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Abstract—Current cellular networks support video streaming
over unicast or multicast. However, there exists a tradeoff between
utilizing the two: i) unicast leads to higher network load, but lower
energy consumption of mobile devices, and ii) multicast results in
lower network load, but higher energy consumption. To make the
best out of both, we propose to concurrently utilize unicast and
multicast for minimizing the energy consumption of mobile devices
and minimizing the load on cellular networks. Cellular networks
support two multicast schemes: i) independent cell networks and
ii) multi-cell single frequency networks, where multiple adjacent
base stations operate on the same frequency. We first consider
the less-complicated independent cell networks, and then extend
our solution to single frequency networks for better performance.
We formulate the resource allocation in hybrid multicast-unicast
streaming systems as a binary integer programming problem.
We describe optimal algorithms for the two multicast schemes.
We then propose two efficient, heuristic, algorithms that run
faster and provide close to optimal results. While our solution is
general, for concreteness, we conduct detailed LTE packet-level
simulations using OPNET. Our simulation results show the
proposed algorithms i) scale to many more mobile devices than
the state-of-the-art unicast-only approaches and ii) result in lower
energy consumption than the latest multicast-only approaches. In
addition, the algorithms designed for multi-cell single frequency
networks outperform the algorithms designed for independent cell
networks in all aspects, such as service ratio, spectral efficiency,
energy saving, video quality, frame loss rate, initial buffering time,
and number of re-buffering events.

Index Terms—Hybrid unicast-multicast, mobile multimedia,
single frequency networks, video streaming.

I. INTRODUCTION

ARKET research [1] shows that video streaming cur-
rently represents more than 50% of the mobile Internet
traffic, and this fraction will increase to 72% by 2019. While
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many users like to watch videos using their mobile devices, cur-
rent cellular networks mostly provide unicast services, which
cannot efficiently deliver videos to a large number of mobile
users. This is because the same video is sent multiple times over
a shared air medium, which consumes excessive mobile net-
work resources. One way to reduce the network load is to em-
ploy multicast that concurrently delivers a live video stream to
all interested mobile users. Emerging 4G/5G cellular networks
support multicast technologies, such as Multicast and Broad-
cast Service (MBS) in WiMAX [2] and evolved Multimedia
Broadcast Multicast Service (eMBMS) in LTE [3]. Some U.S.
cellular operators have recently delivered live events, such as
Super Bowl [4], [5] and Indy 500 [6], using multicast over their
commercial LTE networks to a huge number of mobile users,
which could not have been possible using unicast. Two main cel-
lular operators in Canada have also launched their video-on-de-
mand streaming services at the end of 20141>2 to provide more
than 10,000 hours of videos to their subscribers. In addition to
streaming live videos and sports events, multicast in mobile net-
works can benefit other video applications such as mobile video
recorders and pre-staging of popular videos ahead of their ex-
pected viewing times.

There are two multicast schemes in 4G/5G cellular networks
[7], [8]: 1) independent cell networks and ii) multi-cell single
frequency networks. In independent cell networks, neighboring
cells operate without coordination. Mobile devices report their
channel conditions via a feedback channel, and base stations de-
termine the best Modulation and Coding Scheme (MCS) mode
for each multicast group based on the channel conditions. When
mobile devices in a multicast group are close to a base station,
more aggressive, higher, MCS modes can be used for higher
transfer rates. On the other hand, when even a few mobile de-
vices are located at the cell edges, more conservative, lower,
MCS modes are dictated for acceptable loss rates. In multi-cell
single frequency networks, several neighboring cells synchro-
nously transmit identical signals to all mobile devices in those
cells, forming a Single Frequency Network (SFN). Thus, SFNs
turn inter-cell interference into higher signal strength at mo-
bile devices and lead to better channel conditions. While SFNs
offer more chances for saving network resources, they raise ad-
ditional challenges, such as the coordination of multicast sched-
ules across cells and the synchronization among base stations.
More information on how an SFN manages its resources and
operates in general can be found in [3], [8]. An example for an

1“Shomi: VoD service,” [Online]. Available: www.shomi.com
2“Crave TV: Bell media,” [Online]. Available: www.cravetv.ca

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ALMOWUENA et al.: HYBRID VIDEO STREAMING OVER MOBILE NETWORKS

existing deployment of an SFN can be found in [9], where a
single frequency in the 700 MHz LTE band has been utilized
for national TV broadcasting over a 200 Km square area in Mu-
nich, Germany.

In this paper, we study the resource allocation problem for
large-scale video streaming over multi-cell networks, which
is one of the most challenging research problems in 4G/5G
multicast networks. Base station(s) concurrently serve multiple
videos with diverse popularity to mobile devices, and mobile
devices may start watching at different time instants. Our
problem is to determine which chunks of videos should be sent,
when to send them, and with what MCS modes, in order to
minimize the overall energy consumption of mobile devices
and maximize the number of served users without consuming
excessive network bandwidth. The considered resource alloca-
tion problem directly affects both cellular network's load and
mobile devices' battery life. For example, transmitting at higher
MCS modes allows the mobile devices to receive at higher
rates and then finish earlier. This in turn results in higher energy
saving because the mobile devices may turn off their wireless
interfaces for longer time durations. Different from some
existing work that adopt scalable/layered videos [10]-[13], we
focus on nonscalable videos, which can be decoded by most
mobile devices and require lower coding complexity.

To maximize the energy saving, the base station may set up
a unicast connection to each mobile device using the best MCS
mode determined by each device's channel conditions. Using
a unicast-only approach, e.g., [14]-[16], consumes excessive
network resources. To cope with this issue, a base station
may put mobile devices into multiple multicast groups based
on their requested videos. Using a multicast-only approach,
however, may result in higher energy consumption, because
each video is transmitted with the MCS mode suitable to the
mobile device with the worst channel condition. This unnec-
essarily increases the energy consumption of some mobile
devices, even if they are under better channel conditions. To
get the merits of both multicast and unicast, we consider a
hybrid video streaming system that concurrently leverages
unicast and multicast to maximize the energy saving of mobile
devices under various resource constraints. We first address
the resource allocation problem in a hybrid video streaming
system within independent cell networks, which is simpler
yet useful in its own right. We prove that the problem is
NP-Complete and mathematically formulate it as a Binary
Integer Programming problem. The optimization problem can
be solved by general optimization solvers (such as CPLEX3
and GLPK#%), which however are computationally expensive
for real-time video streaming services. Hence, we develop a
heuristic algorithm, which gives close-to-optimal solutions.
Next, we extend the solution to multi-cell SFNs for better
channel conditions and overall performance. We also propose
optimal and heuristic algorithms for the extended problem in
multi-cell SFNs.

While our solution is general for all cellular networks that
support multicast, we use LTE networks in our evaluation for

3“IBM ILOG optimizer,” [Online]. Available: http:/tiny.cc/CPLEX
4“GNU linear programming kit,” [Online]. Available: http://tiny.cc/GLPK
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concrete discussion. Our extensive simulation results, using
OPNET,5 lead to the following observations.

* The proposed solution allows cellular networks to support
a large number of mobile devices: up to 11 times more than
the state-of-the-art unicast approach [14], and up to 48%
more than the latest multicast approaches [17]-[19].

* The proposed solution enables cellular networks to achieve
high energy saving, as in unicast-only approaches. The
simulation results show that our algorithms consume only
6.5% more energy than the state-of-the-art unicast-only ap-
proaches [14], and outperform the latest multicast-only ap-
proaches [17]-[19] by up to 20%.

* Even for dense networks with 1,000 mobile users in each
cell, our heuristic algorithms achieve better performance in
video quality, frame loss rate, and number of re-buffering
events. They also run in real-time: our algorithms termi-
nate in a few milliseconds on a commodity workstation. In
real deployments, these algorithms are run on servers once
every few seconds, and thus our heuristic algorithms are
practical and efficient.

* Our algorithms proposed for multi-cell SFNs leverage the
enhanced coverage gained by coordinated efforts among
adjacent cells to increase both service ratio and energy
saving. To show the potential impacts of multi-cell SFNs,
we simulate the performance on base stations of a leading
Canadian cellular operator deployed in downtown Van-
couver. The evaluation results show that our heuristic al-
gorithm for multi-cell SFNs achieves up to 13% higher ser-
vice ratio and 6% higher energy saving, compared to inde-
pendent cell networks.

We note that a preliminary conference version of this
work appeared in [20]. The conference version focused on
hybrid streaming in single cells, whereas this paper presents
the formulation and solution of the more general problem
in multi-cell SFNs. This paper also presents the proofs and
theoretical analyses of the algorithms as well as more detailed
and realistic simulations based on information from a com-
mercially deployed cellular network. Furthermore, we extend
our performance metrics to include spectral efficiency, video
quality, frame loss rate, initial buffering time, and number of
re-buffering events. The overhead of feedback channel is also
considered.

The rest of this paper is organized as follows. We survey the
literature in Section II. Section III presents the considered net-
work models and problems. We formulate and solve the opti-
mization problems for independent cell networks and multi-cell
SFNs in Sections IV and V, respectively. We evaluate our pro-
posed solutions in Section VI. Section VII concludes the paper.

II. RELATED WORK

Bandwidth-efficient video streaming in cellular networks:
Several studies attempt to model the performance of streaming
videos over cellular networks. For instance, Rong et al. [21]
and Talarico and Valenti [22] present analytical models to
determine the coverage of an SFN and utilize these models
to dynamically choose the best MCS modes and group cells

>“Riverbed technologies,” [Online]. Available: http:/tiny.cc/OPNET
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into SFN areas. Having such knowledge prior to the network
deployment helps in achieving a target bandwidth utilization.
Urie et al. [23] evaluate the performance of SFNs under more
realistic conditions. Alexiou et al. [24] estimate the number
of neighboring cells that should join an SFN area such that a
target average Signal-to-Noise Ratio (SNR) is achieved and a
minimum communication cost is incurred. They calculate the
cost of both data and control packets under diverse network
topologies and user distributions. Using the models derived in
[21]-[24] cellular network resources can be allocated among
mobile users for better overall performance.

Energy-efficient video streaming in cellular networks: Al-
though several algorithms proposed in the literature solve
the multicast scheduling problem [17], [25]-[29], very few
research efforts consider the more general hybrid approaches
with both unicast and multicast. Monserrat et al. [18], Lee et
al. [19], and Deng et al. [30] use both unicast and multicast
in order to maintain fairness among mobile users [18], reduce
the blocking probability [19], and guarantee a certain level for
the quality of services [30]. Our solutions are different from
the existing studies [17]-[19], [21]-[30] in two main aspects:
1) we do not solely depend on unicast, but also create multicast
groups and assign the best MCS mode for each group, and ii)
we design multicast schemes in independent cell networks and
multi-cell SFNs.

The energy saving in multicast over cellular networks is
addressed in [10]-[13], [36]-[38], where they utilize the con-
cept of scalable video coding. The power consumption de-
pends mainly on the signal strength of its radio resources.
Weak signals eventually lead to higher transmitting power
and lower transfer rate. Moreover, the communication energy
per bit is found to be as much as six times higher when the
signal is weak compared to those cases when it is strong [39].
On this ground, to save energy, applications should commu-
nicate only if the radio signal is strong, either by deferring
non-urgent traffic or advancing anticipated communications to
coincide with periods of strong signals [39], [40]. Different
from these approaches [10]-[14], [31]-[40], our work utilizes
both unicast and multicast to serve incoming video requests
and constructs a set of transmission bursts to admit more mo-
bile devices and increase the overall energy saving of mobile
devices, even under dense user population and constrained
bandwidth.

The closest works to our proposed algorithms are [17]-[19],
because they employ a mixture of multicast and unicast, allow
splitting a multicast group into subgroups, and apply subgroup-
based adaptive modulation and coding schemes. We compare
our algorithms against these works, and we show that our algo-
rithms outperform them with respect to the average service ratio,
spectral efficiency, energy saving, frame loss rate, and number
of re-buffering events. Since our main objective is minimizing
the overall energy consumption of mobile devices, we also com-
pare our algorithms against the energy-efficient video delivery
system introduced in [14]. We show that our algorithms admit
more users than this unicast scheme and achieve close results
regarding the amount of energy saving.
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Fig. 1. Considered system model for the resource allocation problem in mobile
networks.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider an on-demand streaming scenario with base
stations, mobile devices, and resource allocators as illustrated
in Fig. 1. Mobile devices arrive asynchronously, and each
mobile device sends requests to a resource allocator to re-
ceive video streams. These requests may be driven by mobile
users' current demands or by some prediction logics running
on mobile devices, e.g., a background mobile application
may prefetch videos that are likely to be watched in near
future [41], [42]. Since the requests are driven by mobile
devices/users, user inputs like delay, fast forward, and rewind
can be supported, which enable diverse applications, including
on-demand video streaming, live or time-shifted sports events,
and mobile personal video recorders. Each resource allocator
periodically solves an optimization problem for leveraging
both unicast and multicast to: i) maximize the average energy
saving across all mobile devices, ii) minimize the network
resources consumed by video streaming, and iii) ensure smooth
playout on all mobile devices. Upon the optimization problem
is solved, the allocator determines which users should form
multicast sessions and which are served using unicast sessions.
In addition, the solution specifies the allocated bandwidth and
the modulation and coding scheme for each session.

Fig. 1 demonstrates the generality of our considered problem
in two aspects. First, the resource allocator may manage one or
multiple base stations. For example, the base stations of a single
frequency network must be managed by the same resource
allocator for optimal allocations. For clarity, we assume that
each resource allocator manages a base station and then gen-
eralize the problem for SFNs in Section V. Second, depending
on the channel conditions of individual mobile devices and the
reserved bandwidth for video streaming, resource allocators
may decide to stream videos over multicast, unicast, or a
mixture of both. For instance, the top cell in Fig. 1 consists of
mobile devices with similar channel conditions, and the cell
has little bandwidth available for on-demand video streaming,
which renders multicast-only decisions. In contrast, the bottom
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TABLE I
SYMBOLS USED IN THIS PAPER

Symbol Description
T No. symbol columns in an allocation window
S No. subchannel columns in an allocation window
d Fraction of resource blocks reserved for videos
1% No. videos
Ty The encoding rate of video v
Ny No. mobile devices watching video v
N Total no. mobile devices
M No. Modulation and Coding Scheme (MCS) modes
Ccm Per-block capacity with m
Zy Total no. allocation windows for video v
Wy, m,z No. mobile devices watching segment z of video v with m
q Symbol time
v Energy saving
Ty, m,z Whether segment z of video v is sent MCS mode m
Whether mobile devices with maximum MCS mode m
Yvmon.z [Treceive segment z of video v with MCS mode 7o
H No. hexagonal cells in an SFN
NI No. mobile devices in cell h watching v

cell suffers from heterogeneous channel conditions, but it has
more spare bandwidth, which leads to unicast-only decisions
for higher energy saving. Our considered problem covers these
two scenarios and any mixture of them such as the center cell
in this figure.

B. Problem Statement

We list the symbols used in this paper in Table 1. Several cel-
lular networks adopt the Orthogonal Frequency Division Mul-
tiple Access (OFDMA) modulation scheme, which divides a
wireless medium along both time and frequency domains [43].
We consider an allocation window with T' columns of symbols
and S rows of subchannels. A pair oft € [1,7] and s € [1, 5]
uniquely determines a resource block, which is the minimum
unit of data transmission in the network. Let d denote the frac-
tion of resource blocks that is reserved for video streaming,
which can be adjusted based on the loads of voice and data ap-
plications. Thus, the considered resource allocation problem is
to distribute the d7'S blocks of an allocation window among
all mobile devices. Note that the system parameter T affects
the length of allocation windows: larger T" leads to longer allo-
cation windows for higher allocation flexibility, and smaller T’
results in shorter allocation windows for shorter video service
delay. The service delay refers to the time difference between a
mobile device switches to a video and the mobile device starts
rendering that video. Shorter service delay also results in faster
adaptation to network dynamics. To support the true on-demand
streaming cases with real time constraints on the service delay,
a patching solution [44]-[46] may be used. That is, we define a
threshold for a new request to join an on-going multicast session
of a video and at the same time create a separate, temporary uni-
cast session for that user to receive the earlier parts of the video.
This new user will be considered when solving the resource al-
location problem in the next allocation window, and potentially
be assigned to a multicast session.

A video streaming service offers V' different videos. Let r,
denote the encoding rate of video v. We assume each video v is
watched by N, mobile devices, and we let N = 23:1 N, be
the total number of mobile devices. The network interface on
each mobile device can be put into one of M MCS modes. We
let per-block capacity ¢, denote the amount of data that can be
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carried by a block with mode m, where ¢,, is non-decreasing
in m € [1, M]. Each mobile device is under a different channel
condition and can receive at a maximum MCS mode, which is
determined by the firmware on the network interface to maintain
reasonable bit error rates. Moreover, mobile devices may watch
different parts of a video. We divide video v into Z,, consecutive
parts in the length of allocation windows (a few seconds). We let
Wym,z (v € [L,V],m € [1,M], z € [1, Z,]) be the number of
mobile devices watching segment z of video v with maximum
MCS mode m.

For a given video v, depending on the MCS mode, a mobile
device needs to receive different number of blocks in each allo-
cation window. This is because the amount of data to transmit
is fixed at ¢T'r,, which can be carried by [¢Tr, /¢y | blocks,
where ¢ is the symbol time and m is the MCS mode. Allo-
cating different number of blocks to satisfy such capacity de-
mand could largely affect the off time of each mobile device, and
thus its energy saving. We define the energy saving y as the frac-
tion of time each mobile device can turn off its network interface
to save energy. Other factors are less crucial as explained in [47],
and then they can be ignored for better tractability. Moreover,
previous studies [43], [48] show that mobile device's energy
consumption depends on the number of symbols it receives, and
it is almost independent of the number of subchannels. There-
fore, we assume that base stations first allocate blocks in the
same column before considering different ones.

The considered problem can be formally written as follows.

1) Problem 1: We consider a cellular network with a single
cell, in which a fraction d of the network resource blocks is re-
served for an on-demand streaming service of V' videos, where
each video has IV, mobile devices in the allocation window. For
video v € [1, V], there are w, ., , mobile devices that can re-
ceive the video with the maximum MCS mode m and segment
z, where m € [1,M] and z € [1,Z,]. An allocation speci-
fies: 1) the mapping between each block and video, ii) the mul-
ticast/unicast model of each block, and iii) the MCS mode of
each block. For each allocation window of 7" symbols and .5
subchannels, find the optimal allocation to transmit V' videos to
all N = ZX:I N, mobile devices, so that: i) the average energy
saving across all mobile devices is maximized, ii) no more than
dT' S blocks are consumed by the on-demand streaming service,
and iii) all mobile devices watching video v receive at rate 7,
for smooth playout.

The following lemma states the hardness of our problem.

Lemma 1 (Hardness): The considered resource allocation
problem (Problem 1) is NP-Complete.

Proof: We reduce the 0—1 knapsack problem to Problem
1. In the 0—1 knapsack problem, we consider O objects, where
object o(1 < o < O) has a weight 8, and a value ¢,. The
problem is to select a subset of objects for maximizing the total
value without exceeding the weight limit ¢. Given a 0—1 knap-
sack problem, we generate a corresponding problem instance as
follows. For each object o, we create a new MCS mode, and
we: 1) add ¢, mobile devices in that MCS mode, and ii) set the
per-block capacity to be proportional to the weight 6,. Last, we
set the d1'S value based on the weight limit 6. This results in a
proper instance of Problem 1 in polynomial time. In addition, a
solution to Problem 1 can easily be verified in polynomial time.
Therefore, Problem 1 is NP-Complete. O
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C. Applications of Our Solution

The considered problem supports various applications,
including live streaming, on-demand streaming, video
prefetching, and mobile video recorders. For live streaming,
mobile users naturally form multicast groups. However, some
users may have poor channel conditions, which could degrade
the performance for the whole multicast group. Solving our
problem gives each user the optimal decision whether to join a
multicast session or receive the live stream using unicast. Our
problem can also create a mixture of multiple multicast/unicast
sessions to optimally utilize the wireless resources. Another
case is prefetching videos for later playback, where mobile
devices may signal the base stations to indicate less restricted
time constraints. Solving our problem determines the optimal
allocation of requests to multicast and unicast sessions, and we
give the requests with closer deadline higher priority.

Furthermore, we note that the proposed hybrid on-demand
video streaming approach may be readily augmented to satisfy
different optimization criteria and resource constraints based on
the requirements from cellular operators. For example, instead
of minimizing the average energy consumption across all mo-
bile devices, operators may prefer to minimize the maximal en-
ergy consumption among all mobile devices for fairness. More-
over, operators may specify energy budget for individual base
stations, so that they can control their operational costs. The pos-
sible optimization criteria and resource constraints are highly
driven by business policies, and an exhaustive list of them is
out of the scope of this paper.

IV. HYBRID STREAMING OVER INDEPENDENT
CELL NETWORKS

A. Mathematical Formulation

We formulate the resource allocation problem stated in
Problem 1, which assigns the available blocks to individual
videos, decides whether to use multicast or unicast, and
determines the MCS modes of individual blocks, in order
to maximize the overall energy saving while guaranteeing
smooth playout. We use the boolean decision variable x;, , . (v
€ [1,V],m € [1,M], z € [1, Z,]) to denote whether the seg-
ment z of video v is unicast/multicast using MCS mode m. That
1S, &y, m,» = 1 if segment z of video v is transmitted with MCS
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mode m, and z,, ,, . = 0 otherwise. Recall that w,, ,,, . denotes
the number of mobile devices watching segment z of video v
with maximum MCS mode m. Therefore, when wy, . = 1
the base stations stream video v using unicast; and when
Wy m,z > 1 the base stations stream video v using multicast.
When z, ,, . = 0, mobile devices with maximum MCS mode
m receive z of v with the next lower MCS mode n € [1, M]
that are available in the solution. We define an intermediate
boolean variable Yy n . for each v € [1,V], m,n € [1, M],
n < m,z € [1,Z,] as follows. Yy m.n,. = 1 when mobile
device with maximum MCS mode m would receive segment
z of video v with MCS mode n, and ¥, ;nn,. = 0 otherwise.
Yo,m.n,» 18 determined by z,, -, m' € [n, m] as follows:

Yv.mn,z < 1- Ty,m!,z v'ml € [’Il + 17 m} (l)
Yv,mn,z < Tyn,z- (2)

We present the formulation in (3), at the bottom of the page.
The objective function in (3a) is to maximize the average
energy saving. The total size of video v in an allocation window
is ¢I'r,, and the minimum number of symbols we need is
[[¢Try,/cm]/S], where m is the MCS mode. The three sum-
mations iterate through all the videos, modes, and segments,
respectively. The constraint in (3b) ensures that the on-demand
streaming service only consumes up to d network resources.
The constraint in (3c) guarantees that every mobile device
receives its allocation window at a feasible MCS mode. This in
turn ensures that all mobile devices smoothly render the video.
Last, the constraints in (3d) and (3e) are from (1) and (2).

B. Proposed Algorithms: SCOPT and SCG

The proposed algorithms run on the resource allocators close
to base stations to determine how to stream videos in order to
maximize the overall energy saving of mobile devices. The for-
mulation in (3) is a Binary Integer Programming problem, which
can be solved by existing optimization problem solvers, such as
CPLEX and GLPK . We use CPLEX to implement the optimal
algorithm and refer to it as SCOPT (Single-Cell OPTimum). Al-
though SCOPT gives optimum allocations, its worst-case run-
ning time is exponential. Therefore, we develop a greedy algo-
rithm, called SCG (Single-Cell Greedy), whose pseudocode is
given in Fig. 2. We start from an ideal decision in which the
number of blocks is more than enough to enable unicast to all

1 \% M Z, m’ quTrv’—‘
m;mx'y =1- N Z Z Z wu’,m’,z’ Z yv’,m’,n’,z’ [L] (33.)
v'=1m'=1z'=1 n’=1
V. M Z, oI
.t. Y )t v <
s >3 D wvwn [T ] < dTS (3b)
v'=1m'=1z2'=1
(1 - Z yv,m,n’,z)wu,m,z =0 (30)
=1

Yv,mn,z <1- Ty m! z vm/ < [TL +1, m} (3d)
Yv,mn,z < Lym,z
Tomz €10, 1 Yo mn: € {0,1} Ve e[L,V],me[l,M,n€[l,m],z € [1,Z,]. (e)
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Inputs: Wy, m. 2, ¢, T 7y, Cpns d, T, S
Outputs: Ty m,~
foreach v € [1, V], m € [1,M], z € [1, Z,)]
initialize z, ,, . = 1 if Wy > > 05 4y pn . = 0 0.W.
. % Divide Video Requests into Subgroups
foreach v € [1,V], m e [1,M], n € [1,m], z € [1, Z,)]
compute ¥y, ,, » . using Eqs. (3d) and (3e)
. % Compute Current Deficit in Resource Blocks
let A=30) 500 y S20 o s[4 — dTS
. % Repeat Until a Feasible Solution is found
while A >0
% Estimate Both Profit (Eq. 3a) and Cost (Eq. 3b)
foreach v € [1,V], m € [1,M], z € [1, Z,),
where Ty m.» = 1
update y, .1 -
compute o, 2, [))17,771,7 Tv,m,z
% Reconstruct Subgroups to Balance Required Trade-off
let v*, m* z* lead to the minimum 7« y,x .=
10.  let xy= = o+ =0
11, let A=A — Bye = o=
12. return x

WL —=OoOo

PV XENNNAA UG A

Fig. 2. SCG: an efficient algorithm to solve the single-cell allocation problem.

mobile devices. Setting up a unicast channel to each mobile de-
vice maximizes the overall energy saving. However, the con-
straint in (3b) may prevent us from setting up a unicast channel
for each mobile device, which renders the ideal decision infea-
sible. To turn an infeasible allocation into a feasible one, we
can reduce the number of unicast/multicast with different MCS
modes of a video, so that the constraint in (3b) can be satis-
fied. For example, by changing ;3 from 1 to 0, we reduce
the network load attributed to the video streaming service by
[¢Tr1/cs] blocks. Doing so, however, leads to negative con-
sequences: devices watching v with MCS mode 3 have to re-
ceive at a lower MCS mode. This in turn leads to lower energy
saving y in (3a). This example demonstrates the trade-off be-
tween profit [(3a)]and cost [(3b)]. Profit refers to any increase
in the energy saving, whereas cost refers to any consumption of
the radio resources of a base station.

We let oy, . and G, ,m be the offset of profit and cost
after changing x, ,, from 1 to 0. The offset parameters are
used to balance between profit and cost. Mathematically, we
write Qym,z = Zf\j’:m Wy, m! zYv.m! m,z ([qTru/cm—‘ /S—I
and By = [¢Try/cm]. Our algorithm strives to refine an
infeasible allocation by trading the minimum profit reduc-
tion (objective function) for the maximum cost reduction
(constraint). In particular, our algorithm evaluates the ratio
Tom,z = Qum,z/3v.m of all 2, . = 1 and drops the MCS
mode m and video » with the smallest 7, ,, . value in each
iteration. The algorithm stops once the constraint in (3b) is
satisfied. Fig. 3 illustrates a sample solution of our resource
allocation problem. For clarity, we assume a free space propa-
gation model in which the distance between base stations and
terminals is the major impact on the channel quality conditions
of mobile terminals. Users located near the base station have
higher reception qualities, whereas those users at the cell-edge
suffer from lower reception qualities. Based on this, we give
the numbers of the maximum modulation and coding scheme
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Fig. 3. TIllustrative example for the SCG algorithm.

for each mobile terminal. We assume terminals in Fig. 3 are
requesting the same video, and the solution for the resource
allocation problem is to subgroup the multicast session into
three subgroups: multicast subgroup transmitted using MCS
mode 5, unicast subgroup transmitted using MCS mode 3, and
multicast subgroup transmitted using MCS mode 1.

Lemma 2 (Complexity): The SCG algorithm terminates in
polynomial time: O(V2M?3Z?%), where Z = max)_, Z,,.

Proof: Let Z = maxY_, Z,. The dominating complexity

occurs in lines 6-8: i) the while-loop starts from line 6 iter-
ates V.M Z times in the worst-case, ii) the for-loop starts from
line 7 repeats up to VM Z times, and iii) line 8 updates up
to M Yy m n,» values. Collectively, the time complexity of the
SCG algorithm is O(VZM3Z?). O

We note for real networks, V, M, Z are small numbers and
the complexity does not depend on the number of users, which
can be large. For example, the maximum number of videos that
can be concurrently streamed on the most recent LTE network
is 70 [49], assuming average video bit rate of 1736 Kbps [50]
and maximum bandwidth of 20 MHz [8]. Similarly, the largest
value for M is 28 [49], and for Z is 5 [51] assuming an alloca-
tion window of 10 seconds. All computations are simple scalar
operations. Thus, the algorithm can easily run in real time. In
Section VI, we show that SCG produces solutions close to those
of SCOPT and terminates in a few milliseconds.

V. HYBRID STREAMING OVER MULTI-CELL SINGLE
FREQUENCY NETWORKS

The independent cell networks discussed in the previous
section follow the conventional cellular design philosophy to
increase the network capacity: neighboring cells adopt different
frequency bands to minimize inter-cell interference. Such phi-
losophy, however, is largely driven by the unicast nature of
conventional cellular networks. For multicast/broadcast ses-
sions, minimizing inter-cell interference essentially means that
each cell operates on its own [52]. This is suboptimal since the
same signals are transmitted to many mobile devices within the
coverage range. It is possible to allow multiple neighboring cells
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to simultaneously send the same signals in order to boost the
signal strength received by the mobile devices at the edges of
cells. That is, by sending the same signals from multiple base
stations, a mobile device may receive the aggregate signals from
several base stations, which leads to better channel conditions,
higher MCS modes, higher energy saving, and lower network
resource consumption. Such networks are referred to as SFNs, as
discussed in Section I. SFNs are popular in broadcast services,
from FM/AM radios to digital TV [8]. However, managing
SFNs in dynamic mobile networks is not an easy task, because
mobile networks have to concurrently support both unicast and
multicast, which have contradicting goals: minimizing inter-cell
interference versus maximizing inter-cell joint signal strength. In
this section, we carefully model hybrid video streaming in SFNs
and propose (near-)optimal allocation algorithms to solve it.

A. Mathematical Formulation

The formulation in (3) considers a single cell. We consider
H hexagonal cells that form a dynamic single frequency net-
work, where each block can be assigned to an SFN indepen-
dently. Such an extension requires two major enhancements: 1)
expanding the solution space to multiple cells and ii) modeling
SFN gains from neighboring cells. We explain each of the en-
hancements below.

1) Expanding Solution Space: We concurrently consider H
cells, and add a superscript h € [1, H] to variables whenever
applicable. For example, N denotes the number of mobile de-
vices in cell b € [1, H] that watch video v € [1, V]. As another
example, we let 2, . (v € [L,V],m € [1,M], z € [L, Z,],
and h € [1, H]) be the decision variable in the extended formu-
lation. Adding the superscript allows us to expand the solution
space for all H cells.

2) Modeling Single Frequency Network Gains. In the single-
cell formulation, we assume that w, . (v € [1,V], m €
1, M], z € [1, Z,)]) is an input to our problem. In real systems,
Wy m, - 18 @ function of the SINR levels of individual mobile
devices. The precise function depends on the MCS adaptation
algorithm, which can be as simple as a stair-wise function to
guarantee a certain bit error rate, say < 5%. The actual MCS
adaptation algorithm belongs to the link layer, and is out of the
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scope of this paper. Without loss of generality, we model the
SFN gain of mobile devices watching allocation window z of
video v with maximum MCS mode m, from cell KK €[1,H])
to cell h(h € [1,H],h # ') by 6], which represents the
number of more/fewer mobile devices in / that have maximum
MCS mode m if cell A’ would transmit allocation window z of
video v with MCS mode m as well. Upon considering the single
frequency network gains from all cells, the number of mobile
devices with maximum MCS mode m in celll h is written as:
uAjg,m,z = wi}JL,m,z + Zh’é[l,H}\{h} xﬁ,m,zég,yﬁl,z'

Combining these two enhancements, we get the formulation
for an SFN in (4), at the bottom of the page. The objective
function in (4a) maximizes the average energy saving across
all H cells. The constraint in (4b) makes sure that each cell is
not overloaded. The constraint in (4c) ensures that every mobile
device receives at an MCS mode, which is equal to or smaller
than its maximum MCS mode The constraints in (4d) and (4e)
relate variables yu m.n and ah .m- The constraint in (4f) takes the
SEN gains into consideration.

B. Proposed Algorithms: SENOPT and SFNG

Similar to (3), (4) is a Binary Integer Programming problem,
which can be solved by existing optimization solvers. We use
CPLEX to implement an optimal algorithm, called SFNOPT
(Single Frequency Network OPTimum). SENOPT has an expo-
nential complexity, so we propose a heuristic algorithm, called
SFNG. Its pseudocode is presented in Fig. 4. The main idea of
SFNG is to start with the best-case scenario where each video
is transmitted with as many MCS modes as possible, such that
the average energy saving at mobile devices is maximized. Most
likely, this requires excessive amount of radio resources, which
may not be feasible due to the constraint in (4b) on the avail-
able amount of bandwidth for video streaming services. To over-
come infeasible solutions, we iteratively reduce the video traffic
within the cell € [1, H] that suffers from the largest excessive
network load. To achieve this goal, we reduce the number of
unicast/multicast streams in A by removing one stream at each
iteration. The selection of which video stream to drop is de-
cided based on the profit and cost analysis dictated by «, 3, and
7. In each iteration, an MCS mode m* & [1, M] of allocation

1 H V M  Zy |'qTrU/-|
max7y =1— H T [ Z Z X Z Wy ym’ .z Z yL m! 'z Cgl —H (4a)
* Zh’*l N h'=1v'=1 m/=1z'=1 n'=1
1% M  Z, Tr
5.t 3 Z Soah o 5 <ars vhe[l,H] (4b)
v'=1m'=1z'=1 Cm!
]-7 yvmn’ Aillm,z =0 Vh € [17H] (4C)
n'=1
yf,"’m’nw, <1—ah . Ym' € [n+1,m],h € [1, H] (4d)
yﬁ,m,n,z < xﬁ.n,z Vh € [1 H} (46)
wz}},m.z = wz}JL,m,z + Z Ly.m, z(;f} m.z Vh € []-7 H]

h'e[1,H\{h}
ah e {01yl € {0,1)

Yo €[1,V],me

[LM})TL € [Lm}vh S [LHLZ € [LZU]' (49
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0. Inputs: w1 mozs & T T, Cm, d, T, S

0.  Outputs: J{’ mox

1. foreach h € [1 H),vel, V] m € [1, ]\[} z € (1,7,
2. initialize .LU ms = =1isw mz > 05 zh m.- = 0 0.w.
3. let Al = Z Z Z ol qT“ —dTS, Vhe[1,H]
4. foreach he (1. Hl,v e [1,v1, m e [1,M],

4. € [1,m], and z € [1,Z,]

5' comPUte yU m, ’n z

6. let h = argmax/_ | A"

7. while A" >0

8. foreach v € [1,V], m € [1, M], z € [1, Z,],

8' J% m,z = 1

9' update yl} m,n,z and ComPUte al} m,z? /Bl ,m?>

9‘ TL}/L.TYLAZ

10.  let v* ¥, 2% lead to the minimum T,j,]*?,m*ﬁz*

—
—_

let 2" e = O

12. let Ab = Al 1* -
13.  let h = argmax_ A"
14. return x

Fig. 4. SFNG: an efficient algorithm to solve the single frequency network
allocation problem.

window z* € [1, Z,] and video v* € [1, V] is removed so that
the network load of % is reduced at the expense of lower energy
saving. Once a stream is dropped, we reset 2, =+ t00and
then re-compute the required bandwidth for the current solution
to determine its feasibility. The SFNG algorithm terminates as
soon as a feasible allocation is derived.
Lemma 3 (Complexity): The SFNG algorithm terminates in
polynomial time: O(HV?*M 3Z ), where Z = max¥_, Z,,.
Proof: Let Z = maxY_, Z,. The for-loop starts from
line 4 has a complex1ty of O(HVM?Z). The while-loop
starts from line 7 repeats up to HV M Z times, the for-loop
starts from line 8 repeats up to VM Z times, and the line 9
updates up to My” m.n Values. Thus, SFNG's time complexity
is O(HVM?Z )—I—O(HVQJ/I?’ZQ) O(HV*M3Z?). O

VI. EVALUATION

In this section, we present extensive trace-driven simulation
results from a popular packet-level simulator. We demonstrate
the near optimality of our algorithms, and we show that they
significantly increase the number of served users and reduce
the overall energy consumption, while imposing minimal over-
head on the cellular network. In addition, we simulate a realistic
SFN with 10 base stations in downtown Vancouver, Canada, and
we show that our SFN solution further increases the number of
served mobile users and saves more energy of mobile devices.
We also show that our algorithms outperform the closest three
solutions in the literature [17]-[19] as well as the energy saving
scheme introduced in [14].

A. Simulation Setup

We have implemented an on-demand video streaming system
in OPNET , which is a detailed packet-level simulator. We have
also implemented the proposed SCG, SCOPT, and SFNG using
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TABLE II
LTE NETWORK CONFIGURATIONS
Parameter Value
Physical Profile LTE 20 MHz FDD
Maximal Transmission Power 0.01 Watt
eNodeB Antenna Gain (dBi) 15 dBi
User Equipment Antenna Gain (dBi) -1 dBi

Common Subframe Allocation (CSA) Period|8 Frames

eMBMS Subframe Allocation per Frame 6 Subframes (Max.)
Maximum Downlink Bit Rate 1736 Kbps

Modulation and Coding Scheme (MCS) 4,8, 14, 22

Evolved Packet System Bearer for Uplink  |Best Effort

Propagation Model Urban Macrocell (3GPP)
Scheduling Mode Link Adaptation
Mobility Model Random Waypoint

a mixture of C/C++, Matlab, and CPLEX in the simulator. The
heuristic SCG algorithm is evaluated against the optimal solu-
tions generated by SCOPT. We do not compare SFNG against
SFNOPT, because the latter incurs prohibitively long running
time: it may take hours to terminate. Moreover, we have imple-
mented the maximum throughput algorithm [17], proportional
fair algorithm [18], combined unicast-multicast algorithm [19],
and energy saving algorithm [14], and we refer to them as MT,
PR, COMB, ES, respectively. In addition to the resource allo-
cation algorithms, we customize the simulator to employ a few
practical heuristics. For instance, if an incoming request from a
mobile user is rejected due to resource scarcity, this mobile user
will retry for up to 3 times with an exponential back-off waiting
period starting from 2 seconds. After being rejected three times,
it stops requesting the desired video. As another example, we in-
corporate batching in the sense that all requests for videos within
the duration of an allocation window are grouped together to be
served at the beginning of the next allocation window. These
heuristics are likely to be implemented in real video streaming
services.

1) Wireless Network Configurations: We use LTE networks
in our simulations. Several enhancements on the OPNET LTE
module have been made. To enable multicast, we employ
evolved Multimedia Broadcast Multicast Service (eMBMS)
bearers in LTE downlinks. Each bearer periodically delivers
data bursts within every common subframe allocation period
for the purpose of energy saving. More details about LTE
networks and their configurations can be found in [53], [54].
We consider MCS modes of 4, 8, 14, and 22 [49] to support
diverse channel conditions, so that every bearer can carry a
video with a minimal bit rate of 256 kbps, which is a common
bit rate for mobile devices. Each video stream is transmitted
using one bearer, depending on the channel conditions of the
mobile devices: (a) MCS 4 to MCS 7 are served by the bearer
of MCS 4, (b) MCS 8 to MCS 13 are served by the bearer of
MCS 8, (c¢) MCS 14 to MCS 21 are served by the bearer of
MCS 14, and (d) MCS 22 to MCS 28 are served by the bearer
of MCS 22. For each bearer, we also adjust the time intervals
between any two adjacent bursts per the standard [55], [49] in
order to prevent overflow and underflow of ingress link-layer
buffers. The simulator runs the resource allocation algorithm
once every allocation window of 2 seconds. The obtained
solutions are then mapped to the bearers, i.e., we map a general
resource allocation to an LTE-specific allocation for OPNET.
Table II gives the default LTE parameters in the simulations.
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2) Videos: For realistic video characteristics, we crawl
YouTube to collect 1,000 videos. For each video, we have
retrieved its YouTube ID, duration, view count, and bit rate.
The first three values are obtained using the YouTube API,
while the video bit rate information are embedded in the video
meta-data. If the bit rate is not embedded, we use the video
length and size to calculate its average bit rate, in a way similar
to the dataset in [56]. The video format for these videos is
MPEG-4, and these videos are categorized in four resolution
classes: 240p, 360p, 480p, and 720p (around 250 videos for
each class). The popularities of these videos are determined
based on the view counts, but we employ the Zipf distribution
with a skewness factor o to assign synthetic popularity to each
video, so it is possible to exercise a wider range of popularity
distributions. We set « = 1.5 if not otherwise specified.

B. Test Scenarios for Independent Cell Networks

We consider multiple base stations that operate indepen-
dently, where each cell covers a 10 x 10 km? area. We consider
up to 1,000 mobile devices in a cell, and these users join our
system following a Poisson process with mean A, which is set
to 20 users per second by default. These mobile devices are
randomly deployed in the transmission coverage area, such
that more users are located close to base stations as cellular
operators typically construct their networks so that more base
stations are in the crowded regions. In particular, we assume
90% of users are in 1/3 of the cell radius. Our system does
not require any prediction for the user mobility in order to
perform its handover operations, make its scheduling decisions,
or obtain the density of user distributions within its cells.
Therefore, in our simulations, mobile users can either: remain
static or follow a random waypoint model, which is chosen
for simplicity since it does not depend on any GPS traces of
human walks or cellphone location tracking. Upon joining the
network, a user randomly requests a video and leaves once the
video is finished.

C. Results for Independent Cell Networks

We compare our SCG algorithm versus three multicast-only
approaches (i.e., MT [17], PR [18], and COMB [19]) and a
unicast-only approach (i.e., ES [14]). The performance met-
rics are service ratio, spectral efficiency, energy saving, Peak
Single-to-Noise Ratio (PSNR), frame loss rate, initial buffering
time, and number of re-buffering events. We simulate LTE net-
works where mobile devices in each cell generate requests from
a pool of 1000 possible video streams. We vary the number of
users in a cell from 200 to 1000, and report the mean results from
5 simulation runs in Figs. 5—11. The variance for each value is
included as points in these figures as well. These results indicate
that our proposed algorithms not only outperform others with
significant margins on achieved service ratio, but also save more
energy than multicast-only approaches without causing any vi-
olation at the buffer levels nor degraded video quality. Detailed
simulation results are discussed below.

1) Service Ratio: Due to the limited radio resources in cel-
lular networks, it may be impossible to serve all requesting mo-
bile users. Therefore, we compute the service ratio as the frac-
tion of admitted mobile users to the number of received requests.
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Fig. 5 indicates that our SCG algorithm outperforms other al-
gorithms on achieved average service ratio. For instance, when
there are 1000 mobile users in each cell, the proposed algorithm
admits 74.5% of users at any given time, while systems em-
ploying MT, PF, COMB, and ES algorithms accept only 62.5%,
50.5%, 65%, and 7% of users, respectively. This shows that our
SCG algorithm provides a service ratio that is 20%, 47%, 15%,
and 965% higher than the MT, PF, COMB, and ES. Last, we
note that the results are from a cellular network that dedicates
all network resources to the video streaming service. Similar
outcomes are observed under different parameters, such as re-
served network resources and number of mobile users. Com-
pared against the optimal solution given by SCOPT, our SCG
algorithm gives only 0.76% and 5.94% lower average service



ALMOWUENA et al.: HYBRID VIDEO STREAMING OVER MOBILE NETWORKS

3
500 400 600 800 1000

Number of Users

(a)

111

- SCG
<10 I
S 2 o
= ® , 0 E;(\),\IB
< A
)]
800 400 600 800 1000
Number of Users

(b)

Fig. 8. Comparison of video quality among the proposed and state-of-the-art algorithms: (a) quality in PSNR and (b) frame loss rate.

Initial Buffering Time (sec)

300 400 600 800 1000

Number of Users

Fig. 9. Comparison of resulting initial buffering time among the proposed and
state-of-the-art algorithms.

130 ; g

120 -t - A
100E - U P i o
QO [osocanenr e Logitsess
80 - : e
70 : e
GO a ;,/‘,',. .
L. ———
QO = g
30F - :* e
20L L L
104 Lttt L
200 400 600 800 1000

Number of Users

S

Rebuffering Event,

Fig. 10. Comparison of resulting re-buffering events among the proposed and
state-of-the-art algorithms.

ratio when the numbers of users in each cell are 200 and 1000,
respectively.

2) Spectral Efficiency: Here, the spectral efficiency is de-
fined as the total transmitted data rate (in bits per second) di-
vided by the allocated bandwidth (in Hertz) [25]. As it is shown
in Fig. 6, the proposed heuristic algorithm outperforms the other
four approaches by providing a spectral efficiency between 2.05
and 2.18 bits/second/Hertz, depending on the number of mobile
terminals within the cell. These performance results are at least
28% and 17% higher than the unicast scheme (ES) and the fair
proportional multicast policy (PF), respectively. Compared with
those multicast approaches applying the multicast subgrouping
concept (i.e., MT and COMP), our heuristic algorithm still gives
up to 5% increase in its spectral efficiency. Such improvement
is achieved by applying the hybrid unicast-multicast approach,
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Fig. 11. Comparison of channel quality report overhead among the proposed
and state-of-the-art algorithms.

in which users with poor channel quality conditions can be re-
moved from a multicast subgroup and served via unicast con-
nections. Then this multicast subgroup would be sent using a
higher modulation and coding scheme, thereby increasing the
achieved spectral efficiency of the mobile system.

3) Energy Saving: We define the energy saving as the per-
centage of time a served mobile device can turn off its network
interface, to reduce its energy consumption. In 4G/5G cellular
networks, the time required to switch the network interface be-
tween active and idle is small. According to Huang et al. [47],
switching an LTE interface on contributes 1.2% to the total
power consumption when a single packet is transmitted. In our
system, the number of packets transmitted to each user during
the active period is larger than one packet since each burst trans-
mission represents a two-second video segment. Thus, to com-
pute the energy saving, it is sufficient to account for the time du-
ration when a network interface is off. Unicast-only approaches
achieve the maximum energy saving possible in independent-
cell networks since individual mobile users are served according
to their best MCS modes. Fig. 7 illustrates that our SCG al-
gorithm leads to 6.5% and 9.5% lower saving than the ES al-
gorithm when there are 200 and 1000 users in a cell, respec-
tively. However, compared to multicast-only approaches (i.e.,
MT, PF, and COMB)), our proposed algorithms outperform them
by 9-20% in energy saving. Comparing the results achieved
by our SCG algorithm versus those computed by the optimal
SCOPT algorithm, we notice that the energy saving obtained in
our SCG algorithm is close to the optimal with a small gap of
1.3% on average.
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4) Video Quality: Figs. 8(a) and 8(b) present the achieved
video quality of the proposed algorithms against the latest al-
gorithms in terms of PSNR and frame loss rate, respectively.
We first observe that unicast-only approaches (ES) achieves the
highest PSNR and the lowest frame loss rate. This is because
it only admits very few mobile users at a time, making it less
commercially viable. In contrast, with 200 mobile users in each
cell, our proposed SCG algorithm yields an average of 41.7 dB
in PSNR and 3.43% in frame loss rate. Even when the number
of mobile users is increased from 200 to 1000, the SCG algo-
rithm still achieves 39.04 dB in PSNR and 3.7% in frame loss
rate. These numbers are good for video streaming services, €.g.,
several studies [57], [58] show 38 dB and above is comparable
to Mean Opinion Score (MOS) 5 out of 5.

5) Allocation Window Size: In video streaming systems,
a playback starts after an initial buffering time and continues
while the video stream is being downloaded. The initial
buffering time in our algorithm depends mainly on the resource
allocation window size. Intuitively, longer allocation windows
provide more chances for expanding the multicast groups,
thereby result in higher service ratios. Yet, larger allocation
windows increase the initial buffering time. Given that our
heuristic algorithms terminate in less than 1 millisecond, we
recommend short allocation windows for short initial buffering
time. In our simulations, the window size is set to be 2 seconds
by default, which is equivalent to the size of video chunks pro-
duced by adaptive video streaming solutions, such as Microsoft
Silverlight. At this window size, the initial buffering time is
shown in Fig. 9, which shows that our algorithms outperform
unicast-only approaches in initial buffering time, and scale well
with many more mobile users.

6) Number of Re-Buffering Events: We instrument our sim-
ulator to keep track of the buffer status of each mobile device.
When the buffer of a mobile device receiving a video stream
is empty or full, we declare a re-buffering event or an over-
flow event. We first verified that our proposed algorithms never
lead to buffer overflow events. Then, we calculate the number of
re-buffering events of different algorithms, and report the num-
bers in Fig. 10. This figure shows that our SCG algorithm results
in no re-buffering event.

7) Feedback Overhead: Mobile devices in our algorithms
and other state-of-the-art algorithms [17]-[19], [14] are re-
quired to report their SNR values to the base station over a
feedback channel. Having knowledge of the channel conditions
of each mobile user helps in determining the highest MCS mode
at which the block error rate is low, e.g., < 5%. In LTE Release
12 [49], two different reports can be obtained from mobile
devices: sub-band and wide-band feedback. Sub-band reports
give channel state information for each sub-band, whereas
wide-band reports give average channel quality information
for the entire spectrum. We adopt wide-band reports during our
simulations since they are sufficient, especially in large-scale
scenarios. Moreover, since we activate the Discontinuous
Reception (DRX) for energy saving, not all users utilize the
dedicated upload control channels all the time. Instead, the
wide-band reports are sent by mobile devices only when they
receive videos. We measure the overhead value as the frac-
tion of bandwidth used to send feedback reports to the total
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bandwidth available for both data and control transmission.
Fig. 11 shows the overhead occurred in the five algorithms
when the number of users within each cell is varied. Although
the SCG algorithm admits more users than other works, the
feedback overhead in our algorithm is still less than 0.08%
and 0.47% in the cases where the number of users are 200 and
1000, respectively.

8) Support for Scalable Videos: Even though the previous
results are obtained using non-scalable videos, our proposed al-
gorithms can be easily generalized to support scalable video
coding. To do so, each video-segment is divided into layers. We
can then include an additional constraint to consider the depen-
dency among layers in scalable videos as follows:

Ly, z,lm = 1 ifxuz,l’,m’ - 1,l < l’, m S m,.

)

This condition assures that for each video-segment (v, z), no
higher layer (I') is transmitted unless its base and lower layers
are already scheduled. Our algorithms, analysis, and implemen-
tations still work after this augmentation. To study the impact
of scalable video coding on the proposed algorithms, we used
the freely licensed animation video sequence Big Buck Bunny,
whose traces are available from the Video Trace Library.6 Big
Buck Bunny consists of 14,315 frames in the HD 1920x 1080
pixels format with a frame rate of 24 frames/sec and average bit
rates between 36.393 Kbit/sec and 1.094 Mb/sec. More details
about this H.264 sequence can be found in [59]. During our sim-
ulation, more than 1000 mobile terminals are deployed around a
base station. These mobile terminals are experiencing different
channel quality conditions, and they are requesting the scalable
video stream at the same time. From the obtained results, our
algorithm achieves an energy saving equals to 92.58% and a
PSNR value equals to 41.12 dB. On the other hand, the conven-
tional multicast in [18] as an example achieves an energy saving
equals to 84.25% and a PSNR value equals to 20.39 dB. That
means our algorithm outperforms the conventional multicast by
providing almost 10% and 102% improvement in both energy
saving and PSNR value, respectively. Such improvements are
achieved at the cost of a slightly increased consumption of radio
resources (i.e., < 4.75%), which can be acceptable especially
during non-rush hours.

D. Test Scenarios for Multi-Cell SFNs

We construct a multi-cell SFN using the actual base station
locations of a Canadian cellular operator in Vancouver, Canada,
which are obtained from the published information.” In par-
ticular, we consider 10 base stations around the West Georgia
Street in downtown, Vancouver as shown in Fig. 12. These 10
cells are assumed to be in the same Multicast Broadcast Single
Frequency Network (MBSFN) area. 9 base stations at the east
side have a maximum transmission power of 0.3 Watt, whereas
the left-most base station has a maximum power of 0.5 Watt.
Mobile users arrive to the video streaming service following a
Poisson process with a mean arrival rate of 30 users per second
in each cell. The initial locations of mobile users are uniformly
distributed within each cell.

6[Online]. Available: http://trace.eas.asu.edu
7“Cellular coverage maps,” [Online]. Available: www.cellumap.com
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Fig. 12. Locations of base stations of a leading Canadian cellular operator in
downtown Vancouver, British Columbia.

TABLE III
PERFORMANCE RESULTS IN STATIC SCENARIO
Metric MT PF COMB ES SCG | SFNG
Energy Saving (%) | 72.60 77.51 70.81 90.24 84.43 89.27
+0.68 | +2.18 +4.32 +0.86 | +£0.43 | +0.36
Service Ratio (%) 68.43 55.30 70.94 25.24 81.44 91.66
+247 | £1.94 | +£1.68 | £1.21 | £1.43 | +1.40
TABLE 1V
PERFORMANCE RESULTS IN MOBILE SCENARIO
Metric MT PF COMB ES SCG | SFNG
Energy Saving (%) | 7481 | 80.68 | 74.13 | 90.52 | 86.88 | 89.58
+1.49 | £348 | £3.84 | £0.83 | +0.54 | +0.69
Service Ratio (%) | 69.05 | 6233 | 7181 3335 | 89.48 | 95.36
+4.07 | £3.03 | £234 | £0.66 | £1.58 | £1.62

We consider two test scenarios: static and mobile. In the mo-
bile scenario, users move randomly in either east-west or north-
south directions to mimic mobile users commuting along urban
streets. A mobile device represents a pedestrian who walks at
4.5 km/hour or a driver who drives at 50 km/hour. Mobile users
never leave the multi-cell SFN throughout simulations. We con-
sider the following algorithms: SCG, MT, PF, COMB, and ES,
and our heuristic algorithm for multi-cell SFN (SFNG). Each
simulation scenario run lasts for 20 minutes.

E. Results for Multi-Cell SFNs

1) Performance in the Static Scenario: Table III gives the
average performance results across mobile devices in the static
scenario. We notice that both SCG and SFNG clearly outper-
form multicast-only approaches [17]-[19] in term of energy
saving and the unicast approach [14] in term of service ratio.
In fact, ES [14] results in a fairly low service ratio of 25.24%,
which may drive users away from the video streaming service.
On the other hand, the proposed SFNG algorithm achieves a ser-
vice ratio of 91.66%, which is up to 65.75% higher than those
service ratios delivered by the state-of-the-art multicast-only ap-
proaches [17]-[19]. We also observe that our SFNG in multi-
cells SFNs outperforms our SCG in independent cell networks
by up to: i) 5.73% in energy saving, and ii) 12.55% in service
ratio. This reveals that our SFNG algorithm indeed capitalizes
the advantage of SFNs.

2) Performance in the Mobile Scenario: Table IV presents
the average service ratio and energy saving when the mobility
model is applied. These performance results are inline with
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our earlier findings in Table III. They also confirm that our
algorithms outperform other multicast-only and unicast-only
approaches under diverse user distributions. However, our
SFNG algorithm is superior in its achieved results than SCG by
up to 6.57% in service ratio and up to 3.10% in energy saving.
This can be attributed to the fact that, in SFNs, video streams
are transmitted simultaneously over the air from multiple
synchronized base stations, which allow mobile devices in the
same SFN area to receive stronger signals. For example, mobile
devices treat (leverage) the signals from different base stations
as multipath components. Hence, mobile users enjoy higher
SNR levels, and can survive more aggressive MCS modes for
higher service ratio and energy saving.

VII. CONCLUSION AND FUTURE WORK

We studied the resource allocation problem for large-scale
video streaming over cellular networks and proposed novel
algorithms to utilize both unicast and multicast. Our main goal
is to support more mobile users with less consumed energy
on mobile devices. Next generation cellular networks enable
two multicast schemes: i) independent cells in which each base
station initiates multicast sessions only to those users within
its transmission coverage, and ii) multi-cell single frequency
network (SFN) in which multiple cells collaborate to deliver
synchronized video streams using identical radio frequency
bands. We formulated optimization problems for the hybrid
video streaming service in these two schemes. Then we devel-
oped two optimal algorithms (SCOPT and SFNOPT) to solve
the two allocation problems and two heuristic algorithms (SCG
and SFNG) for faster and near-optimal results, even in cases
with highly dense user distributions.

While our introduced solutions are general to any multi-
cast-capable cellular network, we considered an LTE network
as an example to assess the performance of our algorithms
with respect to the service ratio, spectral efficiency, energy
saving, video quality, frame loss rate, initial buffering time, and
number of re-buffering events. We implemented the proposed
algorithms and the closest and most recent four solutions
in the literature in a packet-level simulator (OPNET). Our
detailed simulation results indicate that: 1) our algorithms for
independent cell networks admit more users, consume less
energy, and provide lower frame loss rate without causing any
buffer violation or degraded video quality compared to the
multicast-capable algorithms, ii) our algorithms achieve energy
saving close to unicast approaches, while supporting almost 11
times more users, and iii) our extended algorithms for SFNs
perform better than algorithms that do not leverage the features
of SFN.

This article promotes the use of hybrid video streaming to
serve the rapidly increasing demand of video services over cel-
lular networks. Such solutions were not possible before recent
cellular networks, such as LTE and WiMAX, being deployed.
The work in this paper can be extended in several directions.
For example, trajectory prediction algorithms may be adopted
by mobile devices for proactive resource allocation across mul-
tiple cells. Dynamic configuration of SFNs [60] can also be
considered to further increase the number of served multimedia
streams within cellular networks.
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