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ABSTRACT

Web sites, social networks, sensors, and scientific experiments cur-
rently generate massive amounts of data. Owners of this data strive
to obtain insights from it, often by applying machine learning algo-
rithms. Many machine learning algorithms, however, do not scale
well to cope with the ever increasing volumes of data. To address
this problem, we identify several optimizations that are crucial for
scaling various machine learning algorithms in distributed settings.
We apply these optimizations to the popular Principal Component
Analysis (PCA) algorithm. PCA is an important tool in many ar-
eas including image processing, data visualization, information re-
trieval, and dimensionality reduction. We refer to the proposed op-
timized PCA algorithm as scalable PCA, or sPCA. sPCA achieves
scalability via employing efficient large matrix operations, effec-
tively leveraging matrix sparsity, and minimizing intermediate data.
We implement sPCA on the widely-used MapReduce platform and
on the memory-based Spark platform. We compare sPCA against
the closest PCA implementations, which are the ones in Mahout/
MapReduce and MLIib/Spark. Our experiments show that sSPCA
outperforms both Mahout-PCA and MLIib-PCA by wide margins
in terms of accuracy, running time, and volume of intermediate data
generated during the computation.

1. INTRODUCTION

Internet-scale web services collect terabytes of data from their
users’ activities such as clicks, visits, likes, and ratings. This data
offers opportunities for extracting valuable insights about users and
their interests which can enable service providers to improve their
services and attract more customers. Making sense of tera-scale
data is, however, a challenging task, because many current machine
learning algorithms were designed for centralized computing sys-
tems where the entire dataset can fit in the memory of one com-
puting node. This highlights the need for designing distributed ma-
chine learning algorithms that can process large volumes of data.

Distributed machine learning algorithms, however, introduce a
new set of challenges. For example, most machine learning al-
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gorithms involve quite complex and inter-dependent computations,
and dividing these computations among multiple computing nodes
while preserving the accuracy and theoretical guarantees is a non-
trivial task. More importantly, this division of load introduces a
new problem, namely that partial results and intermediate data may
need to be exchanged among computing nodes. If not carefully
managed, this intermediate data may actually become the main
bottleneck for scaling machine learning algorithms, regardless of
the available number of computing nodes. This is in addition to
the other common challenges in all distributed settings, such as
scheduling tasks, handling failures, and balancing load.

In this paper, we take Principal Component Analysis (PCA) [23]
as an important, complex machine learning algorithm to show sev-
eral techniques that can be applied to address the challenges of big
data analysis on distributed systems. PCA is a popular machine
learning tool in many areas, including image processing [27], data
visualization [20], compression [15], and information retrieval [5].
Moreover, since PCA reduces the dimensionality of the data, it is
a key step in many other machine learning algorithms that do not
perform well with high-dimensional data such as k-means cluster-
ing [14]. We start by conducting a thorough analysis of existing
PCA algorithms and their scalability in distributed settings. Then,
we design our distributed PCA algorithm starting from one of the
current PCA algorithms that promises the best theoretical scalabil-
ity. We propose a set of simple, but highly effective, optimizations
that achieve substantial performance gains for the proposed dis-
tributed PCA algorithm. Most of these optimizations are applica-
ble to other machine learning algorithms since they target primitive
matrix operations commonly used in these algorithms, such as ma-
trix multiplication, matrix mean-centering, and computing matrix
norms.

Although traditional libraries such as ScaLAPACK [6] offer im-
plementations for PCA and various other machine learning algo-
rithms, they are targeted towards high-end HPC platforms. In con-
trast, although our proposed optimizations can also benefit HPC
machine learning libraries, we focus on designing a scalable PCA
algorithm for commodity distributed clusters that are available to
almost all academic and industrial organizations. In addition, we
consider recent distributed programming platforms that run on such
clusters, such as MapReduce [10] and Spark [33]. These program-
ming platforms offer many advantages over traditional ones such
as MPI [4], including transparent handling of failures, load balanc-
ing, and task scheduling, which greatly facilitate the development
of distributed code. There are currently multiple libraries that offer
PCA for distributed clusters. Two quite popular examples are Ma-
hout [2] on MapReduce and MLIib [3] on Spark. Our experiments,
however, show that the PCA algorithms in these two libraries do
not scale well to support big data analysis. For example, the imple-



mentation of PCA in Mahout finished processing a 1 GB dataset
in less than an hour on an 8-node cluster, where each node has 8
cores. When we applied the same algorithm on a dataset of 94 GB,
we had to wait for five days for the algorithm to finish. Our algo-
rithm, in contrast, finished in less than five hours. The situation is
not much better for PCA in MLIib, which failed to process datasets
with more than 6,000 dimensions.

This paper addresses the challenges of PCA for large-scale data,
and makes the following contributions:

e Analysis of different methods for performing PCA and their
limitations in handling large-scale datasets on distributed clus-
ters. To the best of our knowledge, such a rigorous analysis was
never done before, and it is crucial for selecting the proper PCA
method for different environments and datasets.

e Design and implementation of an efficient PCA algorithm called
scalable PCA, or sPCA, for large datasets on distributed com-
modity clusters. The design is general and can be implemented
on different platforms. We implemented sPCA on the disk-
based MapReduce and the memory-based Spark programming
platforms.

e Extensive empirical study using large and diverse datasets to as-
sess the performance of sSPCA and compare it against other dis-
tributed PCA implementations. Our results show that sSPCA can
be several orders of magnitude faster than two solid and widely
used state-of-the-art competitors: Mahout-PCA on MapReduce
and MLIib-PCA on Spark. In addition, sSPCA has better scala-
bility and accuracy than these competitors. An important prop-
erty of sPCA is that it generates a very small amount of inter-
mediate data. This is useful for MapReduce since it means that
sPCA has a low disk footprint, resulting in less disk and net-
work I/O. For Spark, this property not only decreases network
1/O, but also allows for the analysis of much larger datasets in
the limited aggregate memory of the cluster. For example, on
a dataset of more than 1.26 billion tweets from Twitter, SPCA
generates 131 MB of intermediate data whereas Mahout-PCA
generates 961 GB of intermediate data.

The rest of this paper is organized as follows. In Section 2, we
present our analysis of different PCA methods in the literature. In
Section 3, we present the proposed design of sSPCA. We present our
MapReduce and Spark implementations in Section 4. Section 5
presents our experimental evaluation. Section 6 summarizes the
related work, and Section 7 concludes the paper.

2. ANALYSIS OF PCA ALGORITHMS

In this section, we analyze different methods for computing the
principal components of a given dataset represented as a matrix. Al-
though several PCA algorithms exist and are well known in the liter-
ature, to the best of our knowledge, they have never been analyzed
and compared in a systematic manner, especially in the context of
large-scale datasets and distributed processing environments. Due
to space limitations, we only present the summary of our analysis.
Detailed step-by-step derivations are presented in the companion
technical report [17].

Distributed Execution Cost Model. We analyze all methods
across two important metrics: time complexity and communication
complexity. We consider the worst-case scenarios for both metrics.
The time complexity is the upper bound on the number of compu-
tational steps needed by the algorithm to terminate. Some PCA
algorithms run multiple iterations of the same code, where each it-
eration improves the accuracy of its predecessor by starting from
a better initial state. The time complexity that we present is for a
single iteration, as the number of iterations is typically bounded by
a small constant.

During the distributed execution of a PCA algorithm, processing
nodes may need to exchange data among each other, which we call
intermediate data. The worst-case total size of the intermediate data
is considered as the communication complexity. We note that most
PCA algorithms work in multiple synchronous phases, and the in-
termediate data is exchanged at the end of each phase. That is, a
phase must wait for the entire intermediate data produced by its
predecessor phase to be received before its execution starts. There-
fore, a large amount of intermediate data will introduce delays and
increase the total execution time of the PCA algorithm, and hence
the intermediate data can become a major bottleneck. The exact
delay will depend on the cluster hardware (network topology, link
speed, I/O speed, etc.) as well as the software platform used to man-
age the cluster and run the PCA code. Some software platforms,
e.g., Hadoop/MapReduce, exchange intermediate data through the
distributed storage system, while others, e.g., Spark, exchange data
through shared virtual memory. For our analysis of communication
complexity to be general, we consider the total number of bytes that
need to be exchanged, and we abstract away the details of the un-
derlying hardware/software architecture.

In addition, during our analysis, we identify the methods imple-
mented in common libraries such as Mahout, MLIlib, and ScalLA-
PACK. Mabhout [2] is a collection of machine learning algorithms
implemented on Hadoop MapReduce. MLIib [3] is a Spark imple-
mentation of some common machine learning algorithms. ScalLA-
PACK [6] is a library of linear algebra algorithms implemented for
parallel distributed memory machines.

The notation we use in this paper is mostly consistent with Mat-
lab’s programing language. Variable names, including matrices, are
composed of one or more letters. Multiplication is indicated with
a star () between the variables. M’ and M~! are the transpose
and inverse of matrix M, respectively. [ is the identity matrix and

N D .2
|[M||2 = ¥ ¥ (M/)" is the square of the Frobenius norm of the
i=1j=1
matrix M. Furthermore, M; denotes row i of matrix M. We use Mij
to refer to the jth element of vector M;.

2.1 Basic PCA

Given a matrix Y of size N x D (N rows and D columns), a PCA
algorithm obtains d principal components (d < D) that explain the
most variance (and hence information) of the data in matrix Y [23,
29]. To be useful in practice, d is chosen to be much smaller than D,
that is d < D. The principal components can be used to get better
insights about the data. For example, in the image processing do-
main, PCA is used to obtain the principal facial components whose
linear combination could recreate any face in the image dataset [26].
In information retrieval, the principal components explain the prin-
cipal terms in a set of documents [34]. In addition, PCA could
be used as a dimensionality reduction technique [14] when dealing
with high-dimensional data. For example, the data of a matrix ¥
can be mapped on the principal components, without losing much
information. The resulting matrix X (of size N X d) can be obtained
using the following formula: X =Y % C, where C is a D X d matrix
containing the d principal components as its columns. Since matrix
X is much smaller than the original matrix Y, it can be used as input
to other machine learning algorithms such as k-means clustering.
A simple method to perform PCA is to compute the covariance ma-
trix of the input matrix Y. Then, compute the eigen-decomposition
of the covariance matrix, and choose the eigenvectors that corre-
spond to the largest d eigenvalues. Our analysis shows that the
computational cost of this method is dominated by the computa-
tion of the covariance matrix, which is O(ND x min(N,D)). This
is a very high computational cost, and thus this method is not suit-



able for large datasets. In addition to the computational cost, this
method requires generating a large and dense covariance matrix of
size D x D which incurs substantial communication cost, making
the method not suitable for large datasets. This method is imple-
mented in MLIib [3], and we refer to this method as MLIib-PCA.
The method is also implemented in RScaLAPACK, which is an add-
on package for the widely-used R programing language. RScalLA-
PACK uses the parallel linear algebra routines implemented in the
ScaLAPACK library.

2.2 Computing PCA Using SVD

Another approach to PCA is using singular value decomposition
(SVD) [29]. SVD decomposes a matrix into three matrices:

Ye=UxXZxV'.

When the input matrix is mean-centered, i.e., Y¢ =Y — Ym (where
Ym is a vector of all the column means of Y), V' gives the principal
components of Yc. For the sake of simplicity, we use Y —Ym to
indicate that vector Ym is subtracted from each row of matrix Y.
Some libraries, such as Mahout, provide PCA by performing SVD
on the mean-centered input matrix.

Several methods have been proposed to compute the SVD of
a matrix. We describe the two most common methods: the first
method is suitable for dense matrices [11] and the second is suit-
able for sparse matrices [22].

SVD for Dense Matrices. Golub and Kahan [19] introduced a
two-step approach for computing SVD: convert the input matrix to
a bidiagonal one and then perform SVD on the bidiagonal matrix.
Demmel and Kahan [11] improved this approach by adding another
step before bidiagonalization, which is QR decomposition. We re-
fer to this method as SVD-Bidiag, which has the following three
steps for a given matrix Y: (i) compute the QR decomposition of Y,
which results in an orthogonal matrix Q and an upper triangular ma-
trix R; (ii) transform R to a bidiagonal matrix B; and (iii) compute
SVD on B.

The SVD-Bidiag algorithm is implemented in RScaLAPACK.
Our analysis shows that the computational complexity of the SVD-
Bidiag algorithm is dominated by the QR decomposition and bidi-
agonalization steps, and is given by O(ND2 +D3). Therefore, the
SVD-Bidiag algorithm is only suitable when D is small.

Next, we analyze the communication overhead of the SVD-
Bidiag algorithm. The algorithm involves the three main steps men-
tioned above, and each produces intermediate data that needs to be
communicated to different computing nodes to continue the com-
putation. Specifically, the QR decomposition step results in two
matrices, N X d matrix Q and d x D matrix R. Thus, the intermedi-
ate data for this step is O(Nd + Dd). The bidiagonalization step of
R results in three matrices: d x d matrix Uy, d X D matrix B, and
D x D matrix V|, which makes the intermediate data for this step
O(d?* + Dd + D?) = O(D?*). The SVD computation on the bidiag-
onal matrix B results in three matrices of the same dimensions as
the ones computed in the bidiagonalization step, and thus has the
same order of intermediate data O(D?). Therefore, the maximum
amount of intermediate data between any two of the three steps
is O(max((N 4 D)d,D?)), which is substantial for large datasets.
Therefore, our analysis reveals a serious issue with the SVD-Bidiag
algorithm, namely the communication complexity, which will be
the bottleneck for scalability if this algorithm is used for process-
ing big data on a distributed platforms.

SVD for Sparse Matrices. SVD can be computed efficiently for
sparse matrices using Lanczos’ algorithm [22], which has a compu-
tational complexity of O(Nz?), where z is the number of non-zero
dimensions (out of D dimensions). We refer to this method as SVD-

Lanczos, and it is implemented in popular libraries such as Mahout
and GraphLab [1]. The SVD-Lanczos algorithm, however, is not
efficient for performing PCA on large datasets, because the matrix
must be mean-centered in order to obtain the principal components
as a result of SVD. Since in many applications the mean of the
matrix is not zero, subtracting the mean from a sparse matrix sub-
stantially decreases its sparsity. In this case, z will approach the
full dimensionality D, and the cost for computing PCA using SVD-
Lanczos will be O(ND?), which is prohibitive for large datasets.

2.3 Computing PCA Using Stochastic SVD

Randomized sampling techniques have recently gained popular-
ity in solving large-scale linear algebra problems. The work in [21]
describes a randomized method to compute approximate decompo-
sition of matrices, which is referred to as stochastic SVD (SSVD).
SSVD has two steps: (i) it uses randomized techniques to compute
a low-dimensional approximation of the input matrix, and (ii) it per-
forms SVD on the approximation matrix. The accuracy of the re-
sults depends on the performance of the randomized techniques and
the size of the approximation matrix. Accuracy can be improved
through running the randomization step multiple times. Therefore,
SSVD has the flexibility of trading off the accuracy of the results
with the required computational resources.

Our analysis shows that the computational complexity of SSVD
is dominated by the first step, which is O(DNd). This is a much
better complexity than the previous techniques, because d is typ-
ically much smaller than D and is usually a constant. However,
SSVD requires exchanging multiple intermediate matrices, which
may cause a problem for scalability. Our analysis shows that the
amount of intermediate data can be up to O(max(Nd,d?)).

The Mahout library implements PCA using SSVD on the mean-
centered input matrix. Mean-centering may convert a sparse matrix
to a dense one. To circumvent this problem, Mahout augments its
implementation of SSVD with a PCA option. When this option
is used, the SSVD algorithm computes the mean but stores it sep-
arately from the original sparse input. It, nevertheless, propagates
the mean to all the matrix operations that are part of SSVD. We call
this algorithm Mahout-PCA. Mahout-PCA is a close algorithm to
our work, and is one of the algorithms against which we compare
our proposed sPCA.

2.4 Probabilistic PCA

Probabilistic PCA (PPCA) [32] is a probabilistic approach to
computing principal components of a dataset. PPCA is the basis
for our scalable PCA (sPCA), and thus we present it in some de-
tail. In this probabilistic approach, PCA is presented as a latent
(unobserved) variable model that seeks a linear relation between a
D-dimensional observed data vector y and a d-dimensional latent
variable x. The model is defined by:

y=Cxx+u+e,

where C is a D x d transformation matrix (i.e, the columns of C
are the principal components), x ~ .47(0,I), u is the vector mean
of y, and € ~ #7(0,ss*I) is white noise to compensate for errors.
The value ss used in € is a scalar value representing the average
variance and it is estimated from the data. .4 (u,X) denotes the
Normal distribution with u mean and X covariance matrix.

The work in [32] shows that, given N observations {y.-}}]v as the
input data, the log likelihood of data is given by:

N
Z({ye}) = Y, In{p(yr)}.

r=1



Method to Compute PCA Time Complexity

Communication Complexity

Example Libraries

Eigen decomp. of covariance matrix | O(ND x min(N, D))

o(D%) MLIib-PCA (Spark), RScaLAPACK

SVD-Bidiag [11] O(ND>+D%) O(max((N + D)d,D?)) RScaLAPACK
Stochastic SVD (SSVD) [21] O(NDd) O(max(Nd,d?)) Mahout-PCA (MapReduce)
Probabilistic PCA (PPCA) [32] O(NDd) 0(Dd) sPCA (our algorithm)

Table 1: Comparison of different methods for computing PCA of an N x D matrix to produce d principal components.

Thus, the Maximum Likelihood Estimate (MLE) of C is obtained by
optimizing:

argénaxf({yr}). (D)

The main idea behind the Probablistic PCA algorithm described in
[32] is that the MLE solution of Equation (1) is equivalent to the so-
Iution of PCA. Moreover, [32] proposed an Expectation Maximiza-
tion (EM) [12] algorithm to optimize the likelihood of Equation (1).
EM is a well-known method to optimize the likelihood of models
when a closed form solution does not exist. This algorithm is the
basis for our sPCA algorithm and it will be described in detail later
in this section and in the rest of the paper.

In the following steps, we show how the likelihood term
Z({yr}) is derived. It is shown in [32] that the conditional dis-
tribution of y given X is:

D)2

I
p(ylx) = (2mx55) P2 expl— o [ly = Cxx — u[°].

With the assumed prior distribution on x as:
1
p(x) = (2m) 2 expl- ¥ +x),

we can obtain the marginal distribution of y, p(y), by first obtaining
the joint distribution p(x,y),

p(x,y) = p(y|x)p(x).

Then, we integrate the joint distribution over x to get
p¥) = [ plyix)px)ds
1
= (2m) P2 MI™ Pexp[— 5 (y — )+ M+ (y - )],

which is a Normal distribution with mean ¢ and covariance matrix
M defined by:

M=ssxI+CxC'.
Hence, the log likelihood of data is given by:

N
Z({yr}) = ;ln{p(yr)h

= 7g{D*ln(27t) +In|M| +u(M ' £S)},

where S is the sample covariance matrix of {y,} given by

1 ¥ )

S=— Z(Yr_.u)*(yr_li) )

N r=1
where tr(A) is the trace of matrix A, which is the sum of elements
on the diagonal. The work in [32] shows that the MLE solution
of Equation (1) is equivalent to the solution of PCA, namely the
eigenvectors of the sample covariance matrix S, up to an arbitrary
rotation matrix. In addition, PPCA offers two desirable properties.
First, large datasets often have missing values. Since PPCA uses

Algorithm 1 PPCA (Matrix Y, int N, int D, int d)
: C=normrnd(D,d)

: ss =normrnd(1,1)

: Ym = columnMean(Y)
Ye=Y—-Ym

: while not STOP_CONDITION do
M=C'%C+ssx*l
X=YcxCxM™!

XtX =X'«X +ssxM !

YiX =Y xX

C=YtX/XtX

552 = trace(XtX xC' xC)

TR FIN AR

—_ =

N
ss3=Y X,*C'*Yc),

n=1
13: ss= (|[Yc||[% +s52 —2%ss3)/N/D
14: end while

,_
»

expectation maximization, the projections of principal components
can be obtained even when some data values are missing. Second,
multiple PPCA models can be combined as a probabilistic mixture
for better accuracy and to express complex models.

Algorithm 1 depicts the pseudo code of PPCA in [32]. In Algo-
rithm 1, Y is the input matrix of size N x D and d is the desired
number of principal components. In other words, matrix Y has the
N observations yy as its rows. The function normrnd(r,c) gives a
random matrix of size r x ¢ with Normal distribution. The function
trace obtains the trace of the matrix. ||Yc||% is the square of the
Frobenius norm of the mean-centered input matrix. The algorithm
requires computing many intermediate variables, among which we
have X, the matrix that has N latent variables x, as its rows. The
algorithm initializes the transformation matrix C and the variance
ss with random values. At each iteration, it improves the values
of C and ss until it reaches the STOP_CONDITION. Our analysis
shows that the time complexity of PPCA is O(NDd). Section 3
uses Algorithm 1 as the starting point for the design of sPCA.

2.5 Summary of the Analysis

The summary of our analysis is shown in Table 1; details are
given in [17]. As the table shows, the time complexities of the
top two methods (eigen decomposition of covariance matrix and
SVD of bi-diagonalized matrix) are a function of N (number of
data points) multiplied by D? (number of dimensions of each data
point), which is quite high for many datasets with a large number of
dimensions. In addition, the communication complexities of these
two methods are also quite high, especially for high dimensional
datasets. Therefore, even if there are enough computing nodes to
handle the high computational costs, the communication costs can
still hinder the scalability of these two methods.

The last two methods in Table 1 (stochastic SVD and probabilis-
tic PCA) have a more efficient time complexity of O(ND), assum-
ing that d is a relatively small constant, which is typically the case
in many real applications. Thus, these two approaches are poten-
tial candidates for performing PCA for large datasets. Our analysis



and experimental evaluation (in Section 5), however, reveal that
even though the time complexity of stochastic SVD can be handled
by employing more computing nodes, it can suffer from high com-
munication complexity. For example, our experiments show that
the high communications complexity of Mahout-PCA (which uses
SSVD) prevents it from processing datasets in the order of tens of
GBs. Therefore, based on our analysis, the most promising PCA
approach for large datasets is the probabilistic PCA.

Next, we present our sSPCA, which is based on probabilistic PCA.
SPCA runs in a distributed environment in a way that minimizes
the communication complexity while maintaining all the theoret-
ical guarantees provided by the original probabilistic PCA on ac-
curacy and time complexity. This makes sPCA suitable for large
datsets. In addition, our design and optimization approach is useful
in its own right to scale other machine learning algorithms.

3. DESIGN OF SPCA

In this section, we present the design of sPCA, our scalable im-
plementation of PPCA for distributed platforms such as MapRe-
duce and Spark. A naive approach for implementing PPCA is to
have a distributed (e.g., MapReduce) job for each linear algebra
operation in Algorithm 1. The dependency between these jobs is
depicted in the job graph in Figure 1. Each node is labeled with
the variable that the job produces. A link from node A to node B
indicates that data of variable A must be computed before starting
the job that computes variable B. Variables carried over from the
previous iteration are distinguished with the index i. Variable Y is
the input to the algorithm and does not change between iterations.
The output (the principal components of Y) is in C;.

This simple PPCA implementation works as follows. Matrix M
is computed using matrix C;_; and variance ss;_; that are carried
over from the previous iteration. For the first iteration (i = 1), Cy
and ssq are initialized randomly from a Normal distribution. Then,
matrices M and C;_; as well as the input matrix Y are used to gen-
erate the intermediate matrix X. Matrix X is used for three other
computations. First, it is used together with the variance ss;_| and
the computed matrix M to create matrix X¢X. The second consumer
of X is its product with the transpose of input matrix ¥ (Y¢X). This
matrix is divided by matrix XzX to produce the next version of prin-
cipal components, C;. The third consumer of X is ss3, part of the
variance, which needs C; and Y¢X that were computed in the last
two steps. Eventually, the variance ss; is updated for the next itera-
tion based on 3 components: (i) Frobenius norm of the input matrix,
(ii) ss2, which is the trace of the product of X7X and le xC;, and
(iii) ss3, which is computed in the last step.

As depicted in Figure 1, there are many linear algebra operations
per iteration and the naive approach results in poor performance.
In the following, we present our proposed sPCA algorithm. We
present our design as successive optimization ideas in separate sub-
sections. Then, we put all optimizations together in the final sub-
section. We emphasize that our optimization ideas do not change
any theoretical properties of PPCA.

We first note that not all operations in Figure 1 need to be per-
formed in a distributed manner. In fact, after careful inspection
of the algorithm and its various data structures, we found that only
three jobs need to be computed in a distributed manner because they
operate on large matrices that cannot fit in the memory of a single
machine. These jobs are X, YzX, and ss3, and we highlight them in
Figure 1 by dotted rectangles. All other operations can easily run
on a single machine, even for very large datasets. Specifically, our
implementation of sPCA has one main driver program, which im-
plements the control flow, launches parallel operations for the three
jobs X, YtX, and ss3, and executes all other operations locally.

0
Y
<

L
>

Figure 1: The job graph of PPCA. Nodes are labeled with vari-
able names in Algorithm 1. Variables carried over from the
previous iteration are indexed by i — 1. Dotted rectangles indi-
cate distributed jobs. The input to the algorithm is matrix Y
and the output is C;, which contains the principal components.
For the first iteration (i = 1), C;_; and ss;_| are randomly ini-
tialized using Normal distributions.

3.1 Mean Propagation to Leverage Sparsity

The first optimization we propose is the mean propagation idea,
which preserves and utilizes the sparsity of the input matrix Y.
PPCA requires the input matrix to be mean-centered (denoted by
Yc¢), meaning that the mean vector Ym must be subtracted from
each row of the original matrix Y. Large matrices, however, are
mostly sparse, with many zero elements. Sparse matrices can
achieve a small disk and memory footprint by storing only non-zero
elements, and performing operations only over non-zero elements.
Subtracting the non-zero mean from the matrix would make many
elements non-zero, so the advantage of sparsity is lost. The algo-
rithm would incur much more (i) disk I/O operations, (ii) network
1/0 operations, and (iii) CPU time for operations that could other-
wise be skipped for zero elements.

To avoid the problems of subtracting the mean, we keep the orig-
inal matrix Y and the mean ¥Y'm in two separate data structures. We
do not subtract the mean Ym from Y. Rather, we propagate the
mean throughout the different matrix operations. For example, if
the algorithm has a step like Y ¢ * C, we change it to be:

YexC= (Y —Ym)xC
=Y+C—Ymx*C.

That is, the mean Ym is propagated and multiplied with C, and at
the same time the sparse matrix Y is efficiently multiplied with C.
We apply the same technique on all the algebraic matrix operations
of Algorithm 1. This optimization is quite useful for algorithms
that require a matrix to be mean-centered.

3.2 Minimizing Intermediate Data

As explained in Section 2, intermediate data can slow down the
distributed execution of any PCA algorithm, because it needs to be
transferred to other nodes for processing to continue. For exam-
ple, at each iteration of running the basic PPCA on a 94 GB input
dataset with 50 principal components, nearly 500 GB of intermedi-
ate data was created in our initial implementation, which was one
of the main bottlenecks.

Through analysis and profiling of early implementations of
sPCA, we found that the intermediate matrix X can potentially have
large size. And as shown in Figure 1, X has to be fed to all the three



Figure 2: Part of the job graph in Figure 1 focusing only on
distributed jobs. It shows our optimization of reducing inter-
mediate data by redundantly computing X in the three jobs.

Y X,553

Figure 3: Final job graph of sPCA, based on Figure 2, and
further optimized by merging two distributed jobs into one.

distributed jobs, so it can become a major scalability bottleneck. To
minimize the size of the intermediate data X, we propose two ideas:
redundant computation and distributed job consolidation. First, we
note that while storing and exchanging X is expensive due to its
large size, computing it is a relatively lightweight operation when
we use in-memory matrix multiplication: each row of X requires
multiplying a sparse row of Y with a small, in-memory, matrix
C+M~! (Algorithm 1). To leverage this property, we redesign the
algorithm by redundantly recomputing X at each job that consumes
it as input. This approach essentially trades intermediate data foot-
print with computation. Figure 2 illustrates this optimization. The
figure shows only the part of the original job graph in Figure 1
where matrix X is recomputed in each of the three distributed jobs.

Our second optimization is job consolidation, which means
merging multiple distributed jobs into one in order to reduce the
communication between these jobs. Since there is no dependency
between the XrX and YtX jobs in Figure 2, we consolidate them
into one job. This also reduces the number of times that X is re-
dundantly computed. Figure 3 shows the final job graph of the dis-
tributed part of SPCA. This job graph is plugged into the job graph
in Figure 1.

3.3 Efficient Matrix Multiplication

As shown in Algorithm 1, PPCA requires many matrix multi-
plications, which are expensive operations in a distributed setting.
To appreciate the techniques that sSPCA employs to overcome the
inefficiency of matrix multiplication, we briefly explain different
possible implementations of this operation. Semantically, the prod-
uct of two matrices A of size N x D and B of size D x M is matrix
A B of size N x M and can be defined as:

) D .
(A*B)l! = ZA{-‘*B%.
k=1

This computation requires many random accesses to the two ma-
trices, which makes it inefficient when the two matrices are dis-
tributed. There are, nevertheless, variants of matrix multiplication
that can be implemented efficiently. For example, if instead of A x B
we want to compute A’ * B, then we can use the following equiva-
lent formula:

(Ai)/*B,'7 (2)
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which requires accessing one row at a time from A’ and B. Some
libraries, e.g., Mahout, use this approach for matrix multiplication.
Mabhout obtains the transpose of matrix A and then uses map-side
join to multiply the corresponding rows from the two matrices. The
result is then sent to reducers, which sum up the received partial
matrices. This approach still requires an extra matrix transpose
operation, as well as transferring a large amount of data between
the mappers and reducers. The map-side join also requires non-
trivial initialization time to align the partitions of the two matrices.
For sPCA, we seek a more efficient matrix multiplication oper-
ation. Notice that if matrix B can entirely fit in memory, we can
benefit from the following equivalent equation:

(A*B); =A;*B.

Using the above equation, matrix multiplication could be imple-
mented by distributing only the first matrix among different nodes
and loading the entire second matrix into the memory of each node.
Specifically, we partition the large matrix, A, among multiple nodes
and matrix B is loaded into the memory of each node. Each node
reads a row from its partition of A, multiplies it with the in-memory
matrix B, and produces one row of the result matrix. This approach
does not require matrix transpose, and is more efficient.

An example of a matrix multiplication operation in Algorithm 1
that can benefit from in-memory matrix multiplication is the prod-
uct of the input matrix Y ¢ and matrix C, which is of size D x d
(recall that d is typically small). For example, in our experiments
with a 94 GB dataset, the size of matrix C was 30 MB, which can
easily fit in memory.

It is, nevertheless, not always possible to benefit from this tech-
nique since the second matrix could be large. For example, in the
PPCA algorithm, the calculation of matrix YzX requires a product
between the transpose of Y¢ and X: YtX = Y¢’  X. This operation
was actually a bottleneck in our first prototype of sSPCA. In the new
design, however, since we generate matrix X on-demand, one row
of X is generated at a time which allows for efficient implementa-
tion of matrix multiplication using Equation (2).

3.4 Efficient Frobenius Norm Computation

The PPCA algorithm requires computing the Frobenius norm of
the mean-centered input matrix Yc =Y — Ym. Recall that we store
the mean vector Y'm separately from the matrix Y to avoid creating
the dense matrix Y c. Applying the same technique, we can compute
the rows of Y ¢ online, right before computing the Frobenius norm.
Algorithm 2 shows this approach.

Although Algorithm 2 has the advantage of requiring a small
amount of memory to maintain only one dense row at a time, it
still requires iterating over the dense row Y;, which is much larger
than the original sparse row Y;. To solve this problem, we design
Algorithm 3 which does not even require creating the dense vector.
We note that many machine learning algorithms compute various
norms of matrices. The proposed method for optimizing the com-
putation of the Frobenius norm can be extended to other matrix
norms using similar ideas. Thus, this simple optimization can ben-
efit several other machine learning algorithms.



Algorithm 2 Frobenius-simple (Matrix Y, Vector Y,,) : double

Algorithm 4 sPCA (Matrix Y, int N, int D, int d)

1: for all Y in Y.rows do
2 Yy =Y,—Y,

3 forall Y in Y, do
4: sum += (Y;)2
5: end for

6: end for

7: return sum

Algorithm 3 Frobenius (Matrix Y, Vector Y;;,) : double

: forall Y, in Y, do

msum-+ = (Y,,ﬁ)2

: end for

: for all Y in Y.rows do

for all Y} in Y do
sum += (Y —Y,})?
sum —= (¥;)?

end for

sum += msum

. end for

: return sum
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In this approach, we first compute the Frobenius norm of the
mean matrix, which would be equal to the norm of the sparse matrix
if all elements of the sparse matrix were zero. We then subtract the
mean value only from non-zero elements and add the square of the
results to the norm being computed. We also cancel the effect of
considering the square of the mean for each non-zero element by
subtracting it from the norm being computed.

3.5 sPCA: Putting it All Together

Algorithm 4 shows the pseudo code of sPCA including all the
techniques that we described in the previous sections. The parts
of the algorithm that are run with distributed jobs are highlighted
with bold font. The C and ss variables are initialized with random
values. Before starting the iterations, we run two lightweight jobs
to compute the column mean and Frobenius norm of the input ma-
trix. YtXJob computes both XrX and YX variables. It generates
row r of X on demand using row r of the input matrix Y, the in-
memory matrix CM, as well as the mean Ym and its effect on
X (Xm). ss3Job computes the third part of variance. Similar to
YtXJob, ss3Job generates the rows of X on-demand. The error
computation and the condition STOP_CONDITION are described
in Section 5.1

4. IMPLEMENTATION OF sPCA

In this section, we show that the design of sPCA and the opti-
mizations it uses are not restricted to a specific platform; they are
valid for the disk-based MapReduce and the in-memory Spark. The
implementation described in this section is open source and avail-
able for download!.

4.1 Implementation in MapReduce

This section provides a brief description on the MapReduce im-
plementation of the two main parallel jobs in SPCA (YtXJob and
ss3Job). These two jobs are run in each iteration of sSPCA. There
are another two MapReduce jobs (meanJob and FnormJob) which

ttps://github.com/
Qatar-Computing-Research-Institute/sPCA

1: C =normrnd(D,d)

. ss =normrnd(1,1)

: Ym = meanJob(Y)

: ss1 = FnormJob(Y)

: while not STOP_CONDITION do
M=C %C+ss*l
CM=CxM™!

Xm=Ym+CM

{X1X,YtX} = YtXJob(Y,Ym,Xm,CM)
10:  XtX+=ss«M~!

11: C=YtX/XtX

12: 552 =trace(XtX xC' xC)

13: ss3 =ss3Job(Y,Ym,Xm,CM,C)
14: ss = (ss14 552 —2xss3)/N/D
15: end while

are lighter weight and run once before the main loop of the algo-
rithm.

At a high level, programs in the MapReduce framework are di-
vided into mappers, reducers, and optionally combiners. Mappers
execute user-specified function on different parts of the dataset.
The results are then sorted and directed to reducers, which will ag-
gregate and produce the final results. Combiners can be applied to
the mappers’ output before feeding them to reducers.

In sPCA, the mapper of the YtXJob operates on each row of the
input matrix Y, ¥;, and then generates X;, the corresponding row of
intermediate matrix X. It then uses Equation (2) to generate a par-
tial result for XzX and YzX. The partial results have to be summed
up in the combiners and eventually in the reducers to generate the
full results. This, however, makes each mapper generate an entire
dense matrix after processing each sparse row. To solve this prob-
lem, we make the mapper keep two in-memory matrices XtX-p
and YrX-p to maintain the partial results and add them with the
partial sums after processing each row. At the end of processing
for a mapper, when the MapReduce framework calls the cleanup
method, the mapper writes the entire partial matrices X¢X-p and
YtX-p to the output. We refer to this technique as using a stateful
combiner. This technique results in much less load on the combin-
ers, and saves CPU cycles.

To send both XtX-p and YtX-p to reducers we use a composite
key. Since XrX-p is of size d x d, where d is the number of prin-
cipal components and thus small, we define the composite key to
send all the partial XzX-p matrices to the same reducer. That re-
ducer then sums them up in memory and writes the resulting XzX
into HDFS. Matrix YX, on the other hand, is generated using the
normal output interface of reducers.

Similar to YtXJob, ss3Job generates the rows of X on demand.
After producing each row X;, it does the following computation:

X;xC'*Y]. 3)

The default way to do this computation is to first perform X; * C’
and then multiply the result by Yl-’ . This, however, is not efficient,
because vector Y/ is sparse, and thus most of the work to compute
elements in (X; *C’) will be wasted since most of these elements
will be multiplied with zero elements in ¥/. Using the associativity
property of matrix multiplication, we perform this operation as Xj *
(C'+Y/), i.e., first multiply matrix C’ with the sparse vector ¥/, and
then obtain its dot product with X;, which is efficient since both are
of small size d. In addition, the mapper output of this job is a scalar,
which reduces the amount of intermediate data.



Algorithm 5 YtXSparkJob (Matrix Y, Vector Ym ,Vector Xm, Ma-
trix CM, int D, int d)

1: YtXSum = spark.accumultor(newMatrix(D,d))

2: XtXSum = spark.accumulator(newMatrix(d,d))

3: Yomap{Yi=> > runs in parallel
Xi=YixCM—-Ym+«CM
(Y1X)i=Yi' « (Xi—Xm) —Ym' * (Xi—Xm)
(XtX)i = Xi' % (Xi — Xm) — Xm'  (Xi — Xm)
YtXSum.add((YtX)i)
XtXSum.add((XtX)i)}

9: YtX=YtXSum.value()
10: XtX=XtXSum.value()

XN

4.2 Implementation in Spark

Spark [33] provides two main abstractions for parallel program-
ming: resilient distributed datasets (RDDs) and parallel operations
on these datasets. An RDD is a collection of records that can be
operated on in parallel. An RDD is partitioned across multiple ma-
chines and users can control its persistence (e.g., cache in memory
or store on disk) and its partitioning (e.g., partition by key). Devel-
opers typically define one or more RDDs through transformations
on data in stable storage. Examples of transformations include map
(which returns a new distributed dataset formed by passing each
element of the source through a user-defined function) and filter
(which returns a new dataset formed by selecting those elements of
the source on which a user-defined function returns true.). Develop-
ers can then use these RDDs in actions, which are operations that
return a value to the application or export data to a storage system.
Examples of actions include count (which returns the number of
elements in the dataset), collect (which returns the elements them-
selves), and save (which outputs the dataset to a storage system).

sPCA is designed to leverage the in-memory computations pro-
vided by Spark through making the input matrix Y persistent in the
memory of the cluster nodes and performing distributed operations
on it repeatedly. This approach translates to much less disk and
network I/O. The disk I/O is limited to the amount of data that does
not fit in the aggregate memory of the cluster.

Algorithm 5 presents the pseudo code of the YtXJob imple-
mented on Spark. The code makes use of a special type of vari-
ables provided by Spark called accumulators. Accumulators are
variables that workers can only add to using an associative opera-
tion, and that only the driver can read. The map operation of the
YtXJob operates on each row of the input matrix Y, ¥;, and then
generates X;, the corresponding row of intermediate matrix X. It
then uses Equation (2) to generate the partial result XzX; and Y7X;.
We note that the partial results are summed up in the same map
operation using the accumulators XzXSum and Y¢X Sum, thus elim-
inating the need for reduce operations and achieving good scala-
bility. The results of the accumulators are read later in the driver
program after all map tasks finish execution. We note that YzX; is
the product of the sparse vector ¥/ of length D x 1 and the vector X;
of length 1 x d and hence, YtX; is a sparse D X d matrix. In order
to make use of this sparsity we only pass the indices of the sparse
entries of YtX; to the accumulator YzXSum. This results in signifi-
cant improvement in the running time since the complexity of this
operation was reduced from O(D x d) to O(z x d), where z is the
number of non-zero dimensions (out of D dimensions).

The implementation of the ss3Job in Spark follows the same
steps described for the MapReduce implementation (Section 4.1)
to optimize the computation described in Equation (3).

S. EVALUATION

In this section, we present a rigorous evaluation of sSPCA com-
paring it against the closest algorithms using multiple real datasets
from different domains.

Algorithms Compared. We compare four methods for comput-
ing PCA:

e sPCA-MapReduce: sSPCA implementation on MapReduce,

e sPCA-Spark: sPCA implementation on Spark,

e Mahout-PCA: PCA implementation in Mahout [2] on MapRe-

duce, and

e MLIib-PCA: PCA implementation in MLIib [3] on Spark.

Both the Mahout-PCA and MLIib-PCA implementations are
quite popular and optimized, and we found them to be the best
options for their respective platforms. For uniform comparison, all
PCA algorithms compute 50 principal components.

Datasets. We use four real datasets, which are quite diverse in
terms of the domain they come from, size, number of dimensions in
the data, sparsity, and ranges/types of values for each data item. We
use various subsets of the datasets to assess the scalability and per-
formance of the considered PCA algorithms with increasing data
sizes. The datasets are:

o Tiveets: A large set of tweets from the Twitter social network.
We construct a matrix such that the rows represent the tweets
and the columns represent all words that appear in each tweet.
The matrix is of size 1,264,812,931 x 71,503, and each ele-
ment is either 1 or 0, where 1 means the corresponding word
appeared in that tweet, and 0 means otherwise. When we store
only the non-zero elements, this matrix occupies about 94 GB.
Bio-Text: A set of 8 million biomedical documents collected
from the U.S. National Library of Medicine, which is the largest
medical library in the world. The collection includes books,
journals, and technical reports on medicine and related sci-
ences. We construct a matrix from this dataset, where the
rows represent the documents and the columns represent the dis-
tinct words in each document. The matrix size is 8,200,000 x
141,043, and each element is either 1 or 0, where 1 means the
corresponding word appeared in that document, and 0 means
otherwise. The non-zero elements of this matrix occupy about
4.9 GB.

Diabetes: This dataset is collected from 353 patients. A urine
sample is taken from each patient. Then, a magnetic field
is applied on the urine samples. The nuclear magnetic reso-
nance (NMR) is then measured for the molecules (metabolites)
in the urine. NMR is a phenomenon where the molecules ab-
sorb and re-emit electromagnetic radiation. This energy is at a
specific resonance frequency that depends on the strength of
the magnetic field and the magnetic properties of the atoms.
The data represents the magnitude of this energy at each fre-
quency. The magnitude is measured at 65,669 different fre-
quencies for each patient. Thus, we construct a matrix of size
353 x 65,669, where rows represent patients and columns rep-
resent sample frequencies. Unlike previous datasets that have
binary elements, the elements in this dataset are real values rep-
resenting the magnitude of radiation at different frequencies.
Images: A dataset of 160 million data vectors. These vectors
are visual features extracted from 1 million images downloaded
from ImageNet [13]. From each image, we extract an average
of 160 SIFT [25] features, where each SIFT feature is a vector
of 128 dimenstions. This results in a dataset of 160 million vec-
tors. The matrix is dense and of size 160,000,000 x 128, where
rows represent the data vectors, columns represent dimensions
of each vector, and each element is a real value that represents
the texture of some part of an image.



Dataset | Size sPCA-Spark | MLIib-PCA || sPCA-MapReduce | Mahout-PCA
1.26B x 2K 708 822 3,900 29,160
Tweets 1.26B x 6K 1,260 2,196 10,080 97,920
1.26B x 71.5K || 5,940 Fail 16,200 430,200
8.2M x 2K 48 102 1,050 2,280
Bio-Text | 8.2M x 10K 114 Fail 1,290 6,240
8.2M x 14K 516 Fail 1,740 8,580
353 x 2K 20 55 540 720
Diabetes | 353 x 10K 30 Fail 720 1,680
353 X 65.7K 156 Fail 960 3,300
Images 160M x 128 7,800 660 12,600 117,700

Table 2: Comparison of running time (in sec) for SPCA on both Spark (sPCA-Spark) and MapReduce (sPCA-MapReduce) against
the closest counterparts on Spark (MLIib-PCA) and MapReduce (Mahout-PCA).

Performance Metrics. We consider three performance metrics:
accuracy, running time to achieve a target accuracy, and size of the
intermediate data.

We measure the accuracy by computing the 1-Norm of the recon-
struction error, which is given by: e = ||Y — X *C~!||;. Although
this provides a common way to compare the accuracy of different
algorithms, the reconstruction error is a big, dense matrix which is
costly to store and process. We reduce the cost of storage by com-
puting the error row by row, avoiding the need to store the large re-
construction matrix in the file system. Nevertheless, iterating over
the resulting dense rows is still time consuming. We reduce this
time by measuring the error only on a random subset of the rows,
Yr. To have a unique way to interpret the measured error, indepen-
dent of the sampling rate or matrix size, we report the norm of the
reconstruction error divided by the norm of the matrix made up of
the randomly selected rows, which is:

e= HerXr*C_lHl/HYrHl,

In addition, we measure the ideal accuracy that can be achieved
with 50 principal components after a large number of iterations.
After each iteration, we report the percentage of the ideal accuracy
that is achieved.

The intermediate data size is the amount of data generated by
each algorithm during its execution. We note that in many cases
the intermediate data generated by the algorithm far exceeds the
size of the input data, and thus becomes a major bottleneck.

Cluster Specifications. We run the experiments on the Amazon
EC2 cloud. We created a cluster of 8 Amazon EC2 m3.2xlarge
instances, where each node has 8 cores and 32 GB of memory.
The cluster runs Linux Red Hat 4.6.3. Amazon Hadoop distribu-
tion 0.20.205 and Apache Spark 1.0 were installed on the cluster.
The Amazon Hadoop distribution is based on Apache Hadoop, with
patches and improvements added that make it work efficiently with
Amazon Web Services (AWS).

Experiments Conducted. We first compare the running times
of all algorithms on the four datasets. Then, we conduct detailed
evaluation and comparison on MapReduce and Spark, separately.
Finally, we isolate and study the effect of each of the proposed
optimizations on the performance of sPCA.

5.1 Comparison of All Algorithms

We measure the running time of all algorithms on the four
datasets, and for each dataset we choose several sizes. A representa-
tive sample of our results is shown in Table 2. We note that MLIlib-
PCA is a deterministic algorithm that terminates after performing a
fixed number of matrix operations, unlike SPCA and Mahout-PCA
which are iterative algorithms that keep refining the principal com-

ponents until they reach a target accuracy. Hence, we compare the
running time of MLIib-PCA with that of sSPCA and Mahout-PCA
based on the time needed for SPCA and Mahout-PCA to reach at
least 95% of the ideal accuracy. We also limit the number of itera-
tions to 10.

We make three observations on the results in Table 2. First,
sPCA outperforms the other two algorithms by wide margins in
most of the cases. For example, on the MapReduce platform, for
a large dataset of tweets of size 1.26B x 71.5K, sPCA-MapReduce
finishes in less than 5 hours (16,200 sec), while Mahout-PCA takes
almost 5 days (430,200 sec) to finish. The second observation is
that MLIib-PCA fails to compute the principal components for high
dimensional datasets. This is because MLIib-PCA requires storing
a D x D covariance matrix in the memory of one machine, and
hence the algorithm fails when the size of this matrix exceeds the
available memory of one machine (not the aggregate memory in the
cluster). In our experiments with 32 GB memory machines, MLIib-
PCA fails when D exceeds 6,000. Even in the cases that MLIlib-
PCA succeeds to produce results, it can take about twice the time
of our sSPCA-Spark. The third observation is that MLIlib-PCA out-
perfroms other approaches in the specific case of a low-dimensional
and dense matrix such as the Images dataset. The Images dataset
has relatively low dimensionality (128 dimensions). In this case,
MLIib-PCA computes a 128 x 128 intermediate matrix and then
does further computations on one machine, so it finishes faster than
other approaches, including sPCA-Spark. It is not a problem for
such datasets that MLIib-PCA does not leverage sparsity (since the
matrix is dense) and fails when the dimensionality is high (since
the dimensionality is low).

To summarize, our results show that SPCA offers much better
scalability and performance than its competitors on both MapRe-
duce and Spark.

5.2 Detailed Evaluation on MapReduce

In this section, we present an in-depth comparison of sPCA-
MapReduce and Mahout-PCA.

Accuracy. The accuracy of both sSPCA-MapReduce and Mahout-
PCA algorithms depends on the number of iterations that they run.
We run both algorithms on different datasets and measure the accu-
racy after each iteration. Two sample results are shown in Figures 4
and 5, for the Bio-Text and Tweets datasets, respectively. Figure 4
shows that SPCA reaches 93% accuracy after 715 sec, in the second
iteration. In addition, sSPCA converges fast, in less than 1,500 sec.
Mahout-PCA takes much longer to converge: more than 5,000 sec.

Figure 5 reports the accuracy for the larger Tweets dataset.
The figure shows that sSPCA achieves much higher accuracy than
Mahout-PCA. For example, at time 1,000 sec, the accuracy of
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Figure 4: Accuracy vs. time on the Bio-Text dataset.
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Figure 5: Accuracy vs. time on the Tweets dataset. The x axis
is in log scale.
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Figure 6: Time to reach 95% of the ideal accuracy on the Tweets
dataset. We vary the number of rows (tweets) in each experi-
ment. The x and y axes are in log scale.

sPCA is at least 20% higher than that of Mahout-PCA, and the accu-
racy gap keeps increasing with time. sPCA achieves almost 100%
accuracy before 10,000 sec, whereas the accuracy of Mahout-PCA
reaches up to 70% after more than 259,000 sec of running. That is,
after running for about 26 times longer, Mahout-PCA achieves up
to 30% less accuracy than sPCA.

sPCA starts with random initialization for the variance (ss) and
the principal components (C), and improves upon them at each it-
eration. If we feed the algorithm with smart guesses for these vari-
ables, it converges faster. We use this optimization by first running
the algorithm on a much smaller sample matrix, randomly selected
from the original input. We then feed the resulting ss and C vari-
ables to the algorithm to be run on the original dataset. This op-
eration is quite useful for processing large data sets as the time to
compute the smart guesses is offset by the much larger savings in
time to reach the target accuracy. We refer to sSPCA by sPCA-SG
when this initialization process is used. The results on the Tweets
dataset indicate that this initialization technique adds 527 sec of
delay. However, as shown in Figure 5, the technique produces a
much higher accuracy compared to that of without the optimiza-
tion. We note that Mahout-PCA cannot use this optimization be-
cause Mahout-PCA requires a large random matrix that has the
same number of rows (1.26 billion) as the input matrix. In contrast,
in sSPCA a small D x d random matrix is initialized which does not
depend on the number of rows N, so SPCA can be run easily on a
small number of rows before running on the whole input matrix.

Time to Achieve Target Accuracy. We compare sPCA-
MapReduce and Mahout-PCA based on the time needed to reach
95% of the ideal accuracy. We vary the size of the input dataset and
measure the time needed for both sSPCA-MapReduce and Mahout-
PCA to achieve 95% accuracy. A sample of our results is shown
in Figure 6 for the Tweets dataset. Other results are similar. In this
figure, we vary the number of rows in the input matrix, but we use
the same number of columns, namely the full 71,503 columns of the
dataset. The results in Figure 6 show that the running times for both
algorithms are close for small datasets (i.e., up to 10 million rows).
For larger datasets, however, sSPCA-MapReduce reaches 95% accu-
racy two orders of magnitude faster than Mahout-PCA. The reason
for this is that the benefits of our optimizations in sSPCA pay off
better when we scale to larger datasets. More importantly, unlike
Mahout-PCA, the running time of sSPCA-MapReduce increases at
a much smaller rate as the size of the input dataset increases, which
allows it to scale well.

Intermediate Data Size. We measure the size of intermediate
data generated by sPCA-MapReduce and Mahout-PCA. Our re-
sults (figures not shown due to space limitations) show that SPCA-
MapReduce generates much smaller intermediate data in all cases
compared to Mahout-PCA. For example, for the Bio-Text dataset,
Mahout-PCA generates 8 GB of intermediate data, whereas sSPCA-
MapReduce generates only 240 MB, a factor of 35x reduction. This
property pays off even more when we scale to larger datasets. Our
results show that for the Tiveets dataset, Mahout-PCA generates 961
GB of intermediate data, whereas sSPCA-MapReduce produces 131
MB of such data, a factor of 3,511x reduction. Notice that SPCA-
MapReduce generates less intermediate data as a fraction of the
dataset size for the larger Tweets dataset since it has fewer columns
compared to the Bio-Text dataset.

Analysis of sSPCA and Mahout-PCA Jobs. We analyze the in-
dividual jobs of sPCA and Mahout-PCA in terms of running time
of each job and the amount of data generated. This analysis helps
in understanding the performance differences observed in the pre-
vious sections. Our analysis shows the following: For sPCA, we
notice that although the Tiveets dataset is larger than the Bio-Text



dataset by a factor of 20x, the durations of the jobs increase by a
factor less than 4. This is because the overheads of the Hadoop
framework and job initialization have a larger relative impact in the
smaller case. More importantly, the execution time depends also
on the sparsity of the matrix. Although the Tweets dataset is 20x
larger in size, it is much sparser.

On the other hand, Mahout-PCA’s jobs are significantly slower
in relative terms when the input size increases. For example, the ex-
ecution time of the job in Mahout-PCA (Bt job) corresponding to
our YtX job increases by a factor of 654x when we increase the data
size 20x by switching from the Bio-Text to the Tweets dataset. Most
of this time is spent in the mappers. To understand why Mahout-
PCA suffers from this inefficiency, we looked at the mappers’ out-
put data and we observed that the mappers produce 15.6x more
output for the Tweets dataset than for Bio-Text, resulting in 4 ter-
abytes of data. The combiners, therefore, are overloaded with a
large amount of input. This mapper output size is extremely large
compared to the aggregate output size of the mappers of the YtX
job in sPCA, which increases by only 2.3x times when we switch
from Bio-Text to Tweets. This moderate mapper output size con-
tributes to the scalability of SPCA.

5.3 Detailed Evaluation on Spark

In this section, we compare sPCA-Spark with MLIib-PCA. To
the best our knowledge, MLIib-PCA is the only available Spark
implementation of PCA that was added starting from Spark version
1.0.0, which is the version we use in our experiments.

Time to Achieve Target Accuracy. As described in Section 2.1,
MLIib-PCA is a deterministic algorithm that terminates after per-
forming a fixed number of matrix operations. We compare the run-
ning time of MLIib-PCA with that of sPCA-Spark based on the
time needed for sSPCA-Spark to reach at least 95% of the ideal ac-
curacy. We run multiple experiments using the Tiveets dataset. In
each experiment, we use the same number of rows, but we vary the
number of columns, and we measure the total running time for both
algorithms. We plot the results in Figure 7. The results show that
MLIib-PCA fails when the number of columns D exceeds 6,000.
As discussed before, this is due to the fact that MLIib-PCA loads
a D x D covariance matrix in the memory of one machine. Hence,
the algorithm is not scalable except up to a few thousand columns.
On the other hand, sSPCA-Spark requires a small O(D x d) matrix
to be stored in memory, and d is typically a small constant. This
important difference makes sSPCA-Spark much more scalable than
MLIib-sPCA.

Regarding the running time, the figure shows that sSPCA is much
faster than MLIib-PCA. For example, the running time of sPCA
is nearly half of MLIib-PCA for D = 6,000 and the difference in
speed increases with increasing the number of columns. This hap-
pens because MLIib-PCA performs dense matrix operations on the
covariance matrix. Since, the covariance matrix has D? elements,
the running time of MLIib-PCA increases quadratically with D, un-
like sPCA in which there is a linear relationship between the run-
ning time and the number of input dimensions D.

Finally, we observe that the running time of sPCA-Spark does
not increase with the same factor as the input size. For example,
the running time increases by a factor of 10x with increasing the
input size by a factor of 70x. This gain is due to the efficient use of
sparse matrices in SPCA.

Intermediate Data Size. Intermediate data in Spark can be cre-
ated in different ways. It could be (i) RDDs distributed in the mem-
ory or the disks of different machines in the cluster, or (ii) interme-
diate data loaded in the memory of the master machine which is the
machine that runs the driver program and handles the workflow of
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Figure 7: Time to reach 95% of the ideal accuracy on the Tweets
dataset. We vary the number of columns in each experiment.
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Figure 8: Memory consumption of sPCA-Spark vs. MLLib-
PCA on different input sizes for the Tweets dataset.

the Spark jobs (launching distributed jobs, aggregating results, etc.).
Since both sPCA-Spark and MLIib-PCA cache only one RDD in
the aggregate memory of the cluster and this RDD is used for the
input matrix, other intermediate data is loaded in the driver pro-
gram. We therefore measure the amount of memory consumed by
the process that runs the driver program for both algorithms.

We monitor the memory used by the Java process that runs
the driver program in intervals of 5 seconds using the JVM utili-
ties jmap and jstat and we report the maximum resident memory
throughout the running time of the process. Figure 8 compares
the memory consumption of both algorithms for the Tweets dataset.
The results show that the memory consumption of SPCA is almost
constant. However, the memory consumption of MLIib-PCA in-
creases drastically with increasing the number of columns. For ex-
ample, MLIib-PCA consumes more than 26 GB of memory for an
input matrix of 6,000 columns. This explains the results shown in
Figure 7 and shows why MLIib-PCA fails to process more than
6,000 columns on a machine with 32 GB of memory.

5.4 Effect of Individual Optimizations

In Section 3, we presented our design as successive optimization
ideas. Then, we put all the optimizations together to form the fi-
nal SPCA algorithm. In this section, we analyze how much each of
these optimizations contributes to the speedup achieved by sPCA.
We analyze the three core optimization ideas: mean propagation to



Mean Prop. | Intermed. Data | Frobenius
W/ Opt. 2 3 0.4
W/0 Opt. 5,400 2,640 102

Table 3: Running time (in sec) for the three main distributed
operations with and without the proposed optimizations.

16 cores | 32 cores | 64 cores
Running Time | 22,680 11,640 5,940
Speedup 1 1.95 3.82

Table 4: Running time (in sec) and speedup of running sPCA
on clusters of different sizes.

leverage sparsity (Section 3.1), minimizing intermediate data (Sec-
tion 3.2), and optimizing the computation of the Frobenius norm
(Section 3.4). These optimizations are used in the operations on
lines 7, 8, and 13 of Algorithm 1, respectively. Each operation cor-
responds to one optimization and they are all distributed operations.
Therefore, we use these operations to test the optimizations by com-
paring the optimized and unoptimized versions of the operations.

We use a subset of the Tveets dataset consisting of 100,000 rows,
and we measure the running time of each operation with and with-
out applying the optimization. The experiments are done using
sPCA-Spark and the results are shown in Table 3. The results show
that the careful design and optimization ideas of SPCA provide us
with orders of magnitude speedup over the unoptimized implemen-
tation. The results also show that mean propagation is the optimiza-
tion that provides the biggest benefit out of the three optimizations.
This is because it preserves the sparsity of the input matrix, which
has a major effect on performance. The second most important opti-
mization is minimizing the intermediate data. The results show that
it takes 3 seconds to compute matrices X and X¢X from the input
matrix ¥ compared to 44 minutes needed to compute matrix XX
from the stored large matrix X. The Frobenius norm optimization
in Algorithm 3 is faster than the simple implementation in Algo-
rithm 2 by a factor of 270x.

5.5 Speedup

In this section, we analyze the performance of sSPCA-Spark on
the Tiveets dataset when running it on clusters of different sizes (16,
32, and 64 cores, corresponding to 2, 4, and 8 nodes). Table 4
shows the running time and speedup with increasing the number
of cores. We measure the speedup as S = Ty cores/Tn cores» Where
T16 cores 18 the running time of SPCA-Spark on the smallest cluster
(16 cores), and T}, cores 1s the running time of SPCA on a cluster
with n cores. The results in Table 4 show that the careful design
of sPCA in addition to using Spark, which reduces the communi-
cation overhead, result in a linear, almost-ideal speedup (i.e., a low
distributed systems penalty).

6. RELATED WORK

Implementing efficient machine learning algorithms on big data
is an active field of research. Many ongoing works approach the
problem from different perspectives. Several recent works [8, 16]
attempt to leverage the observation that the iterative nature of ma-
chine learning algorithms does not perfectly match the MapReduce
framework. Such works usually (i) add language support to en-
able the developer to express the iterations, and (ii) provide com-
piler support to leverage the knowledge about iterations for better
scheduling and caching policies. HalLoop [8] extends the MapRe-
duce programming model with the notion of iteration. The knowl-

edge of iteration is then taken into consideration to affect schedul-
ing (running on local data obtained from the previous iteration)
and caching policies (caching the output if it is going to be used
in the next iteration). Twister [16] suggests modifications to the
MapReduce framework to make it efficient for machine learning
algorithms. A different approach to iterative machine learning is
adopted by Hogwild! [28]. Hogwild! parallelizes the stochastic
gradient descent (SGD) algorithm on a shared memory machine
by running SGD without locks. Interestingly, convergence is still
guaranteed. SGD is useful for many machine learning tasks, but it
cannot be used to compute PCA.

Some related works take a top-down approach and define the
minimum language requirements to express machine learning algo-
rithms on top of distributed systems [7, 24]. Borkar et al. [7] use
DatalLog to define a language expressive enough to cover many of
the existing machine learning algorithms. They argue that the gen-
eral query optimization techniques in the database literature could
be applied to compile the declarative programs into efficient exe-
cutions plans. MLbase [24] argues for a DBMS approach for ma-
chine learning algorithms, in which the algorithm is expressed in
an expressive language (similar to SQL) and MLbase takes care of
optimization and query planning. A similar approach is adopted
by SystemML [18], in which the user expresses a computation in
a language similar to R, and the system automatically compiles the
computation to an optimized workflow of MapReduce jobs. The
SciDB system [31] focuses on parallel array processing for scien-
tific workloads. The main focus of SciDB is effective storage and
retrieval of arrays in cluster environments [30], and a computation
like PCA would be an application on top of SciDB.

In this paper, we take a bottom-up approach: we study the bottle-
necks in a complex machine learning algorithm and provide solu-
tions for each one. The insights and rules that we presented in this
paper could be leveraged by any of the above systems.

Chu et al. [9] list many machine learning algorithms that can be
parallelized on multiple cores using MapReduce. For PCA, they
suggest using the classic technique of first obtaining the covariance
matrix, and then computing its eigenvectors. Then, they show that
the covariance matrix can efficiently be computed in the MapRe-
duce model using only one pass on the data. Afterwards, they use a
centralized algorithm to obtain the eigenvectors. The disadvantage
of this approach is that it requires storing the covariance matrix in
the memory of one machine. Although this is possible in the case
of “thin” matrices that have a small number of dimensions, it is not
a feasible solution for matrices with large dimensionality, which
we target. However, we employ their approach for computing the
covariance matrix in SPCA when we compute matrix XtX. We pre-
sented a comprehensive overview of computing PCA in Section 2.

7. CONCLUSION

In this paper, we analyzed different methods for computing the
principal components of an input matrix, which is referred to as
principal component analysis (PCA). Our analysis indicated that
all current algorithms for PCA have significant computation or
communication bottlenecks that prevent them from scaling to large
datasets. We presented a scalable design and implementation for
PCA, which we call sPCA. sPCA is based on the probabilistic
PCA (PPCA) algorithm [32], and it employs several optimizations
to support large datasets on distributed clusters. We implemented
sPCA on the MapReduce and Spark platforms and showed that
it significantly outperforms the closest counterparts on both
platforms.
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