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Abstract—To improve rendered video quality and serve more
receivers, peer-to-peer (P2P) video-on-demand streaming systems
usually deploy seed servers. These servers complement the lim-
ited upload capacity offered by peers. In this paper, we are inter-
ested in optimally managing the capacity of seed servers, especially
when scalable video streams are served to peers. Scalable video
streams are encoded in multiple layers to support heterogeneous
receivers. We show that the problem of optimally allocating the
seeding capacity to serve scalable streams to peers is NP-complete.
We then propose an approximation algorithm to solve it. Using the
proposed allocation algorithm, we develop an analytical model to
study the performance of P2P video-on-demand streaming systems
and tomanage their resources. The analysis also provides an upper
bound on the maximum number of peers that can be admitted to
the system in flash crowd scenarios. We validate our analysis by
comparing its results to those obtained from simulations. Our ana-
lytical model can be used by administrators of P2P streaming sys-
tems to estimate the performance and video quality rendered to
users under various network, peer, and video characteristics.

Index Terms—Analytical models, peer-to-peer streaming, re-
source allocation, scalable video streaming.

I. INTRODUCTION

P EER-TO-PEER (P2P) and peer-assisted streaming
systems have emerged as promising approaches for de-

livering multimedia content to large-scale user communities
[1]–[3], [27]. In these systems, peers contribute bandwidth and
storage to serve other peers. Since the contributions from peers
are often less than the capacity needed to serve high-quality
streams, a number of dedicated servers are usually deployed to
boost the streaming capacity. These servers are referred to as
seed servers.
In current P2P streaming systems, a video is encoded at a cer-

tain bitrate, typically ranging from 300 kbps to 1 Mbps [6]. In
order to support a wider range of receivers, it is preferred to en-
code and serve a lower-bitrate video, but this will provide a low
quality for everyone. One solution to overcome this problem is
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to encode and distribute multiple versions of each video, which
is called simulcasting. However, in this approach a video has to
be encoded many times for different combinations of decoding,
downloading and viewing capabilities of receivers. Moreover,
switching among versions is not easy, because: (i) for every
switching, a client has to wait for the next Intra-coded frame
of the new version, and (ii) streams of different versions could
be asynchronous [12]. In addition, P2P streaming with multiple
versions of the same video divides peers into separate networks
which may result in reduced connectivity and less efficient uti-
lization of peers’ resources. Alternatively, multiple description
coding (MDC) can encode a video into multiple descriptions,
where the quality of the video is proportional to the number of
descriptions received. However, MDC techniques have consid-
erable bitrate overhead and are computationally complex [12].
In contrast, a multi-layer scalable video stream can be encoded
once and a wide range of heterogeneous clients can decode it.
In addition, heterogeneous clients receiving different layers can
still share common layers and participate in the same overlay
network, leading to a larger pool of resources. Furthermore,
scalable coding has lower overhead and is simpler than MDC.
Recent scalable video coding techniques, e.g., H.264/SVC, have
further improved this coding efficiency and significantly outper-
formed previous scalable videos [20], which made them highly
favorable for adoption in practice [7], [19].
In this paper, we consider P2P streaming systems that: (i)

deploy seed servers to complement and boost the capacity
contributed by peers, and (ii) serve scalable video streams
to support a wide range of heterogeneous receivers. We are
interested in managing the capacity offered by seed servers
and analytically understanding how this capacity affects the
performance observed by peers. We start by focusing on the
problem of efficiently allocating the resources of seed servers to
requesting peers according to their demands and contributions.
This allocation plays a critical role for providing a high-quality
streaming service, as we show in the paper. This is because the
upload bandwidth of peers is often far less than their demanded
streaming rates. For example, an average-to-good quality video
stream requires about 1–2 Mbps, whereas the average upload
capacity of home users with DSL and cable connections is often
less than a few hundred kbps. Furthermore, careful seeding of
different video substreams to peers with different demands and
contributions has a significant effect on the utilization of the
upload capacities of the peers themselves. Then, we develop
an analytical model to study the dynamic behavior of P2P
streaming systems with scalable video streams. Our model
aims at forecasting this behavior and answering a number of
key questions regarding the streaming system.
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In particular, the contributions of this paper can be summa-
rized as follows.
• We formulate the problem of optimally allocating the
seeding capacity to peers requesting scalable videos. We
show that this problem is NP-complete.

• We propose an approximation algorithm to solve the
seeding capacity allocation problem. We evaluate the
proposed algorithm analytically and in a simulated P2P
streaming system. The results confirm the near-optimality
of the proposed algorithm, and show that higher-quality
videos are delivered to peers if it is employed for allo-
cating seed servers.

• We propose an analytical model to forecast the perfor-
mance of P2P on-demand streaming systems serving scal-
able videos and using our seed server allocation algorithm.
Our analysis takes as input the characteristics of the net-
work, including the distribution of upload and download
bandwidths of peers, peer arrival and failure rates, and
video bitrates. Our analysis is general and can be applied
to P2P streaming systems with different characteristics and
network conditions. We present numerical analysis of ex-
ample systems and derive insights on their performance. In
addition, we validate our analytical results through simu-
lations.

• We show how our analytical model can be used to answer
the following important questions:

. How can administrators of P2P streaming systems
optimally utilize the capacity of seed servers?
. What is the expected throughput (total bitrate

served) of a given P2P streaming system? The
throughput directly impacts the video quality de-
livered to peers.
. To increase the throughput to a desired level, how

much seeding capacity is needed?
. How many peers a system can support in case of

a flash crowd arrival of peers?
. How effective are scalable video streams in P2P

streaming systems compared to nonscalable streams
for supporting flash crowds?

This paper is organized as follows. The related works are
summarized in Section II. In Section III, the seed capacity al-
location problem is defined and proven to be NP-complete. In
the same section, we present the proposed approximation algo-
rithm. In Section IV, we present our analytical model for P2P
streaming systems that uses the approximation algorithm devel-
oped in Section III. In Section V, we conduct an analysis of
the analytical model on a sample P2P network. Then, we vali-
date our analysis using simulations, and we use the analysis to
study the performance of P2P streaming systems in Section VI.
Section VII concludes the paper.

II. RELATED WORK

The problem of peer-to-peer streaming has been studied by
numerous previous works from various angles, such as overlay
construction, distribution of data availability information, and
piece scheduling algorithms. Nevertheless, the problems we
study in this paper, resource allocation and theoretical analysis
of the behavior of these systems, have received less attention

in the literature. Moreover, most previous works in this area
consider streaming of nonscalable video streams only.

A. P2P Streaming With Scalable Videos and Seed Servers

Cui et al. [4] and Rejaie et al. [18] study P2P streaming sys-
tems with scalable videos, focusing on the tasks of peers. An
algorithm is presented in [4] to be run on each peer indepen-
dently to decide how to request video layers from a given set
of heterogeneous senders, assuming layers have equal bitrate
and provide equal video quality. Hefeeda et al. [5] study this
problem for fine-grained scalable (FGS) videos, taking into ac-
count the rate-distortion model of the video for maximizing the
perceived quality. We too consider video layers with heteroge-
neous rates and quality enhancements. In the framework pre-
sented in [18], the problem of requesting from a set of senders
is studied. Hu et al. [8] design a taxation mechanism for fairness
among peers with diverse download and upload bandwidths
requesting a scalable video stream. Lan et al. [11] present a
high-level architecture for data-driven P2P streaming with scal-
able videos. Packet scheduling strategies for downloading scal-
able videos are studied in [23]. All of these works do not con-
sider the functionalities of seed servers. Xu et al. [24] study
the functionality of seed servers for P2P streaming. However,
their work is only for nonscalable video streams, and they as-
sume that peers’ upload bandwidth can only take power of 2 bi-
trates. The case for scalable video streams is more challenging
as various substreams need to be handled. In [4], seed servers are
assumed to always have enough capacity to serve all requests,
which is not realistic. We consider a more practical scenario in
which seed servers have finite capacity, and this finite capacity
needs to be optimally allocated to requesting peers such that a
higher-quality video is delivered to all peers.

B. Analytical Models for P2P Streaming Systems

Current analytical works for studying the behavior of P2P
streaming systems assume that the video streams are encoded in
nonscalable manner. Nonscalable video streams have fixed bi-
trates and cannot be adapted easily. For example, Tu et al. [22]
present an analytical framework for studying the performance
of P2P streaming systems. This framework mathematically an-
alyzes the pattern of capacity growth of a given dynamic P2P
system over time. It then estimates the time at which the servers
can be turned off. A similar analysis is done in [10] based on a
stochastic fluid model, which finds the maximum streaming bi-
trate that can be supported in a P2P system. However, the works
in [10] and [22] only consider nonscalable streams with a con-
stant bitrate. They also divide peers into a number of classes
based on their bandwidth contributions. In addition, in [10] only
live streaming scenarios are considered. The work in [22] can
analyze on-demand streaming scenarios as well, but the time
granularity of this analysis, i.e., the length of the smallest time
unit, is the length of a complete streaming session. In our an-
alytical model, we consider on-demand streaming of scalable
video streams with variable bitrates, and we do not make any re-
strictive assumptions on the bandwidth of peers. Moreover, we
analyze the capacity of the system over time with a fine granu-
larity, which is the length of a video segment of a few minutes
at most. This enables us to capture the dynamics of the network
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more accurately. For example, the time a peer stays in the net-
work for seeding is often a fraction of the video length, which
cannot be captured when we analyze the system based on a time
unit equal to a complete video length.
Liu et al. [13] analyze peer-assisted streaming systems by

constructing a tree structure for the network and provisioning
resources for it. In contrast, we do not assume any particular
structure imposed on the network. That is, each peer can de-
cide its neighbor list, based on the information it receives from
trackers and/or other peers. Thus, our approach can be used to
analyze mesh-based and receiver-driven systems. Since mesh-
based systems are employed by most of today’s P2P streaming
systems [1], [2], [6], [27], our analytical model is more prac-
tical and useful than previous ones. Another performance anal-
ysis of P2P streaming systems is conducted by Small et al. in
[21]. However, similar to [13], the authors consider constructing
a specific P2P topology for the overlay network, unlike our
analysis which does not make any particular assumption on the
overlay topology. Xu et al. [25] present an analytical model to
assess the scalability and capacity growth of a P2P streaming
system. They assume that peers leave the system only after con-
tributing some threshold capacity. Yin et al. [26] conduct a sim-
ilar study where peers may leave at random. However, the au-
thors only estimate a scaling factor for the system, which is the
fraction of the peers directly served by dedicated servers, as a
function of the average peer upload bandwidth. Zhou et al. [28]
and Parvez et al. [17] analyze the performance of P2P streaming
systems when two different chunk selection strategies are em-
ployed by peers: rarest-first and sequential. However, the work
in [28] only analyzes live streaming scenarios, and the one in
[17] assumes that all peers have equal bandwidth and all P2P
connections have the same throughput. Moreover, in all these
works a nonscalable stream (often at a single bitrate) is consid-
ered. Our model considers an adaptable layered stream, and it
takes into account the distribution of peer demands and upload
bandwidths to estimate the video quality delivered to peers and
the required server bandwidth for achieving any desired level of
quality.
Finally, we mention that preliminary parts of this work ap-

peared in [15] and [16]. We developed an analytical model for
P2P streaming systems [16], and designed algorithms for the
seed allocation problem [15]. In this paper, we extend our pre-
vious works and present a unified framework for addressing the
capacity management problem in P2P streaming systems. We
extend our server allocation algorithm to operate in real-time
with no queuing delay, and with lower computation overhead.
In addition, we present a scalable P2P architecture aligning our
resource allocation algorithm and our analytical model, and
demonstrate its feasibility for large-scale systems. Moreover,
we conduct more experiments to analyze the advantages of
P2P streaming with scalable videos for handling flash crowds,
compared to nonscalable streaming used in most of today’s
P2P streaming systems [1], [2], [6], [27].

III. SEEDING CAPACITY ALLOCATION

In this section, we study the problem of allocating the re-
sources of seed servers. As discussed earlier, these servers are
a key component of the P2P streaming system when a high-

Fig. 1. The considered P2P streaming model. T, S, and P represent trackers,
seed servers, and peers, respectively.

quality streaming service to peers with diverse (and often lim-
ited) upload capacities is desired. We consider allocating the
seeding resources to peers such that a system-wide utility func-
tion is maximized, e.g., average video quality served to users.
We first present the considered P2P system model, and we for-
mally state the seeding capacity allocation problem. This is fol-
lowed by an approximation algorithm to solve this problem,
which answers question discussed in Section I. We then
discuss the feasibility of the considered P2P architecture and the
proposed algorithm for large-scale streaming systems.

A. System Model and Problem Statement

The considered P2P streaming architecture is illustrated in
Fig. 1 and consists of peers, seed servers, and trackers. Peers
join the system by contacting one of the trackers, to which they
send their subsequent requests. Each tracker controls a number
of seed servers. A tracker receives periodic update reports from
its peers, informing it about their available data and capacity.
This enables the tracker to monitor its network and keep track
of the set of active peers, their contributions, and their data avail-
ability. Note that trackers do not keep track of the topology of
the network, i.e., the list of partners of each peer. Trackers ex-
change periodic messages (e.g., once every minute) to update
their system-wide data availability information, as described
in Section III-D. Trackers allocate the resources of their seed
servers to peers’ requests. That is, the tracker determines the re-
quests to be served by one of the seed server and those to be for-
warded to other peers in the system. Peers download the video
in a streaming form, meaning that the video is downloaded se-
quentially at a bitrate equal to the bitrate of the video. Peers
serve lower layers of the videos first, in order to avoid the situa-
tion that some peers are starving (for not receiving lower layers)
while other peers are receiving the highest quality.
Let denote the set of video files (a list of notation is pro-

vided in Table I for quick reference). We divide a video into
short intervals, called video segments. A video segment is con-
sidered an atomic unit of adaptation, meaning that the number of
layers received by a peer is assumed constant during a segment,
but may vary between consecutive segments. Let us assume for
now that the tracker queues the requests received from peers,
and solves the allocation problem for existing requests every
few seconds. We then extend the algorithm to perform continu-
ously in real-time as the requests arrive.
Assume there are requests in the queue when run-

ning the algorithm. Each request is in the form
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TABLE I
LIST OF NOTATIONS USED IN THIS PAPER. BOLD SYMBOLS REPRESENT RANDOM VARIABLES

, meaning that
peer is requesting layers to (inclusive)
of video stream , starting at segment ; the peer
could be receiving layers 1 to from other peers.
Since is requesting for layers
and may be admitted partially, we break it to sub-requests,
denoted by . A sub-request rep-
resents a request for the lowest requested layers, i.e.,
corresponds to layers through . This way
of breaking a request into sub-requests ensures that no invalid
subset of layers is served. Let denote the bitrate of the th
layer of video , and the upload capacity of peer .
Serving each sub-request has a cost for the seed

server, which is the sum of the bitrates of the requested layers.
Letting simply denote the requested video in , we denote
the costs of ’s sub-requests by:

(1)

Moreover, by admitting , a utility (benefit) is
gained by the system, which consists of the utility of serving
the associated layers to the corresponding peer, that is,

, and the utility gained when
the peer shares those layers with the network, denoted by

. Our algorithm is not restricted
to a specific utility function. For example, one can define
the utility function in a way to maximize the average quality
received by peers or to provide max-min fairness among
quality received by peers according to their demands; detailed
examples can be found in [14, ch. 4.4.3].
For calculating , we need to consider the peer

serving those layers (or part of them) to its partners, those
partners serving to their partners, and so on. Taking these
neighborhood details into account requires knowledge of the
full overlay topology, which is difficult to maintain for a dy-
namic P2P system. We therefore compute as the
expected utility that the system gains when a peer shares a video

layer with the network. Detailed calculation of this function for
the two cases of maximizing the average quality and max-min
fairness are available in [14, ch. 4.4.3] and are omitted here due
to space limitations. The procedure in a high level is to first
estimate the expected upload rate of peer for different video
layers, as a function of the peer’s demand and bandwidth. If the
system objective is to maximize the average video quality over
all peers, this expected rate can directly estimate
as the video quality increase brought to the system. For a more
complicated objective such as max-min fairness according to
the peers’ demands, is estimated as a function of
the expected upload rate and the distribution of layer demand
in the system [14, ch. 4.4.3].
1) Problem 1: (Seeding Capacity Allocation): Given

requests , their costs bps and utilities
, and a seeding capacity bps,

find the value for each which indicates
that sub-requests should be served
out of in order to maximize the system-wide utility.
This problem is formulated as follows. Find in order to:

(2a)

(2b)

(2c)

Theorem 1: The seeding capacity allocation problem defined
in (2) is NP-complete.

Proof: We prove the NP-completeness by reducing the
Knapsack Problem [9] to a simplified version of the seed server
allocation problem. Suppose that all videos are single-layer
coded and thus all requests are for the first layer. In this case, all
values are either 0 or 1. This special case of the problem is

equivalent to the 0–1 Knapsack Problem. In addition, a solution
for the seed server allocation problem can easily be verified in
polynomial time. Hence, the seed server allocation problem is
NP-complete.
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B. Seeding Capacity Allocation (SCA) Algorithm

In this section, we present an approximation algorithm for the
seed server allocation problem, which is to be executed by the
tracker to decide which requests should be served among those
currently pending in the queue. Our approximation is based on
relaxing the Integer Programming (IP) problem in (2) to its
equivalent Linear Programming (LP) problem as in (3). That
is, we now allow a layer to be partially served, even though it is
not meaningful in practice.

(3a)

(3b)

(3c)

(3d)

where denotes the fractional part of .
Having solved the LP problem in (3) and obtained the

values, we obtain a valid solution to the original IP problem by
rounding down all values: . Clearly, values
form a valid answer for the IP form in (2), since they satisfy
both constraints (2b) and (2c). We will see shortly that after this
relaxation and down-rounding, how close the objective function
(2a) will be to the optimal solution.
The proposed seeding capacity allocation (SCA) algorithm

is shown in Fig. 2. Sub-requests are sorted in decreasing order
of utility-to-cost ratio and are picked one by one as long as the
total seeding capacity allows. Note that some sub-requests are
overlapping, e.g., sub-request is a subset of sub-requests

. Hence, when deciding to serve a sub-request
, we need to check whether another sub-request of request
is already admitted in previous iterations. This is illustrated

in Lines 6–9 of the code in Fig. 2. If a sub-request in the form
of is already served, can be simply skipped.
If one in the form of is served, we only take those
layers from sub-request that are not already served.
The following theorem shows the approximation factor of the

SCA algorithm. The proof is omitted due to space limitation
[15].
Theorem 2: If all costs are bounded as ,

meaning that is the maximum bitrate of a video stream,
and assuming where is the capacity of seed
servers (hence practically ), the SCA algorithm is a

-factor approximation for the seed server allo-
cation problem, i.e., the utility obtained by the SCA algorithm
is , where is the optimal
utility.
For example, for a 2 Mbps video and a seeding capacity of 25

Mbps, it is guaranteed that the SCA approximation algorithm
will produce results no worse than 91% of the optimal in this
case.
We should also note that the SCA algorithm automatically

adjusts the serving resources with respect to different volumes
of demand across video files, i.e., to video popularities. For in-
stance, if we are serving the top 10% of the requesting peers

Fig. 2. The SCA algorithm for the seed capacity allocation problem.

(according to their capability to share with the system), au-
tomatically more peers are served for a more popular video.
The seeding algorithm will always try to equalize, based on the
given utility function, either the level of video quality received
by all peers watching different videos, or the ratio of the re-
ceived quality level over the demanded level for all peers [14,
ch. 4.4.3].
The SCA algorithm consists of sorting sub-requests, which

runs in where , and then per-
forming up to iterations of . Hence, the total running
time is .

C. The Real-Time SCA

The SCA algorithm described so far runs periodically on a
queue of pending requests. To avoid delays in processing and
responding of requests, specially for requests eligible for im-
mediate serving, we improve the SCA algorithm to operate in a
real-time manner. To this end, we maintain a priority queue at
each tracker, to which the requests are added (and possibly im-
mediately served) as they arrive. Recall that the SCA algorithm
introduced so far is based on sorting sub-requests according to
utility-to-cost ratios, and picking those with higher ratios. Thus,
we maintain a max-heap of requests at each tracker, prioritized
based on the utility-to-cost ratio.
From this priority queue, the first sub-requests at the head

are served by seed servers. Once a new request is received, its
sub-requests are extracted and immediately inserted in the pri-
ority queue according to their utility-to-cost ratios. Depending
on the obtained positions in the queue, one of the new sub-re-
quests may be entitled for service. For example, if the new re-
quest is asking for 5 layers and 3 of the 5 new sub-request are
entitled service according to their ratios, the one with the highest
number of layers is picked. In turn, a previous request may stop
receiving data from seed servers (i.e., the request with the lowest
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utility-to-cost ratio currently being served), which instead will
be forwarded to other peers in the system.
The processing for each new request, assuming it consists

of sub-requests and that there are sub-requests currently
being served, is the insertion (and possibly deletion) of en-
tries in a max-heap of size . This makes the processing time

for the given request. To further understand this
time compared to the non-real-time operation of SCA, let de-
note the average number of requests per second, the average
number of sub-requests per request, and the time between
two runs of the non-real-time SCA. The running time of the
non-real-time SCA is of per each run, where
is the number of sub-requests pending, i.e., . The ex-
pected processing time per second is hence

. In the real-time mode, on the other hand, SCA
takes per request, resulting in an average time of

per second. Note that , the number of pending
requests, is most often larger than , the number of sub-re-
quests that can currently be served by seed servers; otherwise we
could always serve all peer requests using seed servers which is
far from reality. This means that the processing load of the SCA
algorithm is even smaller when operating in real-time.

D. System Scalability

The P2P streaming model that we consider (Section III-A)
includes one or more trackers that have a global view of data
availability in the network. This is achieved through periodic
update reports that peers send to their corresponding tracker,
and trackers exchanging this information periodically. In this
section, we briefly discuss the feasibility of this architecture for
large scales using some realistic numbers.
1) Peer-Tracker Communications: Each peer notifies the

tracker about the video layers that it has for each segment of the
video. Thus, for each segment a small message is sent signalling
the video ID (e.g., 8 bytes), peer ID (4 bytes), segment (2 bytes)
and the number of layers (2 bytes, assuming state-of-the-art
H.264/SVC scalable videos with multi-dimensional scalability
[20]). This message along with the TC/IP packet overhead is
less than 60 bytes, which is sent once in every video segment
length, —typically ranging from 10 seconds to 2 minutes.
Assuming each tracker handles 10–100 thousand peers and

seconds, this yields a communication load of 20–200
kB/s received by each tracker, which is small. Upon arrival of
each message, the tracker simply updates an entry in a table
(discussed shortly), which is of negligible processing load.
2) Tracker Processing Overhead: As analyzed earlier, the

running time of the SCA algorithm can be roughly thought of
as iterations per second. Consider that each tracker
is managing 1 Gbps seeding capacity, the average video has
a bitrate of 2 Mbps and is encoded in 10 layers of 200 kbps
each, , and that there are requests per second
arriving at the tracker; equals 1 Gbps divided by the average
sub-request bitrate (1 Mbps), hence . This yields up
to 100 K iterations per second, which is a small CPU load even
for a commodity PC.We further note that the number of trackers
can always be adjusted to manage the tracker load.
3) Tracker Memory Load: Each tracker maintains per each

[peer, video] pair a list keeping track of the layers that the peer

holds from each segment of the video. The number of entries
in this list is the number of video segments, and each entry
is at most 2 bytes long considering the most flexible stream
H.264/SVC [20]. Assuming an average video length of 2 hours,

seconds, a total peer population of 1 million, and
that the average peer participates in the swarm of 10 videos
(watching one, partially seeding others), this list is less than
500 bytes for each [peer, video] pair, 4.5–5 GB in total. This
is a feasible amount of memory for a server machine handling
thousands of peers.
4) Inter-Tracker Communications: Trackers exchange peri-

odic information about data availability at their peers. Let de-
note this period in number of video segment lengths (i.e., a pe-
riod of seconds); is typically one or a few. The major
part of the information to exchange consists of the video layers
that each peer holds from each segment. Only changes since the
last update, seconds ago, will be signalled. To analyze
the amount of this information, we note that each peer can be
watching at most one stream (of segments) at a time. There-
fore, entries are updated and need to be signalled in a window
of seconds, meaning an amortized amount of 1 entry per
peer per seconds, and entries per peer in each batch be-
tween trackers; each entry is at most 2 bytes as discussed earlier.
Assuming even the conservative values of seconds
and , and that there are 10 trackers each handling 100 000
peers, 9 data chunks of 200 KB are sent/received by each tracker
at the end of a 10-second interval. This yields a total of 1.8 MB
sent and received every 10 seconds, which is clearly a feasible
amount.

IV. ANALYTICAL MODEL FOR CAPACITY PLANNING

In this section, we present an analytical model for forecasting
the dynamic behavior of P2P streaming systems, which employs
the SCA algorithm for allocation the resources of seed servers.
We first present a high level overview of the analysis, followed
by step-by-step details. We derive general formulas which can
yield the throughput of the P2P system as a function of the
characteristics of the network. These general formulas can be
readily customized for a given set of network characteristics,
and allow us to capture a wide range of network specifications.
This mainly consists of replacing the general variables used in
this section, e.g., random variables representing peer bandwidth
distributions, by values specific to the P2P system being ana-
lyzed. In Section V we present an example of this customiza-
tion.

A. Overview

We divide a video file into small segments. Let denote
the set of peers that are currently watching the video at segment
where . A peer can only serve data to peers that are
at earlier segments. In other words, a peer in can be served
by any peer in , , given that the requested layer
is available at the sending peer. Peers in cannot be served
by any peer in where . In addition to receiving
from other peers, a peer may request to receive the stream from
seed servers. The notations used in the analysis are summarized
in Table I. In the modeled system, a peer can be watching one
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video stream at a time. Since a peer’s upload bandwidth is typi-
cally less than its streaming rate, during a streaming session the
peer will use its entire upload bandwidth for uploading pieces of
the video being downloaded; this assumption, while realistic ac-
cording to typical user bandwidths in the Internet, is to make the
analysis feasible (not a strict must for the system). A peer that is
not watching any stream can seed one or more video files.
is the average effective seeding time for each file.
Our analysis takes the following variables as inputs, and it

outputs the throughput of the network in various forms, such as
the average video quality delivered to peers.
• The joint distribution of upload and download bandwidth
of peers. We define random variables and as the
download and upload bandwidth, which are not indepen-
dent. Let where

denote the probability that a peer’s
download and upload bandwidth values are in the range

and , respectively.
• The expected peer seeding duration for a file.
• The seed server capacity , number of layers , and bitrate
of each layer at each segment .

• The distribution of peer arrivals. is the random vari-
able representing the number of arrivals per segment and

denotes the probability of having arrivals in
seconds.

• The peer failure rate, , which is the probability that a
peer leaves at segment . is a function of to capture
realistic peer behaviors, e.g., peers that have stayed longer
are less likely to leave.

At a high level, the analysis proceeds as follows. Recall that a
peer in can stream to peers in only. Accordingly,
starting from the last segment of the video to the first

, in each step of the analysis we consider the
set of peers that are watching the same video segment , i.e.,
peers in . We estimate the output capacity of these peers as a
function of the capacity served to them. Using this function, we
can compute the capacity that is going to be served to these peers
and the capacity that they will serve to peers in .
We then proceed to segment and so on. In our analysis, we
treat capacity values as arrays rather than single numbers, where

represent the capacity served for layers
to , and represent the capacities served by .
We will later see how to divide a single seeding capacity value
between values for the layers. To analyze the set of peers

at a given segment, we define the function as
the output capacity of peers for layer when this layer is served
to them, i.e., peers demanding the layer at the segment, with
an input capacity . The bitrate of the video layer at that segment
is .
In the remainder of this section, we will first obtain the func-

tion in Section IV-B. This function captures the distribution
of only one video segment to a given number of peers. We em-
ploy this function in Section IV-C to analyze the distribution of
the complete video in a dynamic network.

B. Distribution of One Video Segment

We define function as the output capacity
for layer when serving this layer with a capacity to peers

demanding it at a segment. is the bitrate of the layer at the
segment. Clearly, if is equal to or larger than the demand of
peers, i.e., , all the peers can be served using . On
the other hand, if , we can serve only a subset of peers.
The estimated output capacity depends on how these subsets
are chosen. We consider two cases for this purpose: (i) when the
serving is done optimally which the SCA algorithm tries to do
(Section III-B), and (ii) when the serving is done randomly, as
in many current P2P streaming systems. We distinguish three
different functions: for case (i), for
case (ii), and for the case where , in which it
does not matter how to serve peers since the demand is smaller
than the input capacity.
Among these three forms, we first obtain .

For this case, peers are sorted based on the bitrate that they can
stream layer to other peers, and are selected one by one for
being served with layer . In our model, peers are expected to
use their upload bandwidth for serving lower layers first, and
also as many layers as they can upload. This is to avoid starva-
tion of some peers in the system (enough lower layers served)
while also getting some higher quality layers distributed in the
network. Therefore, the bitrate at which a peer streams
layer to other peers can be estimated as:

where is the number of layers that peer demands, and
is its total upload bandwidth. In case is higher than the total
bitrate of the demanded layers, the peer is able to serve more
than its downloaded stream rate (layers 1 to ). It therefore
divides the remained bandwidth from the above equation evenly
among the layers:

(4)
Using (4) and the distribution of upload bandwidths , we

can calculate the distribution of : the random variable repre-
senting the upload rate of peers for layer .
Peers with higher values are selected for being served

with layer . The number of peers that can be served using ca-
pacity is . Since for calculating , we know
that , the value to be calculated, , consists of “the total ca-
pacity that can be streamed by the peers that have the highest
-capacity values among the total peers”. We estimate this

capacity by a probabilistic analysis as follows. Assume that in
a list of peers sorted according to the serving capacity for layer
, the st peer has a value equal to . Thus, the first
peers all have a value of . Using this, we can obtain
the expected value for the total capacity of the first peers for
layer as:

(5)

where is the cumulative bitrate of the first layers, and
refers to the probability density function for at
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. The two conditions considered in this expected value capture
the fact that the involved peers in this calculation already
have an upload bandwidth higher than the st peer, and a
download bandwidth that can afford the first layers; clearly,
peers that are not capable of downloading the first layers
cannot be an uploader for that layer.
To obtain the expected capacity of the first peers, we need

to integrate (5) with respect to , and consider all possible com-
binations of peers in an arbitrary sorted list of peers. For the
candidate st peer that we considered in (5), there are
choices. Then, there are choices for selecting the first
peers among the remaining ones. Hence, the expected value of

is calculated as:

(6)

where term I is the probability that the candidate st peer
has a capacity of for serving layer , term II is the probability
that there are peers with higher capacity than , and term III
is the probability that there are peers with lower such
capacity. The product of these terms indicates the probability
that the peer we assumed as the st peer is actually the st
among a total of .
We now consider the case where peers are served randomly,

as opposed to employing the SCA algorithm proposed in
Section III. In this case we have:

(7)

Finally, we note that if the number of requesting peers is less
than or equal to the number of peers that can be served, i.e.,

, we can serve all peers that are at the segment:

(8)

C. Distribution of the Complete Video

We now use the formulas obtained for , , and
to calculate the capacity of the whole network. We first

extend these functions to capture the dynamics of the network
including arrivals and failures at one segment. We then employ
these functions to generalize our analysis from the distribution
of one segment to that of the whole video.
1) Peers Dynamics: To accommodate peer arrivals and de-

partures (or failures) that may happen at different time instances,
we define as the output capacity for serving
a segment where the number of peers at the segment is rep-
resented by the random variable (obtained shortly) and the
failure probability for peers at the segment is .
is calculated as follows. Let be a random variable repre-
senting the number of peers at segment demanding layer .

The probability distribution of , given the number of peers
, is given as:

(9)

Accordingly, we calculate as:

(10)

2) Distribution of Video Segments Over Time: Consider the
steady state of the network, where some peers are watching the
video at segments and some peers have finished
watching and are seeding for up to time units. We assume
that the throughput of the network in the steady state is smaller
than the demand of the peer population. Otherwise, we reduce
the bandwidth or even turn off the seed server; note that the
peer population is usually not capable of supporting its demand,
given the highly asymmetric user bandwidths. We estimate the
steady-state throughput of the network for both cases of random
and using the SCA algorithm.
If serving randomly, the expected capacity of arbitrary peers

at segment for serving layer is ,
as addressed in (7). If this value is less than , which is
the bandwidth required to serve layer to peers, then layer of
segment will eventually vanish in the network since a random
peer receiving it cannot serve it completely, e.g., if two peers
receive the complete layer at a given time instance then only
one peer can receive it at the next time instance—partial layers
are of no use as they cannot be decoded. In other words, the
number of peers that can be served with layer of segment
constantly decreases and the steady-state capacity for serving
that layer converges to zero. On the other hand, if the aforemen-
tioned expected value is greater or equal to , eventually
all peers at that demand layer can receive it, even if we ini-
tially seed this layer to a few random peers only. Accordingly,
using (7) we can determine the video layers that survive and
continue being streamed between peers, and those that do not.
Using this, the video quality that is expected to be served in the
network can be readily obtained, as we do in our sample anal-
ysis in Section V.
On the other hand, if peers are served according to their up-

load capacity, the fate of a particular layer is not necessarily
either vanishing or being served to everybody. As an extreme
example, if at every segment we only have 1 peer capable of
serving layer , and all other peers are incapable of that, we
can still have 1 peer at each segment receiving layer while the
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others receive only up to the st layer. We can have more
peers receiving layer by using the seed server. For instance,
we can have more than 2 peers receiving the layer if we seed
only one layer bitrate, since the peer we seed to will itself serve
to others a portion of the layer. We now determine the number
of peers that can receive layer in the steady state as a function
of the bitrate seeded.
Recall that the number of peer arrivals is represented by the

random variable , and the failure probability at a segment
is . Considering peers that may have left/failed at earlier
segments than , the number of peers at segment can be repre-
sented by the random variable as:

(11)

Once the distribution of layer of segment is started, at each
time instance we have:

(12)
where is the layer- throughput of peers at segment
at time instance of the system; is defined as zero. Term
I in (12) represents the capacity served for layer to peers at
segment , which consists of , the capacity served by the
seed server for layer of segment , and , the capacity
served by other peers (subscript in and omitted for
clarity, as is applied for each video file separately). The
coefficient is to take into account the expected ca-
pacity shared by seeding peers—this coefficient has a few subtle
details capturing the dynamics of the network and the proba-
bility that a peer at segment stays for seeding, which we do
not include here as they do not have a considerable effect. Note
that in an actual system we are only given a total seed server
capacity , not particular values used in (12). The way
we divide among values to conduct the above calcula-
tion depends on the method used for allocation of seed servers.
If the allocation is done properly (i.e., according to the pop-
ulation requesting different videos/pieces, as our algorithm in
Section III-B does), in our analysis we can first divide over the
videos according to their viewer population, and then over seg-
ments of each video according to the value of each segment
and the bitrate/quality of the video at that segment .
Finally, we divide the capacity given to each segment over dif-
ferent layers based on the demand for the layers (according to
), the bitrate/quality of the layers, and the server allocation

method (random or contribution-based). Since conducting our
analysis for a given network consists of several iterations over
(12) for different segments and layers, we perform the above
step in each iteration.
We first note that values converge over time (i.e., for

), in either case of random or SCA serving. This is
intuitively true, and is specifically because values are mono-
tonic with , i.e., either constantly non-increasing or constantly
non-decreasing. Otherwise, for instance, we could have the case
that 5 peers, either randomly selected or just the top 5 high-ca-
pacity peers, can serve 8 peers, but 8 peers (selected the same

way) can serve only 7 peers, which is not possible. As is
monotonic and it is finite, it converges to a specific value. We
illustrate a sample of this convergence in Section V.
Denoting the converged value of simply by , we can

now determine the steady-state number of peers that are ex-
pected to receive layer of segment . This number, denoted
by , is obtained as:

(13)

Using the values we can estimate the steady-state
throughput of the system along a variety of metrics. For ex-
ample, the total bitrate and the average video quality served to
peers can be calculated as:

Bitrate served (14)

Average quality (15)

in which the use of captures that the expected number of
peers at different segments is not the same.

D. Analysis of Flash Crowd Scenarios

Using our estimate of the throughput of the system, we can
analyze the capacity of the system for supporting sudden exten-
sive loads such as a flash crowd. In a flash crowd event, a large
number of peers arrive at the system at about the same time.
Taking advantage of the flexibility of scalable streams, a system
may sustain in these circumstances and support the new peers by
temporarily lowering the video quality delivered in the network
until the system recovers from the shock and returns to a stable
state. Our analysis can determine the robustness of a P2P system
against flash crowds, which we define as the maximum number
of peers that can be admitted to the system at once. This max-
imum can be achieved when we serve only a minimum video
quality to all peers, i.e., the base layer. Thus, having estimated
the total throughput of the network, we can calculate the number
of minimal substreams that can be served using this throughput,
i.e., an upper bound on the maximum number of peers that can
be served when a flash crowd arrives. We assume that a peer
keeps the video file in its buffer until it finishes watching the
video. Thus, all peers can serve the base layer of the first few
segments of the video. Hence, the maximum flash crowd size

that can be supported is calculated as:

(16)
where term I represents the bitrate served for delivering the base
layer to peers that were already in the network. Equation (16)
calculates the number of base layers that can be served to newly
arrived peers. Note that it is the serving of the first few segments
that is most important for sustaining a flash crowd. After the first
few segments, peers arrived in the flash crowd also contribute to
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uploading, and the throughput of the system increases accord-
ingly.

E. Summary

We presented a general analytical model for studying the be-
havior of P2P streaming systems. We divide a video file into
segments, and analyze the bandwidth consumed and the band-
width contributed by peers that are watching each video seg-
ment for . This part of the analysis is done
using (10). The functions needed for calculation of (10) are de-
rived in its preceding equations. Then, we plug the single-seg-
ment analysis function obtained in (10) into (12), which ana-
lyzes the distribution of each video segment/layer over time.
Using (12) and (13), we can obtain the number of peers that
are expected to receive each video segment/layer of the video
stream in the steady state. These numbers are then used to pre-
dict the total bitrate that is going to be served in the system in
the long term (14), the average video quality delivered to peers
(15), the capability of the system for supporting flash crowds of
peers (16), or others user-defined metrics for capturing the per-
formance of the system.

V. MODEL APPLICATION AND ANALYSIS

In this section, we show the details of employing the proposed
analytical model for analyzing a sample P2P streaming system.
This is to demonstrate how our general analysis in Section IV
can be used in practice. P2P streaming systems with different
characteristics than considered in this section can be analyzed
in a similar manner.

A. Analysis

The sample P2P streaming network we analyze is specified
as follows. Suppose we distribute a video file consisting of
layers, each at a fixed rate of kbps. The video length is seg-
ments. We consider both random and contribution-based (SCA)
serving of peers. The download bandwidth of peers is uniformly
distributed in kbps, and the upload bandwidth of each
peer is a constant fraction of its download bandwidth, which
makes it uniformly distributed in kbps. Peers arrive ac-
cording to a Poisson distribution with an average arrival rate of
, and stay after they finish watching the video for seeding for
up to time units. A fraction of peers leave the system be-
fore watching the complete video and seeding. These departures
happen with probability for peers at segment .
We customize the model and equations derived in the pre-

vious section for the network described above. First, we need to
calculate the functions , , and , which take
as input the bandwidth kbps for serving the -kbps layer to
peers. For this purpose, we need to obtain the closed form ex-

pression for , the expected value of the upload
capacity for layer by a peer that can download layer , since
this value is repeatedly used in the following equations. This is
done using the distribution of bandwidths as:

where for any arbitrary is calculated according
to the way a peer shares its upload bandwidth among layers (4)
and the distribution of the upload bandwidth of peers, which is
uniform in our case. More specifically, denoting by the
layer- upload bandwidth of a peer whose total upload band-
width is , according to (4) we have:

which leads to calculation of the desired expected value
as in (17). The first row in (17) corresponds

to the case where the upload bandwidth of a peer is higher
than the total bitrate of video layers, in which a bandwidth
is evenly divided among the layers. The second row adds to
this case the possibility that the upload bandwidth is less than
the bitrate of all layers, but higher than , the bitrate of the first
layers. In this case, the bitrate at which layer is streamed to
other peers is just equal to . The third row adds the case that
the peer’s upload bandwidth is less than the bitrate of the first
layers, but higher than the first of them. In this case,
it can upload layer at a rate less than . Finally, the last row
considers the case where the peer cannot upload layer at all.

(17)

Now that we obtained for any arbitrary , we
can calculate functions and using (7) and (8):

Next, we calculate using (6):

(18)

in which all probabilities can be easily derived according to the
uniform distribution of in .
The next function we need to calculate is ,

the probability distribution of the number of peers at a segment
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Fig. 3. The streaming capacity of peers at one segment for one layer. (a) Streaming capacity when we only seed at the first time step. The curves from bottom to
top correspond to initial seed values from 1 to 10 layer rates. (b) Streaming capacity when seeding continues. The top 10 of the 11 curves correspond to seeding
capacities 1 to 10 layer rates. The bottom curve is the special case of seeding with 1 layer rate at the first time step only.

which are demanding layer , when the failure probability for
peers at that segment is . This is done using (9):

(19)

where is the probability of exactly
arrivals given a Poisson distribution with parameter

.
We can now analyze the distribution of each video segment

through (10) and (12), since we have already obtained all its
preliminaries in the above equations. Thus, we have:

(20)
where term I denotes the expected number of peers (with
Poisson distribution) at segment , i.e., peers whose expected
number was at the beginning of their joining, and left the
system with probability at each time instance . Denoting
the value converged over time by , the steady-state number
of peers receiving layer of segment , i.e., , is calculated
using (13).

B. Numerical Results (Answering and )

Since each video segment is analyzed individually, let us first
focus on the distribution of one segment. We would like to see
how many peers at a given segment can be served with a partic-
ular layer in the long term. We then use these results as a basis
for analyzing the distribution of the complete video. To carry out
a numerical analysis, we fix the value of some of the parameters
as follows. We suppose the distribution of a 1-hour video which
we divide into 60 1-minute segments. The video has
layers, each at rate kbps. The maximum download
bandwidth of a peer is Mbps and its upload bandwidth
is of its download bandwidth. Peers arrive at a rate of

peers per minute with a Poisson distribution, and after
watching the video, they seed for up to minutes.
25% of peers leave the system before they finish watching and
seeding, which happens with an exponential probability distri-
bution with most of the departures taking place in the first few
minutes of watching.
1) Step 1: Distribution of One Video Segment: We first note

that the number of peers served with layer of a given segment
converges over time, as discussed in Section IV-C. This can
be observed in Fig. 3(a), which shows a sample result. In this
figure, considering a window of peers at one segment over time,
the number of peers that are served with layer 5 in each time step
is plotted. Each curve, from bottom to top, corresponds to an ini-
tial seed capacity, starting from 1 layer bitrate and increasing to
10. The failure probability for peers at the segment is assumed
20%. In Fig. 3(a), independent of the initial seed, the number
of peers that the network can serve with layer 5 of the segment
converges to 5.6 on average, though it takes more time to boost
the capacity when the initial seed is small. If we do not stop
seeding after the first time step and keep seeding over time, in-
deed a higher bitrate is served to the peers. This increase in the
throughput for streaming layer 5 of the segment is illustrated
in Fig. 3(b). In this figure, the increase in the number of served
peers when the seeding capacity is increased is more signifi-
cant for smaller capacity values, which is particularly observ-
able as the gap between the three lowest curves. This is because
in those cases, the entire seeded bitrate is consumed by peers,
and since peers will also contribute to serving, the increase in the
throughput is more than the seeded bitrate. On the other hand,
if the seed is more than the demand of the peers, only part of it
is consumed, and the number of peers served will converge to
the number demanding the layer. This is observed in Fig. 3(b)
for seeding capacities of more than 3 layer bitrate. In partic-
ular, 7 out of the 11 curves gather on top of the figure. Though
Fig. 3(b) corresponds to the serving of layer 5 only, serving of
other layers demonstrates similar behaviors. For lower layers (1
to 4), the most bottom curve converges to higher values than
5.6, because the total upload rate of lower layers by the peers
is higher. Moreover, more curves gather on top of the figure.
For higher layers (6 to 10), the reverse of these behaviors is ob-
served.
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Fig. 4. Average video quality delivered to peers.

In summary, using our analysis and given the seeding ca-
pacity, we can determine for each layer the value to which the
number of served peers at a segment converges, i.e., the
value introduced in Section IV-C, which is the steady-state
number of peers served with layer of segment . We use these
values for analyzing the distribution of the complete video in
the next step.
2) Step 2: Deriving the Throughput for the Complete Video:

Using the previous step, we obtain for all valid , values.
Consequently, we can calculate the throughput of the network
in terms of various metrics. For example, we estimate the av-
erage video quality delivered to peers using (15) for different
values of seeding capacity . This is plotted in Fig. 4 for both
cases of SCA and random serving. Fig. 4 answers questions

and discussed in Section I: it estimates the throughput
of the system in terms of video quality, and it computes the ca-
pacity needed for providing a desired level of video quality. For
example, if we provide 25 Mbps seeding capacity, the average
video quality delivered to peers will be 35.9 dB. If we increase
this capacity to 125 Mbps, the average quality will increase to
37.3 dB. This increase continues as we provider higher capaci-
ties, and it eventually approaches a value of approximately 38.5
dB, which is the maximum quality demand of peers—note that
although the video stream can provide a quality of up to 40 dB,
not all peers are demanding this quality level.

VI. EVALUATION AND VALIDATION
OF THE CAPACITY PLANNING MODEL

In this section, we first validate our analytical model by com-
paring its results to those obtained from simulation. Then, we
show how we can use the analysis for studying different perfor-
mance aspects of P2P streaming systems.

A. Validation Using Simulation

The simulation setup is the same as mentioned in
Section V-B. According to the arrival and failure/departure
rates, the video length, and the peer seeding time, the number
of peers in the network varies with time, but on average there
are 500–600 at any time. Each simulation runs for 5 hours of
simulation time. We make peers disobey our assumption about
the way they share their upload bandwidth among different
layers in (4) by having each value deviate by up to 50%

Fig. 5. Validation of the analytical model.

from its supposed value. This is used to capture peers and
network dynamics in real systems.
We run the simulation for different values of seed server ca-

pacity, and compare the results with those of our analysis. This
comparison is illustrated in Fig. 5, which shows the average
video quality in the steady state obtained by the analytical and
the simulation study for different values of seeding capacity.
Fig. 5 shows that estimations of the analysis are reasonably
close to the results obtained by simulations, except for small
seeding capacities. The deviation observed for these values in
the case of random serving is because the analytical model as-
sumes a certain value as the upload bandwidth of a peer for a
particular layer in (4). This assumption becomes far from re-
ality when the seeding capacity is small and it is not carefully
allocated, because in this case only a few video layers are ex-
changed between peers and the upload bandwidths of peers for
higher layers become significantly smaller than expected; and
those for lower layers are larger than expected. Except for this
particular case, the simulation explained in this section with dy-
namic P2P streaming systems confirms the accuracy of our anal-
ysis.

B. Flash Crowd Scenarios (Answering )

Using the flash crowd analysis in Section IV-D, we obtain the
maximum number of peers (arriving together) that can be served
by the system for different values of seeding capacity. The re-
sults of this experiment are plotted in Fig. 6(a), which an-
swer question discussed in Section I. In this figure, curves
labeled “Analysis” show the upper bound on the flash crowd
size that can be supported by the system, using the total serving
capacity of peers and seed servers. Curves labeled “Simulation”
depict the number of peers supported in a flash crowd in a sim-
ulated P2P system. To obtain these numbers, we make a set of
10 000 peers arrive in the system at the same time (at
hours). Shortly after the arrivals, we measure the number of
peers out of these 10 000 that could receive a video stream (the
base layer). Note that the analytical results for the flash crowd
test only provide an upper bound on the number of peers that
can be served, i.e., ideally if the peers’ upload capacities could
be properly utilized for each other even right after the sudden ar-
rival of thousands of peers. Accordingly, there is a gap between
the analytical upper bound and the experimental results (with a
single-machine simulator) for this test. Moreover, although with
a smaller domain, the results of simulation also do not exhibit a
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Fig. 6. Analyzing flash crowd scenarios. (a) Number of peers served in flash crowd. (b) Robustness of scalable streaming against flash crowds.

smooth behavior. This can be attributed to the high degree of dy-
namics introduced to the simulated systems by the large crowd
of peers arriving at the same time.
Nevertheless, Fig. 6(a) shows that for smaller seed server ca-

pacities, the two serving methods can make a significant dif-
ference in terms of the flash crowd size that can be supported.
For example, to support 3500 peers, approximately 70 Mbps
capacity is needed for seed server in case of random serving,
whereas if the serving has been done carefully until the flash
crowd arrives, the seeding capacity can potentially be as low as
10 Mbps.

C. Benefits of Scalable Video Streams (Answering )

When scalable video streams are served, flash crowd cases
can be handled more effectively compared to the case with
nonscalable streams. This is because scalable streams can be
adapted to lower bitrates for a short period, until the system
recovers from the shock. With nonscalable streams, the video
bitrate cannot be adapted, and many peers will have to be
rejected. We analyze a flash crowd scenario in our simulator
in order to derive more insights on the performance of P2P
streaming systems with scalable videos as well as those with
nonscalable videos, specially their robustness against flash
crowd events.
We run the test for a seeding capacity of 50 Mbps. According

to Fig. 6(a), 3800 is an upper bound on the size of a flash crowd
that can be supported. Thus, we make a set of 3500 peers ar-
rive to the simulated system at time instance hours; the
time that the system reaches a steady state is min. We
assume that after the crowd event happens, peers that arrive in
this crowd are not able to immediately start uploading data. In
particular, in our simulations those peers cannot upload any data
for the first two minutes. Then, they gradually become able to
do so with an expected time of five minutes. This is because in
a real system, the tracker needs some time to catch up with the
large amount of changes in the system and to introduce these
peers as potential senders to other peers.
We consider a similar streaming scenario with nonscalable

video. The bitrate of the nonscalable vide stream determines
a tradeoff between the number of peers that can benefit from
the system and the video quality delivered to users. Assuming
that we would like to be able to support 90% of peers, we set
the video bitrate to 1 Mbps. We also assume that the overhead

of scalable coding is 10% [20], meaning that our nonscalable
stream can provide a visual quality equal to the one provided by
the corresponding scalable stream at 1.10 Mbps (35.2 dB).
Note that in case of serving nonscalable video streams, we

would not have the possibility to switch to lower bitrate videos,
and accordingly, many peers would have been rejected from the
system. Therefore, the average video quality does not drop as it
does with scalable streaming, but the system rejects many peers.
To analyze this issue, we plot in Fig. 6(b) the fraction of peers
who are receiving a video stream, i.e., at least the base layer.
This figure answers question discussed in Section I. Once
the flash crowd arrives, the fraction of peers receiving a video
stream drops momentarily for the scalable streaming case to a
value of approximately 60%, and increases back to over 90% in
less than two minutes. However, this value drops dramatically
in case of nonscalable streaming. It takes more than 10 minutes
for the newly arrived peers to catch up with the stream.

VII. CONCLUSIONS

We have studied the problem of managing the seed server
capacity in P2P streaming systems with scalable videos. We
first formulated the problem of allocating the resources of seed
servers to peers’ requests for different video layers. We proved
the NP-completeness of this problem, and proposed an approxi-
mation algorithm to solve it. Using our allocation algorithm, we
developed an analytical model to analyze the performance of
P2P streaming systems with scalable videos. The model com-
putes the long-term throughput of the network in terms of the
delivered video quality and the total served bitrate. Our anal-
ysis can help administrators of P2P streaming systems to as-
sess the benefits of deploying a given amount of seeding re-
sources, and to determine the cost-benefit tradeoff for provi-
sioning a higher seeding capacity to sustain a desired level of
video quality. Moreover, the proposed analysis can estimate an
upper bound on the capability of a P2P system for supporting
flash crowds, which is the maximum number of peers that can
be admitted to the system within a short period of time. We have
validated our analytical model using extensive simulations with
realistic parameters of dynamic P2P streaming systems.
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