
Design and Evaluation of a
Proxy Cache for Peer-to-Peer Traffic

Mohamed Hefeeda, Senior Member, IEEE, Cheng-Hsin Hsu, Member, IEEE, and

Kianoosh Mokhtarian, Student Member, IEEE

Abstract—Peer-to-peer (P2P) systems generate a major fraction of the current Internet traffic, and they significantly increase the load

on ISP networks and the cost of running and connecting customer networks (e.g., universities and companies) to the Internet. To

mitigate these negative impacts, many previous works in the literature have proposed caching of P2P traffic, but very few (if any) have

considered designing a caching system to actually do it. This paper demonstrates that caching P2P traffic is more complex than

caching other Internet traffic, and it needs several new algorithms and storage systems. Then, the paper presents the design and

evaluation of a complete, running, proxy cache for P2P traffic, called pCache. pCache transparently intercepts and serves traffic from

different P2P systems. A new storage system is proposed and implemented in pCache. This storage system is optimized for storing

P2P traffic, and it is shown to outperform other storage systems. In addition, a new algorithm to infer the information required to store

and serve P2P traffic by the cache is proposed. Furthermore, extensive experiments to evaluate all aspects of pCache using actual

implementation and real P2P traffic are presented.

Index Terms—Caching, peer-to-peer systems, file sharing, storage systems, performance evaluation.

Ç

1 INTRODUCTION

FILE sharing using peer-to-peer (P2P) systems is currently
the killer application for the Internet. A huge amount of

traffic is generated daily by P2P systems [1], [2], [3]. This
huge amount of traffic costs university campuses thousands
of dollars every year. Internet service providers (ISPs) also
suffer from P2P traffic [4], because it increases the load on
their routers and links. Some ISPs shape or even block P2P
traffic to reduce the cost. This may not be possible for some
ISPs, because they fear losing customers to their competi-
tors. To mitigate the negative effects of P2P traffic, several
approaches have been proposed in the literature, such as
designing locality-aware neighbor selection algorithms [5]
and caching of P2P traffic [6], [7], [8]. We believe that
caching is a promising approach to mitigate some of the
negative consequences of P2P traffic, because objects in P2P
systems are mostly immutable [1] and the traffic is highly
repetitive [9]. In addition, caching does not require
changing P2P protocols and can be deployed transparently
from clients. Therefore, ISPs can readily deploy caching
systems to reduce their costs. Furthermore, caching can
coexist with other approaches, e.g., enhancing P2P traffic
locality, to address the problems created by the enormous
volume of P2P traffic.

In this paper, we present the design, implementation,
and evaluation of a proxy cache for P2P traffic, which we
call pCache. pCache is designed to transparently intercept
and serve traffic from different P2P systems, while not
affecting traffic from other Internet applications. pCache
explicitly considers the characteristics and requirements of
P2P traffic. As shown by numerous previous studies, e.g.,
[1], [2], [8], [10], [11], network traffic generated by P2P
applications has different characteristics than traffic gener-
ated by other Internet applications. For example, object size,
object popularity, and connection pattern in P2P systems
are quite different from their counterparts in web systems.
Most of these characteristics impact the performance of
caching systems, and therefore, they should be considered
in their design. In addition, as will be demonstrated in this
paper, designing proxy caches for P2P traffic is more
complex than designing caches for web or multimedia
traffic, because of the multitude and diverse nature of
existing P2P systems. Furthermore, P2P protocols are not
standardized and their designers did not provision for the
potential caching of P2P traffic. Therefore, even deciding
whether a connection carries P2P traffic and if so extracting
the relevant information for the cache to function (e.g., the
requested byte range) are nontrivial tasks.

The main contributions of this paper are as follows:

. We propose a new storage system optimized for P2P
proxy caches. The proposed system efficiently serves
requests for object segments of arbitrary lengths, and
it has a dynamic segment merging scheme to
minimize the number of disk I/O operations. Using
traces collected from a popular P2P system, we show
that the proposed storage system is much more
efficient in handling P2P traffic than storage systems
designed for web proxy caches. More specifically,

964 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

. M. Hefeeda is with the School of Computing Science, Simon Fraser
University Surrey, 250-13450 102nd Ave, Surrey, BC V3T 0A3, Canada.
E-mail: mhefeeda@cs.sfu.ca.

. C.-H. Hsu is with Deutsche Telekom R&D Lab USA, 5050 El Camino
Real, Suite 221, Los Altos, CA 94022.
E-mail: cheng-hsin.hsu@telekom.com.

. K. Mokhtarian is with the Electrical and Computer Engineering
Department, University of Toronto, 10 King’s College Road, Toronto,
ON M5S 3G4, Canada. Email: kianoosh.mokhtarian@utoronto.ca.

Manuscript received 8 June 2009; revised 2 Dec. 2009; accepted 8 Jan. 2010;
published online 23 Feb. 2011.
Recommended for acceptance by Y. Yang.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-06-0265.
Digital Object Identifier no. 10.1109/TC.2011.57.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

our experimental results indicate that the proposed
storage system is about five times more efficient than
the storage system used in a famous web proxy
implementation.

. We propose a new algorithm to infer the information
required to store and serve P2P traffic by the cache.
This algorithm is needed because some P2P systems
(e.g., BitTorrent) maintain information about the
exchanged objects in metafiles that are held by peers,
and peers request data relative to information in
these metafiles, which are not known to the cache.
Our inference algorithm is efficient and provides a
quantifiable confidence on the returned results. Our
experiments with real BitTorrent clients running
behind our pCache confirm our theoretical analysis
and show that the proposed algorithm returns
correct estimates in more than 99.7 percent of the
cases. Also, the ideas of the inference algorithm are
general and could be useful in inferring other
characteristics of P2P traffic.

. We demonstrate the importance and difficulty of
providing full transparency in P2P proxy caches,
and we present our solution for implementing it in
the Linux kernel. We also propose efficient splicing
of non-P2P connections in order to reduce the
processing and memory overhead on the cache.

. We conduct an extensive experimental study to
evaluate the proposed pCache system and its
individual components using actual implementation
in two real P2P networks: BitTorrent and Gnutella
which are currently among the most popular P2P
systems. (A recent white paper indicates the five most
popular P2P protocols are: BitTorrent, eDonkey,
Gnutella, DirectConnect, and Ares [12]). BitTorrent
and Gnutella are chosen because they are different in
their design and operation. The former is swarm-
based and uses built-in incentive schemes, while the
latter uses a two-tier overlay network. Our results
show that our pCache is scalable and it benefits both
the clients and the ISP in which it is deployed, without
hurting the performance of the P2P networks.
Specifically, clients behind the cache achieve much
higher download speeds than other clients running in
the same conditions without the cache. In addition, a
significant portion of the traffic is served from the
cache, which reduces the load on the expensive WAN
links for the ISP. Our results also show that the cache
does not reduce the connectivity of clients behind it,
nor does it reduce their upload speeds. This is
important for the whole P2P network, because
reduced connectivity could lead to decreased avail-
ability of peers and the content stored on them, while
reduced upload speeds could degrade the P2P
network scalability.

In addition, this paper summarizes our experiences and
lessons learned during designing and implementing a
running system for caching P2P traffic, which was demon-
strated in [13]. These lessons could be of interest to other
researchers and to companies developing products for
managing P2P traffic. We make the source code of pCache
(more than 11,000 lines of C++ code) and our P2P traffic

traces available to the research community [14]. Because it is
open source, pCache could stimulate more research on
developing methods for effective handling of P2P traffic in
order to reduce its negative impacts on ISPs and the Internet.

The rest of this paper is organized as follows: In Section 2,
we summarize the related work. Section 3 presents an
overview of the proposed pCache system. This is followed
by separate sections describing different components of
pCache. Section 4 presents the new inference algorithm.
Section 5 presents the proposed storage management
system. Section 6 explains why full transparency is required
in P2P proxy caches and describes our method to achieve it
in pCache. It also explains how non-P2P connections are
efficiently tunneled through pCache. We experimentally
evaluate the performance of pCache in Section 7. Finally, in
Section 8, we conclude the paper and outline possible
extensions for pCache.

2 RELATED WORK

2.1 P2P Traffic Caching: Models and Systems

The benefits of caching P2P traffic have been shown in [9]
and [4]. Object replacement algorithms especially designed
for proxy cache of P2P traffic have also been proposed in [6]
and in our previous works [8], [11]. The above works do not
present the design and implementation of an actual proxy
cache for P2P traffic, nor do they address storage manage-
ment issues in such caches. The authors of [7] propose using
already-deployed web caches to serve P2P traffic. This,
however, requires modifying the P2P protocols to wrap
their messages in HTTP format and to discover the location
of the nearest web cache. Given the distributed and
autonomous nature of the communities developing P2P
client software, incorporating these modifications into
actual clients may not be practical. In addition, several
measurement studies have shown that the characteristics of
P2P traffic are quite different from those of web traffic [1],
[2], [8], [10], [11]. These different characteristics indicate that
web proxy caches may yield poor performance if they were
to be used for P2P traffic. The experimental results
presented in this paper confirm this intuition.

In order to store and serve P2P traffic, proxy caches need
to identify connections belonging to P2P systems and
extract needed information from them. Several previous
works address the problem of identifying P2P traffic,
including [15], [16], [17]. The authors of [15] identify P2P
traffic based on application signatures appearing in the TCP
stream. The authors of [17] analyze the behavior of different
P2P protocols, and identify patterns specific to each
protocol. The authors of [16] identify P2P traffic using only
transport layer information. A comparison among different
methods is conducted in [18]. Unlike our work, all previous
identification approaches only detect the presence of P2P
traffic: they just decide whether a packet or a stream of
packets belongs to one of the known P2P systems. This is
useful in applications such as traffic shaping and blocking,
capacity planning, and service differentiation. P2P traffic
caching, however, does need to go beyond just identifying
P2P traffic; it requires not only the exchanged object ID, but
also the requested byte range of that object. In some P2P
protocols, this information can easily be obtained by

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 965

reading a few bytes from the payload, while in others it is
not straightforward.

Several P2P caching products have been introduced to
the market. Oversi’s OverCache [19] implements P2P
caching, but takes a quite different approach compared to
pCache. An OverCache server participates in P2P networks
and only serves peers within the ISP. This approach may
negatively affect fairness in P2P networks because peers in
ISPs with OverCache deployed would never contribute as
they can always receive data from the cache servers without
uploading to others. This in turn degrades the performance
of P2P networks. PeerApp’s UltraBand [20] supports
multiple P2P protocols, such as BitTorrent, Gnutella, and
FastTrack. These commercial products demonstrate the
importance and timeliness of the problem addressed in this
paper. The details of these products, however, are not
publicly available, thus the research community cannot use
them to evaluate new P2P caching algorithms. In contrast,
the pCache system is open source and could be used to
develop algorithms for effective handling of P2P traffic in
order to reduce loads on ISPs and the Internet. We develop
pCache software as a proof of concept, rather than yet
another commercial P2P cache. Therefore, we do not
compare our pCache against these commercial products.

2.2 Storage Management for Proxy Caches

Several storage management systems have been proposed
in the literature for web proxy caches [21], [22], [23], [24]
and for multimedia proxy caches [25], [26], [27]. These
systems offer services that may not be useful for P2P proxy
caches, e.g., minimizing start-up delay and clustering of
multiple objects coming from the same web server, and they
lack other services, e.g., serving partial requests with
arbitrary byte ranges, which are essential in P2P proxy
caches. We describe some examples to show why such
systems are not suitable for P2P caches.

Most storage systems of web proxy caches are designed
for small objects. For example, the Damelo system [28]
supports objects that have sizes less than a memory page,
which is rather small for P2P systems. The UCFS system [23]
maintains data structures to combine several tiny web
objects together in order to fill a single disk block and to
increase disk utilization. This adds overhead and is not
needed in P2P systems, because a segment of an object is
typically much larger than a disk block. Clustering of web
objects downloaded from the same web server is also
common in web proxy caches [22], [24]. This clustering
exploits the temporal correlation among these objects in
order to store them near to each other on the disk. This
clustering is not useful in P2P systems, because even a single
object is typically downloaded from multiple senders.

Proxy caches for multimedia streaming systems [25], [26],
[27], on the other hand, could store large objects and serve
byte ranges. Multimedia proxy caches can be roughly
categorized into four classes [25]: sliding-interval, prefix,
segment-based, and rate-split caching. Sliding-interval
caching employs a sliding-window for each cached object
to take advantage of the sequential access pattern that is
common in multimedia systems. Sliding-interval caching is
not applicable to P2P traffic, because P2P applications do not
request segments in a sequential manner. Prefix caching
stores the initial portion of multimedia objects to minimize

client start-up delays. P2P applications seek shorter total
download times rather than start-up delays. Segment-based
multimedia caching divides a multimedia object into
segments using segmentation strategies, such as uniform,
exponential, and frame-based. P2P proxy caches do not have
the freedom to choose a segmentation strategy; it is imposed
by P2P software clients. Rate-split caching employs scalable
video coding that encodes a video into several substreams,
and selectively caches some of these substreams. This
requires scalable video coding structures, which renders
rate-split caching useless for P2P applications.

3 OVERVIEW OF PCACHE

The proposed pCache is to be used by autonomous systems
(ASes) or ISPs that are interested in reducing the burden of
P2P traffic. Caches in different ASes work independently
from each other; we do not consider cooperative caching in
this paper. pCache would be deployed at or near the
gateway router of an AS. The main components of pCache
are illustrated in Fig. 1. At high level, a client participating
in a P2P network issues a request to download an object.
This request is transparently intercepted by pCache. If the
requested object or parts of it are stored in the cache, they
are served to the requesting client. This saves bandwidth on
the external (expensive) links to the Internet. If no part of
the requested object is found in the cache, the request is
forwarded to the P2P network. When the response comes
back, pCache may store a copy of the object for future
requests from other clients in its AS. Clients inside the AS as
well as external clients are not aware of pCache, i.e., pCache
is fully transparent in both directions.

As shown in Fig. 1, the Transparent Proxy and P2P Traffic
Identifier components reside on the gateway router. They
transparently inspect traffic going through the router and
forward only P2P connections to pCache. Traffic that does
not belong to any P2P system is processed by the router in
the regular way and is not affected by the presence of
pCache. Once a connection is identified as belonging to a
P2P system, it is passed to the Connection Manager, which

966 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 1. The design of pCache.

coordinates different components of pCache to store and
serve requests from this connection. pCache has a custom-
designed Storage System optimized for P2P traffic. In
addition, pCache needs to communicate with peers from
different P2P systems. For each supported P2P system, the
P2P Traffic Processor provides three modules to enable this
communication: Parser, Composer, and Analyzer. The
Parser performs functions such as identifying control and
payload messages, and extracting messages that could be of
interest to the cache such as object request messages. The
Composer constructs properly formatted messages to be
sent to peers. The Analyzer is a placeholder for any auxiliary
functions that may need to be performed on P2P traffic from
some systems. For example, in BitTorrent, the Analyzer
infers information (piece length) needed by pCache that is
not included in messages exchanged between peers.

The design of the proposed P2P proxy cache is the result
of several iterations and refinements based on extensive
experimentation. Given the diverse and complex nature of
P2P systems, proposing a simple, well-structured, design
that is extensible to support various P2P systems is indeed a
nontrivial systems research problem. Our running prototype
currently serves BitTorrent and Gnutella traffic at the same
time. To support a new P2P system, two things need to be
done: 1) installing the corresponding application identifier
in the P2P Traffic Identifier, and 2) loading the appropriate
Parser, Composer, and optionally Analyzer modules of the
P2P Traffic Processor. Both can be done in runtime without
recompiling or impacting other parts of the system.

Finally, we should mention that the proxy cache design
in Fig. 1 does not require users of P2P systems to perform
any special configurations of their client software, nor does
it need the developers of P2P systems to cooperate and
modify any parts of their protocols. It caches and serves
current P2P traffic as is. Our design, however, can further
be simplified to support cases in which P2P users and/or
developers may cooperate with ISPs for mutual benefits—a
trend that has recently seen some interests with projects,
such as P4P [29], [30]. For example, if users were to
configure their P2P clients to use proxy caches in their ISPs
listening on a specific port, the P2P Traffic Identifier would
be much simpler.

4 P2P TRAFFIC IDENTIFIER AND PROCESSOR

This section describes the P2P Traffic Identifier and
Processor components of pCache, and presents a new
algorithm to infer information needed by the cache to store
and serve P2P traffic.

4.1 Overview

The P2P Traffic Identifier determines whether a connection
belongs to any P2P system known to the cache. This is done
by comparing a number of bytes from the connection stream
against known P2P application signatures. The details are
similar to the work in [15], and therefore omitted. We have
implemented identifiers for BitTorrent and Gnutella.

To store and serve P2P traffic, the cache needs to perform
several functions beyond identifying the traffic. These
functions are provided by the P2P Traffic Processor, which
has three components: Parser, Composer, and Analyzer. By

inspecting the byte stream of the connection, the Parser
determines the boundaries of messages exchanged between
peers, and it extracts the request and response messages that
are of interest to the cache. The Parser returns the ID of the
object being downloaded in the session, as well as the
requested byte range (start and end bytes). The byte range is
relative to the whole object. The Composer prepares protocol-
specific messages, and may combine data stored in the cache
with data obtained from the network into one message to be
sent to a peer. While the Parser and Composer are mostly
implementation details, the Analyzer is not. The Analyzer
contains an algorithm to infer information required by the
cache to store and serve P2P traffic, but is not included in the
traffic itself. This is not unusual (as demonstrated below for
the widely deployed BitTorrent), since P2P protocols are not
standardized and their designers did not conceive/provision
for caching P2P traffic. We propose an algorithm to infer this
information with a quantifiable confidence.

4.2 Inference Algorithm for Information Required by
the Cache

The P2P proxy cache requires specifying the requested byte
range such that it can correctly store and serve segments.
Some P2P protocols, most notably BitTorrent, do not
provide this information in the traffic itself. Rather, they
indirectly specify the byte range, relative to information
held only by end peers and not known to the cache. Thus,
the cache needs to employ an algorithm to infer the required
information, which we propose in this section. We describe
our algorithm in the context of the BitTorrent protocol,
which is currently the most widely used P2P protocol [12].
Nonetheless, the ideas and analysis of our algorithm are
fairly general and could be applied to other P2P protocols,
after collecting the appropriate statistics and making minor
adjustments.

Objects exchanged in BitTorrent are divided into equal-
size pieces. A single piece is downloaded by issuing multiple
requests for byte ranges, i.e., segments, within the piece.
Thus, a piece is composed of multiple segments. In request
messages, the requested byte range is specified by an offset
within the piece and the number of bytes in the range. Peers
know the length of the piece of the object being down-
loaded, because it is included in the metafile (torrent file)
held by them. The cache needs the piece length for three
reasons. First, the piece length is needed to perform
segment merging, which can reduce the overhead on the
cache. For example, assuming the cache has received byte
range ½0; 16� KB of piece 1 and range ½0; 8� KB of piece 2;
without knowing the precise piece length, the cache cannot
merge these two byte ranges into a continuous byte range.
Second, the piece length is required to support cross-torrent
caching of the same content, as different torrent files can
have different piece length. Third, the piece length is
needed for cross-system caching. For example, a file cached
for in BitTorrent networks may be used to serve Gnutella
users requesting the same file, while Gnutella protocol has
no concept of piece length. One way for the cache to obtain
this information is to capture metafiles and match them
with objects. This, however, is not always possible, because
peers frequently receive metafiles by various means/
applications including e-mails and web downloads.

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 967

Our algorithm infers the piece length of an object when
the object is first seen by the cache. The algorithm monitors
a few segment requests, and then it makes an informed
guess about the piece length. To design the piece length
inference algorithm, we collected statistics on the distribu-
tion of the piece length in actual BitTorrent objects. We
wrote a script to gather and analyze a large number of
torrent files. We collected more than 43,000 unique torrent
files from popular torrent websites on the Internet. Our
analysis revealed that more than 99.8 percent of the pieces
have sizes that are power of 2. The histogram of the piece
length distribution is given in Fig. 2, which we will use in
the algorithm. Using these results, we define the set of all
possible piece lengths as S ¼ f2kmin ; 2kminþ1; . . . ; 2kmaxg, where
2kmin and 2kmax are the minimum and maximum possible
piece lengths. We denote by L the actual piece length that
we are trying to infer. A request for a segment comes in the
form foffset; sizeg within this piece, which tells us that the
piece length is at least as large as offsetþ size. There are
multiple requests within the piece. We denote each request
by xi ¼ offseti þ sizei, where 0 < xi � L. The inference
algorithm observes a set of n samples x1; x2; . . . ; xn and
returns a reliable guess for L.

After observing the n-th sample, the algorithm computes
k such that 2k is the minimum power of two integer that is
greater than or equal to xi ði ¼ 1; 2; . . . ; nÞ. For example, if
n ¼ 5 and the xi values are 9, 6, 13, 4, 7, then the estimated
piece length would be 2k ¼ 16. Our goal is to determine the
minimum number of samples n such that the probability
that the estimated piece length is correct, i.e., Prð2k ¼ LÞ,
exceeds a given threshold, say 99 percent. We compute the
probability that the estimated piece length is correct as
follows: We define E as the event that the n samples are in
the range ½0; 2k� and at least one of them does not fall in
½0; 2k�1�, where 2k is the estimated value returned by the
algorithm. Assuming that each sample is equally likely to
be anywhere within the range ½0; L�, we have

Prð2k ¼ L j EÞ ¼ PrðE j 2k ¼ LÞPrð2
k ¼ LÞ

PrðEÞ

¼ ½1� Prðall n samples in ½0; 2k�1� j 2k ¼ LÞ�Prð2
k ¼ LÞ

PrðEÞ

¼ 1� 1

2

� �n� �
Prð2k ¼ LÞ
PrðEÞ :

ð1Þ

In the above equation, Prð2k ¼ LÞ can be directly known
from the empirically derived histogram in Fig. 2. Further-
more, PrðEÞ is given by

PrðEÞ ¼
X
l2S

Prðl ¼ LÞPrðEjl ¼ LÞ

¼ Prð2k ¼ LÞ 1� 1

2

� �n� �
þ Prð2kþ1 ¼ LÞ 1

2

� �n
� 1

4

� �n� �

þ � � � þ Prð2kmax ¼ LÞ 1

2

� �kmax�k !n

� 1

2

� �kmax�kþ1
 !n !

:

ð2Þ

Our algorithm solves (2) and (1) using the histogram in Fig. 2
to find the required number of samples n in order to achieve
a given probability of correctness.

The assumption that samples are equally likely to be in
½0; L� is realistic, because the cache observes requests from
many clients at the same time for an object, and the clients
are not synchronized. In few cases, however, there could be
one client and that client may issue requests sequentially.
This depends on the actual implementation of the
BitTorrent client software. To address this case, we use
the following heuristic. We maintain the maximum value
seen in the samples taken so far. If a new sample increases
this maximum value, we reset the counters of the observed
samples. In Section 7.5, we empirically validate the above
inference algorithm and we show that the simple heuristic
improves its accuracy.

Handling incorrect inferences. In the evaluation section,
we experimentally show that the accuracy of our inference
algorithm is about 99.7 percent when we use six segments in
the inference, and it is almost 100 percent if we use 10
segments. The very rare incorrect inferences are observed
and handled by the cache as follows. An incorrect inference
is detected by observing a request exceeding the inferred
piece boundary, because we use the minimum possible
estimate for the piece length. This may happen at the
beginning of a download session for an object that was never
seen by the cache before. The cache would have likely stored
very few segments of this object and most of them are still in
the buffer, not flushed to the disk yet. Thus, all the cache
needs to do is to readjust a few pointers in the memory with
the correct piece length. In the worst case, a few disk blocks
will also need to be moved to other disk locations. An even
simpler solution is possible: discard from the cache these few
segments, which has a negligible cost. Finally, we note that
the cache starts storing segments after the inference
algorithm returns an estimate, but it does not immediately
serve these segments to other clients until a sufficient
number of segments (e.g., 100) have been downloaded to
make the probability of incorrect inference practically zero.
Therefore, the consequence of a rare incorrect inference is a
slight overhead in the storage system and for a temporary
period (till the correct piece length is computed), and no
wrong data are served to the clients at anytime.

5 STORAGE MANAGEMENT

In this section, we elaborate on the need for a new storage
system, in addition to what we mentioned in Section 2. Then,
we present the design of the proposed storage system.

968 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 2. Piece length distribution in BitTorrent.

5.1 The Need for a New Storage System

In P2P systems, a receiving peer requests an object from
multiple sending peers in the form of segments, where a
segment is a range of bytes. Object segmentation is protocol-
dependent and even implementation-dependent. Moreover,
segment sizes could vary based on the number and type of
senders in the download session, as in the case of Gnutella.
Therefore, successive requests of the same object can be
composed of segments with different sizes. For example, a
request comes to the cache for the byte range [128-256 KB]
as one segment, which is then stored locally in the cache for
future requests. However, a later request may come for the
byte range [0-512 KB] of the same object and again as one
segment. The cache should be able to identify and serve the
cached portion of the second request. Furthermore, pre-
vious work [11] showed that to improve the cache
performance, objects should be incrementally admitted in
the cache because objects in P2P systems are fairly large,
their popularity follows a flattened head model [1], [11],
and they may not be even downloaded in their entirety
since users may abort the download sessions [1]. This
means that the cache will usually store random fragments
of objects, not complete contiguous objects, and the cache
should be able to serve these partial objects.

While web proxy caches share some characteristics with
P2P proxy caches, their storage systems can yield poor
performance for P2P proxy caches, as we will show in
Section 7.3. The most important reason is that most web
proxy caches consider objects with unique IDs, such as URLs,
in their entirety. P2P applications almost never request entire
objects, instead, segments of objects are exchanged among
peers. A simple treatment of reusing web proxy caches for
P2P traffic is to define a hash function on both object ID and
segment range, and consider segments as independent
entities. This simple approach, however, has two major
flaws. First, the hash function destroys the correlation among
segments belonging to the same objects. Second, this
approach cannot support partial hits, because different
segment ranges are hashed to different, unrelated, values.

The proposed storage system supports efficient lookups
for partial hits. It also improves the scalability of the cache
by reducing the number of I/O operations. This is done by
preserving the correlation among segments of the same
objects, and dynamically merging segments. To the best of
our knowledge, there are no other storage systems
proposed in the literature for P2P proxy caches, even
though the majority of the Internet traffic comes from P2P
systems [1], [2], [3].

5.2 The Proposed Storage System

A simplified view of the proposed storage system is shown
in Fig. 3. We implement the proposed system in the user
space, so that it is not tightly coupled with the kernels of
operating systems, and can be easily ported to different
kernel versions, operating system distributions, and even to
various operating systems. As indicated by [24], user-space
storage systems yield very close performance to the kernel-
space ones. A user-space storage management system can
be built on top of a large file created by the file system of the
underlying operating system, or it can be built directly on a
raw disk partition. We implement and analyze two versions

of the proposed storage management system: on top of the
ext2 Linux file system (denoted by pCache/Fs) and on a
raw disk partition (denoted by pCache/Raw).

As shown in Fig. 3, the proposed storage system
maintains two structures in the memory: metadata and
page buffers. The metadata represent a two-level lookup
table designed to enable efficient segment lookups. The first
level is a hash table keyed on object IDs; collisions are
resolved using common chaining techniques. Every entry
points to the second level of the table, which is a set of cached
segments belonging to the same object. Every segment entry
consists of a few fields: Offset indicates the absolute segment
location within the object, Len represents the number of
bytes in this segment, RefCnt keeps track of how many
connections are currently using this segment, Buffer points
to the allocated page buffers, and Block points to the
assigned disk blocks. Each disk is divided into fixed-size
disk blocks, which are the smallest units of disk operations.
Therefore, block size is a system parameter that may affect
caching performance: larger block sizes are more vulnerable
to segmentations, while smaller block sizes may lead to high
space overhead. RefCnt is used to prevent evicting a buffer
page if there are connections currently using it.

Notice that segments do not arrive to the cache
sequentially, and not all segments of an object will be
stored in the cache. Thus, a naive contiguous allocation of
all segments will waste memory, and will not efficiently
find partial hits. We implement the set of cached segments
as a balanced (red-black) binary tree, which is sorted based
on the Offset field. Using this structure, partial hits can be
found in at most OðlogSÞ steps, where S is the number of
segments in the object. This is done by searching on the
offset field. Segment insertions and deletions are also done
in logarithmic number of steps. Since this structure
supports partial hits, the cached data are never obtained
from the P2P network again, and only mutually disjoint
segments are stored in the cache.

The second part of the in-memory structures is the page
buffers. Page buffers are used to reduce disk I/O operations
as well as to perform segment merging. As shown in Fig. 3,
we propose to use multiple sizes of page buffers, because
requests come to the cache from different P2P systems in
variable sizes. We also preallocate these pages in memory
for efficiency. Dynamic memory allocation may not be
suitable for proxy caches, since it imposes processing

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 969

Fig. 3. The proposed storage management system.

overheads. We maintain unoccupied pages of the same size
in the same free page list. If peers request segments that are
in the buffers, they are served from memory and no disk
I/O operations are issued. If the requested segments are on
the disk, they need to be swapped in some free memory
buffers. When all free buffers are used up, the least popular
data in some of the buffers are swapped out to the disk if
these data have been modified since they were brought in
memory, and they are overwritten otherwise.

6 TRANSPARENT CONNECTION MANAGEMENT

This section starts by clarifying the importance and complex-
ity of providing full transparency in P2P proxy caches. Then,
it presents our proposed method for splicing non-P2P
connections in order to reduce the processing and memory
overhead on the cache. We implement the Connection
Manager in Linux 2.6. The details on the implementation of
connection redirection and the operation of the Connection
Manager [14] are not presented due to the space limitations.

6.1 Importance of Full Transparency

Based on our experience of developing a running caching
system, we argue that full transparency is important in P2P
proxy caches. This is because nontransparent proxies may
not take full advantage of the deployed caches, since they
require users to manually configure their applications. This
is even worse in the P2P traffic caching case due to the
existence of multiple P2P systems, where each has many
different client implementations. Transparent proxies, on
the other hand, actively intercept connections between
internal and external hosts, and they do not require error-
prone manual configurations of the software clients.

Transparency in many web caches, e.g., Squid [31], is
achieved as follows. The cache intercepts the TCP connec-
tion between a local client and a remote web server. This
interception is done by connection redirection, which
forwards connection setup packets traversing through the
gateway router to a proxy process. The proxy process
accepts this connection and serves requests on it. This may
require the proxy to create a connection with the remote
server. The web cache uses its IP address when commu-
nicating with the web server. Thus, the server can detect the
existence of the cache and needs to communicate with it. We
call this type of caches partially transparent, because the
remote server is aware of the cache. In contrast, we refer to
proxies that do not reveal their existence as fully transparent
proxies. When a fully transparent proxy communicates with
the internal host, it uses the IP address and port number of
the external host, and similarly when it communicates with
the external host it uses the information of the internal host.

While partial transparency is sufficient for most web
proxy caches, it is not enough and will not work for P2P
proxy caches. This is because external peers may not
respond to requests coming from the IP address of the
cache, since the cache is not part of the P2P network and it
does not participate in the P2P protocol. Implementing
many P2P protocols in the cache to make it participate in
P2P networks is a tedious task. More important, participa-
tion in P2P networks imposes significant overhead on the
cache itself, because it will have to process protocol

messages and potentially serve too many objects to external
peers. For example, if the cache was to participate in the tit-
for-tat BitTorrent network, it would have to upload data to
other external peers proportional to data downloaded by
the cache on behalf of all internal BitTorrent peers.
Furthermore, some P2P systems require registration and
authentication steps that must be done by users, and the
cache cannot do these steps.

Supporting full transparency in P2P proxy caches is not
trivial, because it requires the cache to process and modify
packets destined to remote peers, i.e., its network stack
accepts packets with nonlocal IP addresses and port numbers.

6.2 Efficient Splicing of Non-P2P Connections

Since P2P systems use dynamic ports, the proxy process may
initially intercept some connections that do not belong to
P2P systems. This can only be discovered after inspecting a
few packets using the P2P Traffic Identification module.
Each intercepted connection is split into a pair of connec-
tions, and all packets have to go through the proxy process.
This imposes overhead on the proxy cache and may increase
the end-to-end delay of the connections. To reduce this
overhead, we propose to splice each pair of non-P2P
connections using TCP splicing techniques [32], which have
been used in layer-7 switching. For spliced connections, the
sockets in the proxy process are closed and packets are
relayed in the kernel stack instead of passing them up to the
proxy process (in the application layer). Since packets do not
traverse through the application layer, TCP splicing reduces
overhead on maintaining a large number of open sockets as
well as forwarding threads. Several implementation details
had to be addressed. For example, since different connec-
tions start from different initial sequence numbers, the
sequence numbers of packets over the spliced TCP connec-
tions need to be properly changed before being forwarded.
This is done by keeping track of the sequence number
difference between two spliced TCP connections, and
updating sequence numbers before forwarding packets.

7 EXPERIMENTAL EVALUATION OF PCACHE

In this section, we conduct extensive experiments to
evaluate all aspects of the proposed pCache system with
real P2P traffic. We start our evaluation, in Section 7.1, by
validating that our implementation of pCache is fully
transparent, and it serves actual noncorrupted data to
clients as well as saves bandwidth for ISPs. In Section 7.2,
we show that pCache improves the performance of P2P
clients without reducing the connectivity in P2P networks.
In Section 7.3, we rigorously analyze the performance of the
proposed storage management system and show that it
outperforms others. In Section 7.4, we demonstrate that
pCache is scalable and could easily serve most customer
ASes in the Internet using a commodity PC. In Section 7.5,
we validate the analysis of the inference algorithm and
show that its estimates are correct in more than 99.7 percent
of the cases with low overhead. Finally, in Section 7.6, we
show that the proposed connection splicing scheme im-
proves the performance of the cache.

The setup of the testbed used in the experiments consists
of two separate IP subnets. Traffic from client machines in

970 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

subnet 1 goes through a Linux router on which we install
pCache. Client machines in subnet 2 are directly attached to
the campus network. All internal links in the testbed have
100 Mb/s bandwidth. All machines are configured with
static IP addresses, and appropriate route entries are added
in the campus gateway router in order to forward traffic to
subnet 1. Our university normally filters traffic from some
P2P applications and shapes traffic from others. Machines in
our subnets were allowed to bypass these filters and shapers.
pCache is running on a machine with an Intel Core 2 Duo
1.86 GHz processor, 1 GB RAM, and two hard drives: one for
the operating system and another for the storage system of
the cache. The operating system is Linux 2.6. In our
experiments, we concurrently run 10 P2P software clients
in each subnet. We could not deploy more clients because of
the excessive volume of traffic they generate, which is
problematic in a university setting (during our experiments,
we were notified by the network administrator that our
BitTorrent clients exchanged more than 300 GB in one day).

7.1 Validation of pCache and ISP Benefits

pCache is a fairly complex software system with many
components. The experiments in this section are designed
to show that the whole system actually works. This
verification illustrates that:

1. P2P connections are identified and transparently
split.

2. non-P2P connections are tunneled through the cache
and are not affected by its existence.

3. segment lookup, buffering, storing, and merging all
work properly and do not corrupt data.

4. the piece length inference algorithm yields correct
estimates.

5. data are successfully obtained from external peers,
assembled with locally cached data, and then served
to internal peers in the appropriate message format.

All of these are shown for real BitTorrent traffic with many
objects that have different popularities. The experiments
also compare the performance of P2P clients with and
without the proxy cache.

We modified an open source BitTorrent client called
CTorrent. CTorrent is a lightweight (command-line) C++
program; we compiled it on both Linux and Windows. We
did not configure CTorrent to contact or be aware of the
cache in anyway. We deployed 20 instances of the modified
CTorrent client on the four client machines in the testbed.
Ten clients (in subnet 1) were behind the proxy cache and
10 others were directly connected to the campus network.
All clients were controlled by a script to coordinate the
download of many objects. The objects and the number of
downloads per object were carefully chosen to reflect the
actual relative popularity in BitTorrent as follows. We
developed a crawler to contact popular torrent search
engines such as TorrentSpy, MiniNova, and IsoHunt. We
collected numerous torrent files. Each torrent file contains
information about one object; an object can be a single file or
multiple files grouped together. We also contacted trackers
to collect the total number of downloads that each object
received, which indicates the popularity of the object. We
randomly took 500 sample objects from all the torrent
files collected by our crawler, which were downloaded

111,620 times in total. The size distribution of the chosen 500
objects ranges from several hundred kilobytes to a few
hundred megabytes. To conduct experiments within a
reasonable amount of time, we scheduled about 2,700
download sessions. The number of download sessions
assigned to an object is proportional to its popularity. Fig. 5
shows the distribution of the scheduled download sessions
per objects. This figure indicates that our empirical
popularity data follow Mandelbrot-Zipf distribution, which
is a generalized form of Zipf-like distributions with an extra
parameter to capture the flattened head nature of the
popularity distribution observed near the most popular
objects in our popularity data. The popularity distribution
collect by our crawler is similar to those observed in
previous measurement studies [1], [8].

After distributing the 2,700 scheduled downloads among
the 500 objects, we randomly shuffled them such that
downloads for the same object do not come back-to-back
with each other, but rather they are interleaved with
downloads for other objects. We then equally divided the
2,700 downloads into 10 lists. Each of these 10 lists, along
with the corresponding torrent files, was given to a pair of
CTorrent clients to execute. one in subnet 1 (behind the
cache) and another in subnet 2. To conduct fair comparisons
between the performance of clients with and without the
cache, we made each pair of clients start a scheduled
download session at the same time and with the same
information. Specifically, only one of the two clients
contacted the BitTorrent tracker to obtain the addresses of
seeders and leechers of the object that need to be down-
loaded. This information was shared with the other client.
Also, a new download session was not started unless the
other client either finished or aborted its current session. We
let the 20 clients run for two days, collecting detailed
statistics from each client every 20 seconds.

Several sanity checks were performed and passed. First,
all downloaded objects passed the BitTorrent checksum
test. Second, the total number of download sessions that
completed was almost the same for the clients with and
without the cache. Third, clients behind the cache were
regular desktops participating in the campus network, and
other non-P2P network applications were running on them.
These applications included web browsers, user authentica-
tion modules using centralized database (LDAP), and file
system backup applications. All applications worked fine
through the cache. Finally, a significant portion of the total
traffic was served from the cache; up to 90 percent. This
means that the cache identified, stored, and served P2P
traffic. This is all happened transparently without changing
the P2P protocol or configuring the client software. Also,
since this is BitTorrent traffic, the piece length inference
algorithm behaved as expected, and our cache did not
interfere with the incentive scheme of BitTorrent. We note
that the unusually high 90 percent byte hit rate seen in our
experiments is due to the limited number of clients that we
have; the clients did not actually generate enough traffic to
fill the whole storage capacity of the cache. In full-scale
deployment of the cache, the byte hit rate is expected to be
smaller, in the range of 30 to 60 percent [11], which would
still yield significant savings in bandwidth given the huge
volume of P2P traffic.

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 971

7.2 Performance of P2P Clients

Next, we analyze the performance of the clients and the
impact on the P2P network. We are interested in the
download speed, upload speed, and number of peers to
which each of our clients is connected. These statistics were
collected every 20 seconds from all 20 clients. The download
(upload) speed was measured as the number of bytes
downloaded (uploaded) during the past period divided by
the length of that period. Then, the average download
(upload) speed for each completed session was computed.
For the number of connected peers, we took the maximum
number of peers that each of our clients was able to connect
to during the sessions. We then used the maximum among
all clients (in the same subnet) to compare the connectivity of
clients with and without the cache. The results are
summarized in Fig. 4. Fig. 4a shows that clients behind the
cache achieved much higher download speed than other
clients. This is expected as a portion of the traffic comes from
the cache. Thus, the cache would benefit the P2P clients, in
addition to benefiting the ISP deploying the cache by saving
WAN traffic. Furthermore, the increased download speed
did not require clients behind the cache to significantly
increase their upload speeds, as shown in Fig. 4b. This is also
beneficial for both clients and the ISP deploying the cache,
while it does not hurt the global BitTorrent network, as
clients behind the cache are still uploading to other external
peers. The difference between the upload and download
speeds can be attributed mostly to the contributions of the
cache. Fig. 4c demonstrates that the presence of the cache did
not reduce the connectivity of clients behind the cache; they
have roughly the same number of connected peers. This is
important for the local clients as well as the whole network,
because reduced connectivity could lead to decreased
availability of peers and the content stored on them. Finally,
we notice that the cache may add some latency in the
beginning of the download session. This latency was in the
order of milliseconds in our experiments. This small latency
is really negligible in P2P systems in which sessions last for
minutes if not hours.

7.3 Performance of the Storage System

7.3.1 Experimental Setup

We compare the performance of the proposed storage
management system against the storage system used in the
widely deployed Squid proxy cache [31], after modifying it
to serve partial hits needed for P2P traffic. This is done to

answer the question: “What happens if we were to use the
already-deployed web caches for P2P traffic?” To the best of
our knowledge, we are not aware of any other storage
systems designed for P2P proxy caches, and as described in
Section 2, storage systems proposed in [21], [22], [23], [24]
for web proxy caches and in [25], [26], [27] for multimedia
caches are not readily applicable to P2P proxy caches.
Therefore, we could not conduct a meaningful comparison
with them.

We implemented the Squid system, which organizes files
into a two-level directory structure: 16 directories in the first
level and 256 subdirectories in every first-level directory.
This is done to reduce the number of files in each directory
in order to accelerate the lookup process and to reduce the
number of i-nodes touched during the lookup. We im-
plemented two versions of our proposed storage system,
which are denoted by pCache/Fs and pCache/Raw in the
plots. pCache/Fs is implemented on top of the ext2 Linux
file system by opening a large file that is never closed. To
write a segment, we move the file pointer to the appropriate
offset and then write that segment to the file. The offset is
determined by our disk block allocation algorithm. Reading
a segment is done in a similar way. The actual writing/
reading to the disk is performed by the ext2 file system,
which might perform disk buffering and prefetching.
pCache/Raw is implemented on a raw partition and it
has complete control of reading/writing blocks from/to the
disk. pCache/Raw uses direct disk operations.

In addition to the Squid storage system, we also
implemented a storage system that uses a multidirectory
structure, where segments of the same object are grouped
together under one directory. We denote this storage

972 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 4. The impact of the cache on the performance of clients. (a) Download speed. (b) Upload speed. (c) Number of connected peers.

Fig. 5. Download sessions per object.

system as Multi-dir. This is similar to the previous
proposals on clustering correlated web objects together for
better disk performance, such as in [21]. We extended
Multi-dir for P2P traffic to maintain the correlation among
segments of the same object. Finally, we also implemented
the Cyclic Object Storage System (COSS) which has recently
been proposed to improve the performance of the Squid
proxy cache [33, Section 8.4]. COSS sequentially stores web
objects in a large file, and wraps around when it reaches the
end of the file. COSS overwrites the oldest objects once the
disk space is used up.

We isolate the storage component from the rest of the
pCache system. All other components (including the traffic
identification, transparent proxy, and connection splicing
modules) are disabled to avoid any interactions with them.
We also avoid interactions with the underlying operating
system by installing two hard drives: one for the operating
system and the other is dedicated to the storage system of
pCache. No processes, other than pCache, have access to the
second hard drive. The capacity of the second hard drive
is 230 GB, and it is formatted into 4 KB blocks. The
replacement policy used in the experiments is segment-
based LRU, where the least-recently used segment is
evicted from the cache.

We subject a specific storage system (e.g., pCache/Fs) to
a long trace of 1.5 million segment requests; the trace
collection and processing are described below. During the
execution of the trace, we periodically collect statistics on
the low-level operations performed on the disk. These
statistics include the total number of: read operations, write
operations, and head movements (seek length in sectors).
We also measure the trace completion time, which is the
total time it takes the storage system to process all requests
in the trace. These low-level disk statistics are collected
using the blktrace tool, which is an optional module in
Linux kernels. Then, the whole process is repeated for a
different storage system, but with the same trace of segment
requests. During these experiments, we fix the total size of
memory buffers at 0.5 GB. In addition, because they are
built on top of the ext2 file system, Squid and pCache/Fs
have access to the disk cache internally maintained by the
operating system. Due to the intensive I/O nature of these
experiments, Linux may substantially increase the size of
the disk cache by stealing memory from other parts of the
pCache system, which can degrade the performance of the
whole system. To solve this problem, we modified the
Linux kernel to limit the size of the disk cache to a
maximum of 0.5 GB.

7.3.2 P2P Traffic Traces

We needed to stress the storage system with a large number
of requests. We also needed the stream of requests to be
reproducible such that comparisons among different sto-
rage systems are fair. To satisfy these two requirements, we
collected traces from an operational P2P network instead of
just generating synthetic traces. Notice that running the
cache with real P2P clients (as in the previous section)
would not give us enough traffic to stress the storage
system, nor would it create identical situations across
repeated experiments with different storage systems be-
cause of the high dynamics in P2P systems. To collect this

trace, we modified an open source Gnutella client to run in
superpeer mode and to simultaneously connect to up to 500
other superpeers in the network (the default number of
connections is up to only 16). Gnutella was chosen because
it has a two-tier structure, where ordinary peers connect to
superpeers and queries/replies are forwarded among
superpeers for several hops. This enabled us to passively
monitor the network without injecting traffic. Our monitor-
ing superpeer ran continuously for several months, and
because of its high connectivity it was able to record a large
portion of the query and reply messages exchanged in the
Gnutella network. It observed query/reply messages in
thousands of ASes across the globe, accounting to more
than 6,000 tera bytes of P2P traffic. We processed the
collected data to separate object requests coming from
individual ASes. We used the IP addresses of the receiving
peers and an IP-to-AS mapping tool in this separation. We
chose one large AS (AS 9,406) with a significant amount of
P2P traffic. The created trace contains: time stamp of the
request, ID of the requested object, size of the object, and the
IP address of the receiver. Some of these traces were used in
our previous work [11], and are available online [14].

The trace collected from Gnutella provides realistic
object sizes, relative popularities, and temporal correlation
among requests in the same AS. However, it has a
limitation: information about how objects are segmented
and when exactly each segment is requested is not known.
We could not obtain this information because it is held by
the communicating peers and transferred directly between
them without going through superpeers. To mitigate this
limitation, we divided objects into segments with typical
sizes, which we can know either from the protocol
specifications or from analyzing a small sample of files. In
addition, we generated the request times for segments as
follows. The time stamp in the trace marks the start of
downloading an object. A completion time for this object is
randomly generated to represent peers with different
network connections and the dynamic conditions of the
P2P network. The completion time can range from minutes
to hours. Then, the download time of each segment of the
object is randomly scheduled between the start and end
times of downloading that object. This random scheduling
is not unrealistic, because this is actually what is being done
in common P2P systems such as BitTorrent and Gnutella.
Notice that using this random scheduling, requests for
segments from different objects will be interleaved, which is
also realistic. We sort all requests for segments based on
their scheduled times and take the first 1.6 million requests
to evaluate the storage systems. With this number of
requests, some of our experiments took two days to finish.

7.3.3 Main Results

Some of our results are presented in Fig. 6 for a segment
size of 0.5 MB. Results for other segment sizes are similar.
We notice that the disk I/O operations resulted by the COSS
storage system are not reported in Figs. 6a and 6b. This is
because COSS storage system has a built-in replacement
policy that leads to fewer cache hits, thus fewer read
operations and many more write operations, than other
storage systems. Since the COSS storage system results in
different disk access pattern than that of other storage

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 973

systems, we cannot conduct a meaningful low-level
comparison between them in Figs. 6a and 6b. We will
discuss more about the replacement policy of the COSS
storage system in a moment. Fig. 6 demonstrates that the
proposed storage system is much more efficient in handling
the P2P traffic than other storage systems, including Squid,
Multi-dir, and COSS. The efficiency is apparent in all
aspects of the disk I/O operations: The proposed system
issues a smaller number of read and write operations and it
requires a much smaller number of disk head movements.
Because of the efficiency in each element, the total time
required to complete the whole trace (Fig. 6c) under the
proposed system is less than five hours, while it is 25 hours
under the Squid storage system. That is, the average service
time per request using pCache/Fs or pCache/Raw is almost
1/5th of that time using Squid. This experiment also shows
that COSS and Multi-dir improves the performance of the
Squid system, but they have an inferior performance
compared to our pCache storage system. Notice also that,
unlike the case for Squid, Multi-dir, and COSS, the average
time per request of our proposed storage system does not
rapidly increase with number of requests. Therefore, the
proposed storage system can support more concurrent
requests, and it is more scalable than other storage systems,
including the widely deployed Squid storage system.

Because it is optimized for web traffic, Squid anticipates
a large number of small web objects to be stored in the
cache, which justifies the creation of many subdirectories to
reduce the search time. Objects in P2P systems, on the other
hand, have various sizes and can be much larger. Thus, the
cache could store a smaller number of P2P objects. This
means that maintaining many subdirectories may actually
add more overhead to the storage system. In addition, as
Fig. 6b shows, Squid requires a larger number of head
movements compared to our storage system. This is
because Squid uses a hash function to determine the
subdirectory of each segment, which destroys the locality
among segments of the same object. This leads to many
head jumps between subdirectory to serve segments of the
same object. In contrast, our storage system performs
segment merging in order to store segments of the same
object near to each other on the disk, which reduces the
number of head movements.

Fig. 6b also reveals that Multi-dir can reduce the number
of head movements compared to the Squid storage system.

This is because the Multi-dir storage system exploits the
correlation among segments of the same P2P object by
storing these segments in one directory. This segment
placement structure enables the underlying file system to
cluster correlated segments closer as most file systems
cluster files in the same subdirectory together. Nevertheless,
the overhead of creating many files/directories and main-
taining their i-nodes was nontrivial. This can be observed in
Fig. 6b where the average number of read operations of
Multi-dir is slightly smaller than that of pCache/Raw when
the number of cached objects is smaller (in the warm-up
period), but rapidly increases once more objects are cached.
We note that the Multi-dir results in fewer read operations
than pCache/Raw in the warm-up period, because of the
Linux disk buffer and prefetch mechanism. This advantage
of Multi-dir quickly diminishes when the number of i-nodes
increases.

We observe that COSS performs better than Squid but
worse than Multi-dir in Fig. 6c. The main cause of its bad
performance is because COSS uses the large file to mimic an
LRU queue for object replacement, which requires it to
write a segment to the disk whenever there is a cache hit.
This not only increases the number of write operations but
also reduces the effective disk utilization, because a
segment may be stored on the disk several times although
only one of these copies (the most recent one) is accessible.
We plot the effective disk utilization of all considered
storage systems in Fig. 7, where storage systems except
COSS employ a segment-based LRU with high/low water-
marks at 90 and 80 percent, respectively. In this figure, we

974 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 6. Comparing the performance of the proposed storage management system on top of a raw disk partition (pCache/Raw) and on top of a large
file (pCache/Fs) versus the Squid and other storage systems. (a) Read operations. (b) Head movements. (c) Completion time.

Fig. 7. Disk utilization for various storage systems.

observe that the disk utilization for COSS is less than
50 percent of that for other storage systems. Since COSS
tightly couples the object replacement policy with the
storage system, it is not desirable for P2P proxy caches,
because their performance may benefit from replacement
policies that capitalize on the unique characteristics of P2P
traffic, such as the ones observed in [6], [8].

7.3.4 Additional Results and Comments

We analyzed the performance of pCache/Fs and pCache/
Raw, and compared them against each other. As mentioned
before, prefetching by the Linux file system may negatively
impact the performance of pCache/Fs. We verified this by
disabling this pre-fetching using the hdparm utility. By
comparing pCache/Fs versus pCache/Raw using variable
segment sizes, we found that pCache/Fs outperforms
pCache/Raw when the segment sizes are small (16 KB or
smaller). pCache/Raw, however, is more efficient for larger
segment sizes. This is because when segment sizes are
small, the buffering performed by the Linux file system
helps pCache/Fs by grouping several small read/write
operations together. pCache/Raw bypasses this buffering
and uses direct disk operations. The benefit of buffering
diminishes as the segment size increases. Therefore, we
recommend using pCache/Fs if pCache will mostly serve
P2P traffic with small segments such as BitTorrent. If the
traffic is dominated by larger segments, as in the case of
Gnutella, pCache/Raw is recommended.

7.4 Scalability of pCache

To analyze the scalability of pCache, ideally we should
deploy thousands of P2P clients and configure them to
incrementally request objects from different P2P networks.
While this would test the whole system, it was not possible to
conduct in our university setting, because it would have
consumed too much bandwidth. Another less ideal option is
to create many clients and connect them in local P2P
networks. However, emulating the high dynamic behavior
of realistic P2P networks is not straightforward, and will
make our results questionable no matter what we do. Instead,
we focus on the scalability of the slowest part, the bottleneck, of
pCache, which is the storage system according to previous
works in the literature such as [34]. All other components of
pCache perform simple operations on data stored in the main
memory, which is orders of magnitude faster than the disk.
We acknowledge that this is only a partial scalability test, but
we believe it is fairly representative.

We use the large trace of 1.5 million requests used in the
previous section. We run the cache for about seven hours,
and we stress the storage system by continuously submit-
ting requests. We measure the average throughput (in
Mbps) of the storage system every eight minutes, and we
plot the average results in Fig. 8. We ignore the first one
hour (warm-up period), because the cache was empty and
few data swapping operations between memory and disk
occur. The figure shows that in the steady state, an average
throughput of more than 300 Mbps can easily be provided
by our cache running on a commodity PC. This kind of
throughput is probably more than enough for the majority
of customer ASes such as universities and small ISPs,
because the total capacities of their Internet access links are

typically smaller than the maximum throughput that can be
achieved by pCache. For large ISPs with Gbps links, a high-
end server with high-speed disk array could be used.
Notice that our pCache code is not highly optimized for
performance. Notice also that the 300 Mbps is the
throughput for P2P traffic only, not the whole Internet
traffic, and it represents a worst-case performance because
the disk is continuously stressed.

7.5 Evaluation of the Inference Algorithm

We empirically evaluate the algorithm proposed in Section 4
for inferring the piece length in BitTorrent traffic. We
deployed 10 CTorrent clients on the machines behind the
cache. Each client was given a few thousand torrent files.
For each torrent file, the client contacted a BitTorrent tracker
to get potential peers. The client reconnected to the tracker
if the number of peers dropped below 10 to obtain more
peers. After knowing the peers, the client started issuing
requests and receiving traffic. The cache logged all requests
during all download sessions. Many of the sessions did not
have any traffic exchanged, because there were not enough
active peers trading pieces of those objects anymore, which
is normal in BitTorrent. These sessions were dropped after a
time-out period. We ran the experiment for several days.
The cache collected information from more than 2,100
download sessions. We applied the inference algorithm on
the logs and we compared the estimated piece lengths
against the actual ones (known from the torrent files).

The results of this experiment are presented in Fig. 9. The
x-axis shows the number of samples taken to infer the piece
length, and the y-axis shows the corresponding accuracy
achieved. The accuracy is computed as the number of
correct inferences over the total number of estimations,
which is 2,100. We plot the theoretical results computed
from (1) and (2) and the actual results achieved by our
algorithm with and without the improvement heuristic. The
figure shows that the performance of our basic algorithm
using actual traffic is very close to the theoretical results,
which validates our analysis in Section 4. In addition, the
simple heuristic improved the inference algorithm signifi-
cantly. The improved algorithm infers the piece length
correctly in about 99.7 percent of the cases, which is done by
using only six samples on average. From further analysis,
we found that the samples used by the algorithm
correspond to less than three percent of each object on
average, which shows how fast the inference is done in
terms of the object’s size. Keeping this portion small is

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 975

Fig. 8. Throughput achieved by pCache.

important, because the cache does not start storing
segments of an object until it knows its piece length. This
is done to simplify the implementation of the cache; an
alternative is to put the observed samples in a temporary
storage till the piece length is inferred.

7.6 Performance of Connection Manager

Finally, we evaluate the performance gain from the connec-
tion splicing technique, which is designed to tunnel non-P2P
traffic through the cache without overloading it. To fully
stress our pCache, we use traffic generators to create many
TCP connections through the cache, where each traffic
generator sends as fast as possible. We vary the number of
traffic generators. We measure the load on the cache in terms
of memory usage and CPU utilization with and without
connection splicing. Our logs show a reduction in the
number of threads created to manage connections and the
memory used. The number of threads is reduced because
upon splicing two TCP connections together, the kernel
closes the local TCP sockets and directly forwards packets
inside the kernel space, which relieves pCache from keeping
two forwarding threads. We plot in Fig. 10, a sample CPU
utilization of 64 traffic generators with and without
connection splicing. The figure shows that splicing reduces
the CPU utilization by at least 10 percent. Furthermore, our
experiments show that, without connection splicing, the
CPU load increases when the number of traffic generators
increases. However, with connection splicing, the CPU load
is rather constant.

8 CONCLUSIONS AND FUTURE WORK

It has been demonstrated in the literature that objects in P2P
systems are mostly immutable and the traffic is highly
repetitive. These characteristics imply that there is a great
potential for caching P2P traffic to save WAN bandwidth
and to reduce the load on the backbone links. To achieve
this potential, in this paper, we presented pCache, a proxy
cache system explicitly designed and optimized to store and
serve P2P traffic from different P2P systems. pCache is fully
transparent and it does not require any modifications to the
P2P protocols. Therefore, it could be readily deployed by
ISPs and university campuses to mitigate some of the
negative effects of the enormous amount of P2P traffic.
pCache has a modular design with well-defined interfaces,
which enables it to support multiple P2P systems and to
easily accommodate the dynamic and evolving nature of

P2P systems. Using our prototype implementation of
pCache in our campus network, we validated the correct-
ness of our design. While designing and implementing
pCache, we have identified and justified all key issues
relevant to developing proxy caches for P2P traffic. These
include customized storage system, transparent handling of
P2P connections, efficient tunneling of non-P2P connections
through the cache, and inferring required information for
caching and serving requests.

We proposed a new storage management system for
proxy caches of P2P traffic. This storage system supports
serving requests for arbitrary byte ranges of stored
objects—a requirement in P2P systems. We compared the
proposed storage system against other storage systems,
including the one in the widely deployed Squid proxy
cache. Our comparison showed that the average service
time per request using our storage system is almost 1/5th of
that time using Squid. Our storage system also outperforms
the Multi-dir storage system that utilizes correlation among
segments and the COSS storage system which is a recent file
system proposed to improve the performance of Squid. In
addition, we proposed and evaluated an algorithm to
estimate the piece length of different objects in BitTorrent.
This information is required by the cache, but it is not
included in the messages exchanged between peers.

We are currently working on several extensions for
pCache. One of them is to handle encrypted P2P traffic. We
are also working on designing new object replacement
policies to be used with pCache. Last, we are exploring the
potential of cross-system caching. This means that if pCache
stores an object downloaded from one P2P system, it can
serve requests for that object in another P2P system.

ACKNOWLEDGMENTS

This work is partially supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J.
Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-
Peer File-Sharing Workload,” Proc. ACM Symp. Operating Systems
Principles (SOSP ’03), pp. 314-329, Oct. 2003.

[2] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic across Large
Networks,” IEEE/ACM Trans. Networking, vol. 12, no. 2, pp. 219-
232, Apr. 2004.

[3] T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, and M.
Faloutsos, “Is P2P Dying or Just Hiding?” Proc. IEEE Global
Telecomm. Conf. (GLOBECOM ’04), pp. 1532-1538, Nov. 2004.

976 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 9. Accuracy of the inference algorithm. Fig. 10. CPU load reduction due to connection splicing.

[4] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should
Internet Service Providers Fear Peer-Assisted Content Distribu-
tion?” Proc. ACM Conf. Internet Measurement (IMC ’05), pp. 63-76,
Oct. 2005.

[5] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A.
Zhang, “Improving Traffic Locality in BitTorrent via Biased
Neighbor Selection,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS ’06), pp. 66-74, July 2006.

[6] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache
Replacement Policies Revisited: The Case of P2P Traffic,” Proc.
Int’l Workshop Global and Peer-to-Peer Computing (GP2P ’04),
pp. 182-189, Apr. 2004.

[7] G. Shen, Y. Wang, Y. Xiong, B. Zhao, and Z. Zhang, “HPTP:
Relieving the Tension between ISPs and P2P,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS ’07), Feb. 2007.

[8] O. Saleh and M. Hefeeda, “Modeling and Caching of Peer-to-Peer
Traffic,” Proc. IEEE Int’l Conf. Network Protocols (ICNP ’06),
pp. 249-258, Nov. 2006.

[9] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit, “Are File
Swapping Networks Cacheable?” Proc. Int’l Workshop Web Content
Caching and Distribution (WCW ’02), Aug. 2002.

[10] D. Stutzbach, S. Zhao, and R. Rejaie, “Characterizing Files in the
Modern Gnutella Network,” Multimedia Systems, vol. 13, no. 1,
pp. 35-50, Sept. 2007.

[11] M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional
Partial Caching for Peer-to-Peer Systems,” IEEE/ACM Trans.
Networking, vol. 16, no. 6, pp. 1447-1460, Dec. 2008.

[12] Ipoque Internet Study, http://www.ipoque.com/resources/
internet-studies/internet-study-2008_2009, 2009.

[13] M. Hefeeda, C. Hsu, and K. Mokhtarian, “pCache: A Proxy Cache
for Peer-to-Peer Traffic,” Proc. ACM SIGCOMM ’08, pp. 995-996,
Aug. 2008.

[14] Network Systems Lab, http://nsl.cs.sfu.ca/wiki/, 2011.
[15] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-

Network Identification of P2P Traffic Using Application Signa-
tures,” Proc. Int’l World Wide Web Conf. (WWW ’04), pp. 512-521,
May 2004.

[16] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport
Layer Identification of P2P Traffic,” Proc. ACM Conf. Internet
Measurement (IMC ’04), pp. 121-134, Oct. 2004.

[17] A. Spognardi, A. Lucarelli, and R. Di Pietro, “A Methodology for
P2P File-Sharing Traffic Detection,” Proc. Int’l Workshop Hot Topics
in Peer-to-Peer Systems (HOT-P2P ’05), pp. 52-61, July 2005.

[18] A. Madhukar and C. Williamson, “A Longitudinal Study of P2P
Traffic Classification,” Proc. IEEE Int’l Symp. Modeling, Analysis,
and Simulation of Computer and Telecomm. Systems (MASCOTS ’06),
pp. 179-188, Sept. 2006.

[19] OverCache MSP Home Page, http://www.oversi.com/products/
overcache-msp, 2011.

[20] PeerApp UltraBand Home Page, http://www.peerapp.com/
products-ultraband.aspx, 2009.

[21] A. Abhari, S. Dandamudi, and S. Majumdar, “Web Object-Based
Storage Management in Proxy Caches,” Future Generation Compu-
ter Systems, vol. 22, no. 1, pp. 16-31, Jan. 2006.

[22] E. Shriver, E. Gabber, L. Huang, and C. Stein, “Storage Manage-
ment for Web Proxies,” Proc. USENIX Ann. Technical Conf.
(USENIX ’01), pp. 203-216, June 2001.

[23] J. Wang, R. Min, Y. Zhu, and Y. Hu, “UCFS—A Novel User-Space,
High Performance, Customized File System for Web Proxy
Servers,” IEEE Trans. Computers, vol. 51, no. 9, pp. 1056-1073,
Sept. 2002.

[24] E. Markatos, D. Pnevmatikatos, M. Flouris, and M. Katevenis,
“Web-Conscious Storage Management for Web Proxies,” IEEE/
ACM Trans. Networking, vol. 10, no. 6, pp. 735-748, Dec. 2002.

[25] J. Liu and J. Xu, “Proxy Caching for Media Streaming over the
Internet,” IEEE Comm. Magazine, vol. 42, no. 8, pp. 88-94, Aug.
2004.

[26] K. Wu, P. Yu, and J. Wolf, “Segmentation of Multimedia Streams
for Proxy Caching,” IEEE Trans. Multimedia, vol. 6, no. 5, pp. 770-
780, Oct. 2004.

[27] S. Chen, B. Shen, S. Wee, and X. Zhang, “SProxy: A Caching
Infrastructure to Support Internet Streaming,” IEEE Trans. Multi-
media, vol. 9, no. 5, pp. 1062-1072, Aug. 2007.

[28] J. Ledlie, “Damelo! An Explicitly Co-Locating Web Cache File
System,” master’s thesis, Dept. of Computer Science, Univ. of
Wisconsin, Dec. 2000.

[29] P4P Working Group, http://www.openp4p.net/, 2009.

[30] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz,
“P4P: Portal for (P2P) Applications,” Proc. ACM SIGCOMM ’08,
pp. 351-362, Aug. 2008.

[31] Squid Home Page, http://www.squid-cache.org/, 2011.
[32] TCPSP Home Page, http://www.linuxvirtualserver.org/

software/tcpsp/index.html, 2011.
[33] D. Wessels, Squid: The Definitive Guide, first ed., O’Reilly, 2004.
[34] E. Markatos, M. Katevenis, D. Pnevmatikatos, and M. Flouris,

“Secondary Storage Management for Web Proxies,” Proc. USENIX
Symp. Internet Technologies and Systems (USITS ’99), pp. 93-104,
Oct. 1999.

Mohamed Hefeeda received the BSc and MSc
degrees from Mansoura University, Egypt, in
1994 and 1997, respectively, and the PhD
degree from Purdue University, West Lafayette,
Indiana, in 2004. He is an associate professor
in the School of Computing Science, Simon
Fraser University, Surrey, British Columbia,
Canada, where he leads the Network Systems
Lab. His research interests include multimedia
networking over wired and wireless networks,

peer-to-peer systems, mobile multimedia, and Internet protocols.
Dr. Hefeeda won the Best Paper Award at the IEEE Innovations
2008 conference for his paper on the hardness of optimally broad-
casting multiple video streams with different bitrates. In addition to
publications, he and his students have developed actual systems, such
as pCache, svcAuth, pCDN, and mobile TV testbed. The mobile TV
testbed software developed by his group won the Best Technical
Demo Award at the ACM Multimedia 2008 conference. He serves as
the Preservation Editor of the ACM Special Interest Group on
Multimedia (SIGMM) web magazine. He served as the program chair
of the ACM International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV 2010) and
as a program cochair of the International Conference on Multimedia
and Expo (ICME 2011). In addition, he has served on many technical
program committees of major conferences in his research areas,
including ACM Multimedia, ACM Multimedia Systems, and the IEEE
Conference on Network Protocols (ICNP). He is on the editorial boards
of the ACM Transactions on Multimedia Computing, Communications
and Applications (ACM TOMCCAP), the Journal of Multimedia, and
the International Journal of Advanced Media and Communication. He
is a senior member of the IEEE.

Cheng-Hsin Hsu received the BSc and MSc
degrees from the National Chung-Cheng Uni-
versity, Taiwan, in 1996 and 2000, respectively,
the MEng degree from the University of
Maryland, College Park, in 2003, and the PhD
degree from Simon Fraser University, British
Columbia, Canada, in 2009. He is a senior
research scientist at Deutsche Telekom R&D
Lab USA, Los Altos, California. His research
interests are in the area of multimedia network-
ing and distributed systems. He is a member of
the IEEE.

Kianoosh Mokhtarian received the BSc degree
in Software Engineering from Sharif University of
Technology, Iran, in 2007 and the MSc degree in
Computing Science from Simon Fraser Univer-
sity, British Columbia, Canada, in 2009. He
worked as a software engineer in the networking
industry at Mobidia Inc. and Fortinet Inc., British
Columbia, Canada, and is currently a PhD
student in Electrical and Computer Engineer at
the University of Toronto. His research interests
include peer-to-peer systems and multimedia
networking. He is a student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HEFEEDA ET AL.: DESIGN AND EVALUATION OF A PROXY CACHE FOR PEER-TO-PEER TRAFFIC 977

