1. Their effective rates, however, are
reduced because of the addition of layer 1 as scalability over-
head is a nonincreasing function. We define the effective rate
reduction as function which is given as follows:

(7)

The above equation follows the definition of effective rates.
The first term represents the effective rate for these clients be-
fore the addition of layer 1. The second and third terms account
for the effective rate after layer 1 is added. Again, the effective
rate reduction depends on the granularity of layer 2.

The analysis of these categories of client classes allows us to
compute the system-wide utility after adding a CGS-coded layer
to the optimal structure of subproblem . Therefore, we
can use the following formulation to solve subproblem
by utilizing optimal solutions for smaller subproblems:

(8)

where represents the optimal system utility for sub-
problem .

The formulation in (8) updates the maximal system utility of
by deducting utility from all clients in class

and above, and adding the additional utility function .
It finds the subproblem and the granularity that
maximize system-wide utility for subproblem . Notice
that represents the granularity of the lowest layer for sub-
problem . was assumed to be CGS-coded in sub-
problem , and its optimal setting is determined when
solving subproblem using (8). An important property of
(8) is that we effectively consider all possible combinations of
and . Therefore, we can use dynamic programming technique
to optimally solve subproblem for its optimal structure.
The following theorem shows how to construct an optimal solu-
tion for problem based on optimal solutions for sub-
problems .

Theorem 1 (Optimality): Let denote the optimal
-layer structure for subproblem that achieves the max-

imal system utility . The optimal structure for the
original problem is the one that achieves maximum
system utility: .

Proof: Let be an optimal structure for problem
, and represent the coding rate of layer 1 in .

Clearly, we have . This is because can not be
larger than , otherwise none of the client classes receives
anything, and thus can not be an optimal structure. We di-
vide the range into nonoverlapping intervals ,

HSU AND HEFEEDA: OPTIMAL CODING OF MULTILAYER AND MULTIVERSION VIDEO STREAMS 127

where and . Now assume that the
optimal rate occurs in an arbitrary interval , for
some . Because the constraint is
satisfied, we know that the optimal structure for subproblem

leads to the maximum system wide utility for problem
. As must fall in exactly one of these intervals, we

solve subproblems for , then compute
the by: , which results in the
maximal system utility for the original problem .
Furthermore, Lemma 1 allows us to ignore subproblems

where .
The above theorem illustrates that the optimal structure

for problem can be derived by finding the maximal
system-wide utility among all optimal solutions for subprob-
lems where , while the optimal
solutions for subproblems can be found by iteratively
solving smaller subproblems. Next, we present the details of
our algorithm.

The pseudo-code of our algorithm is shown in Fig. 4. The
algorithm takes the following inputs: client class distribution

, client network bandwidth , and number of layers . The
algorithm also requires specifying the utility function and the
scalability overhead function. It produces the optimal rate
and granularity (CGS or FGS) for each layer . The algo-
rithm works by sequentially solving subproblems for

and . It re-uses the optimal solutions of
-layer structuring subproblems to find the -layer optimal

solutions. We first solve the 1-layer structuring subproblem in
lines 2–4. We then solve all other subproblems with more than
one layer. We do this by using the two for loops starting at lines
6 and 7, which go through layers and client classes, respectively.
We solve subproblem as follows. The loop in lines 10–19
takes an optimal layer structure produced by previous
subproblems , adds a layer to it, and computes the
system-wide utility of this new -layer structuring policy. To de-
termine the optimal granularity, it computes a CGS-coded utility
in line 11 and an FGS-coded utility in line 12. In lines 14–19,
we check whether the current leads to a structuring policy with
higher system-wide utility than the best known -layer structure.
In line 21, we find the optimal structuring policy for problem

based on the solutions for subproblems using The-
orem 1. Finally, lines 23–28 find the optimal -layer stream
structure using backtracking technique.

The following theorem gives the time and space complexities
of our algorithm.

Theorem 2 (Complexity): The time complexity of the Sc-
sOpt algorithm in Fig. 4 is and its space complexity
is , where is the number of client classes and is the
number of layers in the video stream.

Proof: The algorithm uses two for-loops to sequentially
solve subproblem , which take . For each ,
we check previous subproblems, which takes an-
other . For each previous subproblem, we compute its
system-wide utility in steps. Therefore, the time com-
plexity of our algorithm is . It is easy to see that the
space complexity for our algorithm is , because the data
structures used are: for storing optimal system utility;

for storing optimal rate; for storing optimal gran-

Fig. 4. Proposed algorithm to compute the optimal structure of scalable
streams.

ularity; and for back-tracking. All these data structures
are 2-dimensional arrays, where , and .

128 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

Fig. 5. Three of the client bandwidth distributions considered in the experimental study. The first scenario (uniform distribution) is not shown. (a) Scenario II:
bi-modal (skewed to the right). (b) Scenario III: bi-modal (skewed to the left). (c) Scenario IV: Internet client distribution.

V. EVALUATION

In this section, we first describe our experimental setup. Then
we verify the optimality of our algorithm by comparing it against
an exhaustive search algorithm. We then demonstrate that our
algorithm allows various utility functions and produces optimal
stream structures. That is followed by a study on the impact of
choosing different utility functions. Next, we compare our algo-
rithm with a widely used heuristic stream structuring algorithm.
Last, we report the running time of our algorithm.

A. Setup

As mentioned in Section II, our algorithm would be run by
a streaming server receiving requests from many concurrent
clients for a specific scalable stream. The clients are hetero-
geneous in bandwidth. The server uses our algorithm and the
client bandwidth information to determine the optimal structure
of the stream. The output of our algorithm is the encoding rate
and granularity (FGS or CGS) of each layer. This information
is then fed to a video encoder such as H.264/SVC. We have im-
plemented our algorithm in Java, and to rigorously evaluate its
performance: i) we consider three different utility functions to
quantify the optimal solution and ii) we simulate a large number
of clients with different realistic bandwidth distributions. We
elaborate on these parameters in the following.

Our algorithm works with any utility function ,
where is the effective rate of the received stream, and is
the available bandwidth of client . Three utility functions are
employed in our experiments: i) , which as-
sumes that the higher the effective rate that a client receives, the
more satisfied that client will be; ii) ,
which tries to match the rate received by a client with its
bandwidth; and iii) which maximizes the client-perceived
quality (in PSNR) by using rate-distortion (R-D) curves to map
the effective rate to perceived quality. For constructing R-D
curves, we adopt a recent H.264/AVC R-D function which
assumes that the transform coefficients are Cauchy distributed
[23]. The R-D function is given as: , where the
distortion is in mean-square error (MSE) and rate is in
bits per pixel. The model parameters and are sequence
dependents. The authors of [23] show that this model is more
accurate than Laplacian and Gaussian based R-D models. We
chose in
our experiments with CIF video sequences. We note that this

R-D model is proposed for nonscalable H.264/AVC coded
streams. It is, however, applicable in our experiments because
we convert actual rates to effective rates, which are equivalent
to the rates of nonscalable stream.

We consider 100000 clients with network bandwidth dis-
tributed according to four representative scenarios. Fig. 5 shows
three of these distributions. The first scenario (not shown in
the figure) is uniform between 35 and 3005 kbps. The second
is a bi-modal distribution that consists of two normally-dis-
tributed peaks with means at 250 kbps and 1000 kbps, and
standard deviations of 25 and 100. This bi-modal distribution is
skewed to the right: 80% of client classes are from the normal
distribution with mean 1000 kbps. Scenario III is a bi-modal
distribution with the same setting, except that it is skewed to the
left: 80% of client classes are from the normal distribution with
mean 250 kbps. Scenario IV is a multimodal distribution with
three normal distributions, which represents a typical client
distribution in today’s Internet: 50% of clients are equipped
with dial-up connections, which have a normal distribution
with mean 40 kbps and standard deviation of 25 kbps; 35% of
clients use DSL services, where the average bandwidth is 1000
kbps with standard deviation of 100 kbps; and 15% of clients
have high-speed connections with average bandwidth 2000
kbps and standard deviation of 200 kbps.

Finally, our algorithm can employ various user-specified scal-
ability overhead functions. Previous studies [1], [5] reveal that
FGS coded layers results in higher scalability overhead com-
pared to CGS coded layers. Therefore, we define and

for CGS and FGS overhead function, where
at any layer rate . In our experiments, we set

% and %. We let both CGS and FGS overhead
reach zero when kbps. That is, we have the fol-
lowing scalability overhead functions:

and .

B. Optimality of Our Algorithm

We compare the stream structures resulted by our algorithm
against optimal solutions derived by an exhaustive search algo-
rithm. We can only cover a few layers using exhaustive search
due to the huge search space. We search for up to four layers
optimal coding structures. We stop at four layer because the ex-
haustive search algorithm did not terminate in several hours for
more layers. Fig. 6 shows the system-wide utility achieved by
our algorithm and by the exhaustive search algorithm for all four

HSU AND HEFEEDA: OPTIMAL CODING OF MULTILAYER AND MULTIVERSION VIDEO STREAMS 129

Fig. 6. Comparison between our algorithm (ScsOpt) and the optimal solution
(Opt) derived by an exhaustive search algorithm for u utility function. Re-
sults for scenarios I, II, III, and IV are shown from left to right. Similar results
were obtained for the other two utility functions.

Fig. 7. Optimal structuring of a scalable video stream with 5 layers for scenario
IV produced by our optimal algorithm with different utility functions.

scenarios and the utility function. This figure clearly con-
firms the optimality of our algorithm. Similar results were ob-
tained for and utility functions.

C. Optimal Stream Structuring

Our algorithm takes client bandwidth distribution as input. It
produces a stream structure that results in the highest utility. As
mentioned above, we use three different utility functions in our
experiments. These utility functions lead to different optimal
stream structures. Fig. 7 shows the optimal stream structuring
policies computed by our algorithm for 5-layer scalable stream
in scenario IV with different utility functions. We see that the
resulted stream structure is influenced by the chosen utility
function. Specifically, the following stream structures are
determined to be optimal for each of the utility functions: i)

, ii)
, and iii)

. Elements in each 2-tuple represent coding rate in kbps and
granularity, respectively.

These results show that our algorithm is general and can be
used with various utility functions in different environments. In
the next subsection, we provide some guidelines on choosing
the appropriate utility function.

D. Choosing Utility Functions

In this section, we shed some lights on the impact of
using one utility function versus another. We do so by
searching optimal stream structures for various scenarios
and different number of layers. We show a sample result
of constructing an optimal 4-layer stream structure for
scenario IV as follows. In scenario IV, 50% of the clients
have narrowband dial-up service, 35% have DSL service,
and 15% have higher speed. Our algorithm produces the
following stream structures for each utility function i) :

, ii)
: ,

and iii) :
.

We plot the utility of individual classes in Fig. 8. The utility is
derived by multiplying the client utility by the fraction of clients
in that class. We first notice that the effective rate function favors
broadband clients as indicated by Fig. 8(a). Actually the dial-up
clients are completely ignored, as the first layer rate is set at
735 kbps. This is because a satisfied broadband client results in
much higher effective rate compared to a satisfied narrowband
client. In addition, increasing layer coding rates leads to lower
scalability overhead thus higher effective rates. Consequently,
narrowband clients are sacrificed. This poses a fairness issue
among clients.

Using the bandwidth utilization function results in a fair
stream structure as indicated by Fig. 8(b). This is because we
use a relative utility function, in which the decision is not biased
by the value of client bandwidth. Rather, the decision is made
based on the mismatch between the client bandwidth and the
receiving rate. We also observe a quite fair stream structure in
Fig. 8(c). More resources are allocated to narrowband clients,
compared to the effective rate case, because of the nonlinear
R-D curve shape. The R-D curve increases dramatically at
low rates, but saturates at high rates. Therefore, to maximize
system-wide utility, more resources are allocated to clients that
are receiving at lower rates.

These results help content providers to choose a utility func-
tion that suit their needs. For instance, a content provider would
use the effective rate utility function if its customers are charged
in terms of traffic amount. A nonprofit organization may be more
interested in inter-client fairness and chooses bandwidth utiliza-
tion function. Another content provider who wants to boost its
client satisfaction would adopt the perceived quality function,
which accommodates the nonlinear relationship between rate
and actual perceived quality.

E. Comparison With Previous Structuring Algorithm

We compare the stream structures resulted by our algorithm
against the heuristic structuring algorithm used in [15], [16].
This heuristic algorithm takes two rates for minimum and
maximum supported decoding rates. It uses these two rates
to code the first and the last layers, and then exponentially
allocates rates for intermediate layers. That is, a layer is
assigned rate , where and are the min-
imum and maximum supported rates. The factor is given by

, where is the total number of layers. We
use kbps and kbps in our experiments.

130 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 1, JANUARY 2008

Fig. 8. Utility achieved by individual classes using our algorithm with various utility functions. (a) Effective rate. (b) Bandwith utilization. (c) Perceived quality.

Fig. 9. Comparison between our algorithm (ScsOpt) and the heuristic algorithm (Expo) that exponentially allocates rates to layers. Sample results for different
scenarios and various utility functions are shown. (a) Scenario II, using u . (b) Scenario III, using u . (c) Scenario IV, using u .

This covers a wide range of clients, from dial-up to broadband
access links. We denote this algorithm by Expo in the plots.
Fig. 9 illustrates the achieved system-wide utility by ScsOpt
and Expo algorithms. This figure indicates that our algorithm
outperforms the heuristic algorithm with significant margins.
Similar results were obtained in all considered cases.

We note that Expo is the only algorithm we could find in the
literature that may be applied to our stream structuring problem.
Moreover, if there were other algorithms, the best they can do
is to achieve results similar to our algorithm, because our al-
gorithm is optimal as shown in Section IV-C and verified in
Section V-C.

F. Running Time

While heuristic algorithms are typically efficient, they do not
lead to optimal structuring policies. For example, the Expo al-
gorithm produces significantly lower system-wide utility com-
pared to our optimal algorithm. Therefore, we do not report the
running time of heuristic algorithms.

Because of the huge search space, the exhaustive search al-
gorithm consumes tremendous computational resources. For a
moderate size problem with 100 client classes and 4 layers, the
exhaustive search algorithm took at least 30 min to terminate.
The running time is even longer if a complicated utility func-
tion—e.g., the perceived quality function—is employed. Con-
sequently, the exhaustive search algorithm is not practical.

We present the running time of our algorithm in Table I. Our
algorithm terminates in negligible time for straightforward utility
functions: effective rate and bandwidth utilization. For instance,
when using as utility function, our algorithm solves a

TABLE I
RUNNING TIME (IN MILLISECONDS) OF OUR ALGORITHM WITH ALL

CONSIDERED TEST SCENARIOS AND DIFFERENT UTILITY FUNCTIONS

problem with more than 200 client classes and eight layers in
less than one second. In addition, our algorithm terminates in a
few seconds even with a complicated perceived quality function.
For example, our algorithm takes up to 2.5 seconds to solve a

HSU AND HEFEEDA: OPTIMAL CODING OF MULTILAYER AND MULTIVERSION VIDEO STREAMS 131

problem with 100 client class and up to eight layers. Because of
its low computational complexity, using our algorithm with more
complex utility functions is feasible and practical. For instance,
our algorithm can adopt an elaborate R-D function for higher
estimation accuracy, and thus results in higher average perceived
quality.

VI. CONCLUSION

We have formulated an optimization problem to determine the
optimal rateandencodinggranularity (CGSorFGS)ofeach layer
in ascalablevideostreamthat maximizesa system-defined utility
function for a given client distribution. We have proposed an op-
timal algorithm to solve this problem. The algorithm is efficient
and runs in , where is the number of layers in the video
stream and is the number of client classes. Since and are
typically small integers, the proposed algorithm is computation-
ally efficient. Our algorithm can employ arbitrary utility func-
tions for clients. To demonstrate the generality of our algorithm,
we used three utility functions in our experimental study. These
utility functions have been used before in the literature, and they
model various performance metrics such as the effective rate re-
ceived by clients, the mismatch between client bandwidth and re-
ceived stream rate, and the client-perceived quality in terms of
PSNR. We experimentally verified that our algorithm produces
the optimal results and runs in a few seconds on a commodity PC.
We also compared our algorithm against another algorithm that
has been used before in the literature, and we showed that our
algorithm outperforms the other one in all cases.

We studied the effect of various structuring of scalable video
streams on client utilities for different utility functions. By ana-
lyzing various utility functions, we provided guidelines for con-
tent providers to choose the appropriate utility function that suits
their needs. For instance, a content provider can use the effec-
tive rate as a utility function if its customers are charged in terms
of traffic amount. A nonprofit organization may be more inter-
ested in inter-client fairness and chooses a utility function based
on the mismatch between client bandwidth and received rate.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “The scalable H.264/
MPEG4-AVC extension: Technology and applications,” in Proc. Eur.
Symp. Mobile Media Delivery (EuMob’06), Sardinia, Italy, Sep. 2006.

[2] Joint Scalable Video Model Reference Software, JSVM 8.0, Feb. 2007,
Joint Video Team.

[3] H. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-grained
scalable video coding method for multimedia streaming over IP,” IEEE
Trans. Multimedia, vol. 3, no. 1, pp. 53–68, Mar. 2001.

[4] W. Li, “Overview of fine granularity scalability in MPEG-4 video stan-
dard,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp.
301–317, Mar. 2001.

[5] M. van der Schaar and H. Radha, “Adaptive motion-compensation fine-
granular-scalability (AMC-FGS) for wireless video,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 12, no. 6, pp. 32–51, Jun. 2002.

[6] J. Liu, B. Li, and Y. Zhang, “Adaptive video multicast over the In-
ternet,” IEEE Multimedia Mag., vol. 10, no. 1, pp. 22–33, Jan. 2003.

[7] X. Li, M. Ammar, and S. Paul, “Video multicast over the Internet,”
IEEE Network Mag., vol. 13, no. 2, pp. 46–60, Mar. 1999.

[8] S. Cheung, M. Ammar, and X. Li, “On the use of destination set
grouping to improve fairness in multicast video distribution,” in Proc.
IEEE INFOCOM’96, San Francisco, CA, Mar. 1996, pp. 553–560.

[9] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. ACM SIGCOMM’96, Palo Alto, CA, Aug. 1996,
pp. 117–130.

[10] X. Li, S. Paul, and M. Ammar, “Multi-session rate control for layered
video multicast,” in Proc. ACM/SPIE Multimedia Computing and Net-
working (MMCN’99), San Jose, CA, Jan. 1999, pp. 175–189.

[11] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like congestion control
for layered multicast data transfer,” in Proc. IEEE INFOCOM’98, San
Francisco, CA, Mar. 1998, pp. 996–1003.

[12] T. Jiang, M. Ammar, and E. Zegura, “On the use of destination
set grouping to improve inter-receiver fairness for multicast ABR
sessions,” in Proc. IEEE INFOCOM’00, Tel Aviv, Israel, Mar. 2000,
pp. 42–51.

[13] N. Shacham, “Multipoint communication by hierarchically encoded
data,” in Proc. IEEE INFOCOM’92: Conf. Comput. Commun., Flo-
rence, Italy, May 1992, pp. 2107–2114.

[14] Y. Yang, M. Kim, and S. Lam, “Optimal partitioning of multicast re-
ceivers,” in Proc. IEEE Conf. Network Protocols (ICNP’00), Osaka,
Japan, Nov. 2000, pp. 129–140.

[15] J. Liu, B. Li, Y. Hou, and I. Chlamtac, “Dynamic layering and band-
width allocation for multi-session video broadcasting with general
utility functions,” in Proc. IEEE INFOCOM’03, San Francisco, CA,
Mar. 2003, pp. 630–640.

[16] J. Liu, B. Li, and Y. Zhang, “Optimal stream replication for video
simulcasting,” IEEE Trans. Multimedia, vol. 8, no. 1, pp. 162–169, Feb.
2006.

[17] I. Radulovic, P. Frossard, and O. Verscheure, “Adaptive video streaming
in lossy networks: versions or layers?,” in Proc. IEEE Int. Conf. Multi-
media Expo (ICME’04), Taipei, Taiwan, Jun. 2004, pp. 1915–1918.

[18] P. de Cuetos, D. Saparilla, and K. Ross, “Adaptive streaming of stored
video in a TCP-friendly context: multiple versions or multiple layers?,”
in Proc. Int. Packet Video Workshop (PV’01), Kyongju, Korea, Apr.
2001.

[19] T. Kim and M. Ammar, “A comparison of layering and stream repli-
cation video multicast schemes,” in Proc. ACM Int. Workshop Network
Oper. Syst. Support for Digital Audio Video (NOSSDAV’01), Port Jef-
ferson, NY, Jun. 2001, pp. 63–72.

[20] T. Kim and M. Ammar, “A comparison of heterogeneous video mul-
ticast schemes: layered encoding or stream replication,” IEEE Trans.
Multimedia, vol. 7, no. 6, pp. 1123–1130, Dec. 2005.

[21] M. Dai, D. Loguinov, and H. Radha, “Rate-distortion analysis and
quality control in scalable Internet streaming,” IEEE Trans. Multi-
media, vol. 8, no. 6, pp. 1135–1146, Dec. 2006.

[22] C. Hsu and M. Hefeeda, “Optimal partitioning of fine-grained scalable
video streams,” in Proc. ACM Int. Workshop Network Oper. Syst. Sup-
port for Digital Audio Video (NOSSDAV’07), Urbana-Champaign, IL,
Jun. 2007, pp. 63–68.

[23] N. Kamaci, Y. Altunbasak, and R. Mersereau, “Frame bit allocation for
the H.264/AVC video coder via Cauchy-density-based rate and distor-
tion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8,
pp. 994–1006, Aug. 2005.

Cheng-Hsin Hsu received the M.Eng. degree from
the University of Maryland, College Park, in 2003,
and the M.Sc. and B.Sc. degrees from National
Chung-Cheng University, Taiwan in 2000 and 1996,
respectively. He is currently pursuing the Ph.D.
degree in the School of Computing Science, Simon
Fraser University, Surrey, BC, Canada.

His research interests are in the area of multimedia
networking and scalable video coding.

Mohamed Hefeeda (S’01–M’04) received the M.Sc.
and B.Sc. degrees from Mansoura University, Egypt,
in 1997 and 1994, respectively, and the Ph.D. degree
from Purdue University, West Lafayette, IN, in 2004.

He is an Assistant Professor in the School of Com-
puting Science, Simon Fraser University, Surrey, BC,
Canada, where he leads the Network Systems Lab.
His research is funded by Canadian funding agencies
and industry through several grants. His research in-
terests include multimedia networking, peer-to-peer
systems, and wireless sensor networks.

Dr. Hefeeda is a member of the ACM Special Interest Groups on Data Com-
munications (SIGCOMM) and Multimedia (SIGMM).

