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ABSTRACT
Hyperspectral imaging systems capture information in mul-
tiple wavelength bands across the electromagnetic spectrum.
These bands provide substantial details based on the optical
properties of the materials present in the captured scene.
The high cost of hyperspectral cameras and their strict il-
lumination requirements make the technology out of reach
for end-user and small-scale commercial applications. We
propose MobiSpectral, which turns a low-cost phone into a
simple hyperspectral imaging system, without any changes
in the hardware. We design deep learning models that take
regular RGB images and near-infrared (NIR) signals (which
are used for face identification on recent phones) and recon-
struct multiple hyperspectral bands in the visible and NIR
ranges of the spectrum. Our experimental results show that
MobiSpectral produces accurate bands that are comparable
to ones captured by actual hyperspectral cameras. The avail-
ability of hyperspectral bands that reveal hidden information
enables the development of novel mobile applications that
are not currently possible. To demonstrate the potential of
MobiSpectral, we use it to identify organic solid foods, which
is a challenging food fraud problem that is currently partially
addressed by laborious, unscalable, and expensive processes.
We collect large datasets in real environments under diverse
illumination conditions to evaluate MobiSpectral. Our re-
sults show that MobiSpectral can identify organic foods, e.g.,
apples, tomatoes, kiwis, strawberries, and blueberries, with
an accuracy of up to 94% from images taken by phones.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing; • Applied computing → Computer forensics.
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1 INTRODUCTION
The hardware and software resources on mobile phones are
continually improving. For example, most recent phones
have multiple camera modules, which enable capturing bet-
ter quality photos and videos even in low light conditions.
The goal of this paper is to push the boundaries of mobile
phones even further, by bringing some of the hyperspectral
imaging features to them. This will enable many novel ap-
plications that are currently not possible on mobile phones,
such as food quality inspection, material identification, early
detection of skin diseases, and artwork authentication. Spec-
tral features can also improve the performance of current
image/video processing applications, such as color correc-
tion [14], dehazing [13], scene analysis [29], face identifica-
tion [3], and automatic skin enhancement in images [33].
Hyperspectral imaging systems capture information in

multiple wavelengths across the electromagnetic spectrum,
as illustrated in Figure 1. These bands provide substantial de-
tails based on the optical properties of the materials present
in the captured scene, and thus they can be used to create
spectral signatures for different materials. Figure 1 also shows
sample spectral signatures. Hyperspectral imaging has been
established for decades in domains such as remote sensing
and military applications. However, its complexity and high
cost make the technology out of reach for end-user appli-
cations. In addition, hyperspectral imaging requires strict
illumination conditions that are not possible to satisfy in
everyday environments such as homes and grocery stores.

We propose a new system, called MobiSpectral, that turns
a low-cost phone into a simple hyperspectral imaging sys-
tem. We design deep learning models that take regular RGB
images and near-infrared (NIR) signals (which are used for
face identification on recent phones) and reconstruct multi-
ple hyperspectral bands in the visible and NIR ranges of the
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spectrum. Based on these bands, we create spectral signa-
tures that can differentiate variousmaterials and detect subtle
differences in their compositions and structures. To demon-
strate the practicality of MobiSpectral, we use it to address
a challenging problem: identifying organic solid foods, e.g.,
fruits, on mobile phones, which, to the best of our knowledge,
has not been done before in the literature.

The contributions of this paper are as follows:
• We propose MobiSpectral, which includes multiple new
ideas to bring hyperspectral features to phones and enable
many new mobile applications.

• We design a robust deep-learning model to convert images
captured by regular cameras to hyperspectral bands across
the visible and NIR range, in §3.3. Our design builds on
the state-of-the-art model in [9] and makes it practical.

• We present methods to mitigate the negative effects of di-
verse illumination sources on the reconstructed hyperspec-
tral bands, which enable MobiSpectral to work in everyday
environments, in §3.5.

• We analyze the spectral characteristics of organic foods
and show that they can be identified by cameras operating
in the visible and NIR range, in §4.2.

• We design and evaluate a mobile application to identify
organic foods as a proof-of-concept of MobiSpectral.

• We collect datasets of hyperspectral, RGB, and NIR images,
which can be useful for various mobile applications.

• We conduct extensive experimental studies to demonstrate
the accuracy of our reconstruction model and mobile ap-
plication, in §5. For example, our results show that Mo-
biSpectral can identify organic kiwis, apples, tomatoes,
strawberries, and blueberries with accuracy 94%, 93%, 92%,
90%, and 89%, respectively, from images taken by phones.
We summarize the related work in §6 and conclude in §7.

2 BACKGROUND AND CHALLENGES
2.1 Background
RGB Imaging. A simplified illustration of regular cameras,
e.g., ones on phones, is shown in Figure 2.a, where a CMOS
sensor converts the incoming light into three channels (RGB)
using a color filter array (CFA). The most common CFA is the
shown Bayer pattern: a green square means that the green
color is allowed for this pixel, similarly for the red and blue
squares. Each pixel captures only one of the three colors, and
an interpolation (aka demosaicing) method implemented in
hardware is used to estimate the other two. Notice that there
are two green pixels for each blue and red pixel, as the human
visual system is more sensitive to the green color.

Most sensors in current RGB cameras have a sensitivity of
up to 1000 nm, whereas the visible light range is 400–700 nm.
RGB cameras use a cut-off filter to truncate signals between
700 and 1000 nm, which is the NIR range. If not removed,
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Figure 1: Hyperspectral bands and spectral signatures.

NIR signals may over-saturate the red channel and cause
damage to the captured RGB image. Figure 2.b shows the
sensitivity of the CMOS sensor to different color channels.
Hyperspectral Imaging. Hyperspectral imaging measures
the intensity of diffusely reflected light from a surface at
many wavelengths with relatively narrow band-pass filters.
Figure 3.a illustrates the basic concepts of hyperspectral
imaging. These systems require specialized hardware such
as collimating optics and awavelength dispersion component
(diffraction grating or prism) [11]. Hyperspectral images are
three-dimensional; thus, a scanning technique is required to
collect them on the two-dimensional sensor. Line scanning
is the commonly used method, which collects photons from
a line of pixels in the spatial domain through a slit, and it
splits the light into its components to produce many bands
at the same time [11]. The complete data cube is obtained
through a relative motion between the camera and the scene.

Hyperspectral cameras have much finer spectral sensitiv-
ity than regular RGB cameras, as illustrated in Figure 2.b.
This enables obtaining more detailed information and cre-
ating spectral signatures for the different materials present
in the captured scene. As illustrated in Figure 1, the spectral
signature is created per pixel by tracking how the reflectance
value changes across different wavelengths.

2.2 Challenges
The goal of our work is to bring some features of hyperspec-
tral imaging to mobile phones. This, however, faces several
research challenges, which we summarize in the following.
Lack of information beyond the visible range. Hyper-
spectral applications rely on the optical properties of materi-
als, e.g., how they absorb and reflect various wavelengths of
the incident light, especially ones in the 700–1000 nm range,
as these wavelengths reveal hidden information that cannot
be obtained from the visible range (400–700 nm). However,
regular cameras use cutoff filters to truncate all signals in that
range (Figure 2.b). A straightforward solution for this prob-
lem is to remove the IR cutoff filter. This, however, requires
changing the phone hardware and may lead to damaging
the quality of regular RGB images. The quality of regular



MobiSpectral: Hyperspectral Imaging on Mobile Devices ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

R G B

CMOS 
SensorBayer 

Filter
IR Cut-off
Filter

IR Cut-off Filter

R
G

B

400                             700                       1000
Wavelength (nm)

Sp
ec

tra
l S

en
si

tiv
ity

Visible range (nm)
40

0

70
0

(a)                                                        (b)

Incident 
light

Figure 2: Basic principles of regular RGB cameras.
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Figure 3: Basic principles of hyperspectral cameras.

images is critical for most users. In §3.2, we show how we
address this problem without requiring any changes to the
phone hardware or interfering with the RGB image pipeline,
by utilizing the low-resolution infrared signal available in
recent phones and used for face identification.
Very few captured bands. Regular cameras capture only
three channels (or bands), which are sufficient for the human
visual system to perceive the captured scene. In contrast, hy-
perspectral cameras capture many equally spaced and much
narrower bands in the entire spectral range of the camera
sensor (400–1000 nm). Commercial hyperspectral cameras,
such as the one used in this study, can produce more than
200 bands. Unlike the three wide RGB bands, hyperspec-
tral bands yield more accurate spectral signatures, which
are essential for identifying various materials. To address
this problem, in §3.3, we design a deep learning model to
reconstruct multiple narrow bands from the input RGB ones.
Strict illumination requirements. Indoor hyperspectral
imaging requires strict illumination conditions [23, 37]; oth-
erwise, the captured bands will have noise and could even be
completely damaged. Specifically, halogen bulbs are typically
required for indoor hyperspectral applications because they
cover most of the 400–1000 nm spectral range. However,
such sources are not available in everyday environments
such as grocery stores and shopping malls. Halogen bulbs
are expensive, have a short lifetime, dissipate significant
heat, and consume substantially more energy than common
fluorescent and LED bulbs. They are mostly used in special

Figure 4: Effect of illumination on sample bands cap-
tured by a hyperspectral camera.

environments such as forensics labs and industrial plants.
Therefore, capturing hyperspectral images in everyday in-
door environments is difficult, even with actual hyperspec-
tral cameras. Doing it on mobile phones with limited optical
and processing resources is significantly more challenging.
To demonstrate the importance of illumination, we cap-

tured images with a hyperspectral camera when the scene
was first illuminated with a halogen source and then with
an LED source. We show sample bands for both cases in Fig-
ure 4. The figure shows that the NIR bands captured using
the LED source are mostly damaged. In §3.4, we analyze the
limitations of common illumination sources and present a
solution to mitigate these limitations.

3 PROPOSED MOBISPECTRAL SYSTEM
3.1 Overview
Figure 5 shows an overview of the proposed MobiSpectral
system. At the core of MobiSpectral is a robust hyperspectral
reconstruction model (described in §3.3), which, unlike prior
models in the literature, reconstructs bands in the visible
and NIR ranges and handles realistic illumination conditions.
As discussed before, information in the visible range alone
is insufficient for spectral analysis of materials, as the most
crucial information is typically found in the NIR range. Fur-
ther, since our goal is to enable users to perform spectral
analysis, e.g., to detect food fraud, using their phones in
everyday environments such as homes and grocery stores,
strict illumination cannot be expected.
The inputs to the reconstruction model are regular RGB

and NIR images; both can be captured by recent phones as
described in §3.2. The RGB image is scaled to the same reso-
lution as the NIR image, and both images are then aligned.
To handle the limitation of common illumination sources,
which is the lack of emitted power in the NIR range, we uti-
lize the infrared illumination source on recent phones, which
is used in conjunction with the NIR camera for face iden-
tification, as detailed in §3.4. To increase the robustness of
the model and make it usable with different phone cameras
and diverse illumination conditions, we propose, in §3.5, an
image normalization method that uses a deep learning model
to abstract the processing pipelines of different cameras and
transform the input images to a common representation.
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Figure 5: Overview of MobiSpectral.

The output of the reconstructionmodel is𝑁 bands, equally
spaced across the entire 400–1000 nm spectrum. 𝑁 is a con-
figurable system parameter, where larger 𝑁 values produce
more accurate spectral signatures, but they require more
processing and memory resources. The model infers the hy-
perspectral bands from the input RGB and NIR signals. That
is, it uses the RGB signals in Figure 2.b to estimate the bands
in Figure 3.b. As Figure 2.b shows, the RGB signals contain
the needed spectral information, but in coarse grain and only
in the 400–700 nm range. The NIR signal partially mitigates
the lack of information in the 700–1000 nm range. Thus, the
reconstruction model effectively upsamples the RGB+NIR
signals into 𝑁 spectral bands. This is similar in principle to
super-resolution models in the computer vision community.

The reconstructed bands offer rich information in the spa-
tial and spectral domains about every pixel in the captured
scene. Thus, they can enable many new mobile applications
and improve existing ones, including detecting food fraud,
assessing the quality and ripeness of crops, analyzing the
nutritional contents of food products, and identifying/clas-
sifying various materials in general. We provide a concrete
case study on identifying organic foods in §4.
We note that the training of all models in MobiSpectral

(reconstruction, image normalization, and classification) is
done on a workstation with GPUs. Then, the trained models
are uploaded to phones and used for inference in real time.

3.2 Obtaining Signals in the Invisible Range
Recent phones, e.g., Apple iPhone X, Google Pixel 4, and their
sequels, contain multiple cameras. One of these cameras is
typically used for face identification to unlock the phone.
This camera operates in the NIR range, and we refer to it as
the NIR camera. We propose using the NIR camera to obtain
some information beyond the visible range. Recall that RGB
cameras filter out all invisible signals beyond 700 nm, as

discussed in §2.1. The information from the NIR camera is
then added to the RGB information captured by one of the
regular cameras and used by the deep learning model in §3.3
to reconstruct bands across the 400–1000 nm range.

The NIR and RGB cameras are physically separated, which
can introduce discrepancies in the captured pixels. In addi-
tion, NIR cameras typically have much lower resolutions
than RGB cameras. Both of these issues pose a problem for
reconstructing hyperspectral bands and lead to inaccurate
spectral signatures. Recall that spectral signatures are com-
puted per pixel across the frequency domain, which reflects
the optical properties of the captured scene. To mitigate
these issues, we rescale RGB images and align them with
NIR images using the simple method in [12]. We note that
we downsample the RGB images to match the resolution
of NIR instead of upsampling the NIR, because NIR upsam-
pling may introduce more errors than downsampling RGB
images while not necessarily providing better reconstruction.
In addition, actual hyperspectral cameras, including the one
used in this paper, typically have low spatial resolutions (e.g.,
512x512), which means that the reconstruction model would
be trained on low-resolution bands in the first place.

3.3 Robust Hyperspectral Reconstruction
Limitations of Existing Models. Spectral reconstruction
has been an active topic in the last few years in the com-
puter vision community [4, 5]. Most prior works, however,
reconstruct bands only in the visible range (400–700 nm) and
assume ideal illumination conditions, mostly considering
outdoor environments with sunlight that covers the entire
400-1000 nm spectral range. In addition, all previous models
were trained and tested on datasets from the same data dis-
tribution. Specifically, all datasets used in previous models
were captured by hyperspectral cameras, where a part of the
datasets is used for training and another for testing. This,
however, is not possible in our case because testing (recon-
struction) must be done using images captured by phones,
while training is done using images captured by hyperspec-
tral cameras as they provide ground truth. And as explained
in §2.1, hyperspectral cameras work in a completely differ-
ent manner than phone cameras: they produce many narrow
bands instead of three wide bands. This significant mismatch
between the training and testing data distributions intro-
duces substantial errors in the bands reconstructed by previ-
ous models, which would compromise the accuracy of any
practical application designed to utilize these bands.
Further, previous spectral reconstruction works did not

consider the differences in the sensitivity of the CMOS sen-
sors (see Figure 2), which vary between manufacturers and
camera models. The variation in the sensor sensitivity re-
sults in differences in pixel values, which affects the accuracy
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of the reconstructed bands. Finally, each camera applies a
sequence of steps, e.g., white balancing, demosaicing, and
color transformation, on the captured raw data to produce
the final RGB images. The implementation and tuning of
these steps differ across camera manufacturers and models.
Thus, the produced RGB images will have differences at the
pixel level, despite looking visually similar. These differences,
too, reduce the accuracy of the reconstructed bands.
DesignGoals.We address all of the above limitations. Specif-
ically, MobiSpectral is designed to: (i) produce accurate bands
in the visible and NIR ranges from images captured bymobile
phones, (ii) account for differences in the sensors and pro-
cessing pipelines of various RGB cameras, and (iii) function
under diverse illumination conditions in real environments
such as homes and grocery stores.
Basic Reconstruction Model. To achieve the above goals,
we build on the state-of-the-art MST++ model in [9]. MST++
is designed using transformers, which are recent deep-learning
models that consider the long-range dependency among data
points in the input sequences through a mechanism known
as self-attention. MST++ introduces multiple ideas and con-
structs to consider the spatial and spectral characteristics of
hyperspectral images, but it still suffers from the limitations
mentioned above.
We note that we are not claiming a new neural network

design for hyperspectral reconstruction. Rather, our contri-
bution is making the state-of-the-art model (MST++) robust
to real-life illumination settings and extending it to produce
bands in the NIR range, which makes it much more practical
and useful for many applications.

Our first, simple, extension of the MST++ model is to add
the NIR range, which is done by expanding the input layer to
take the scaled RGB bands and the NIR image captured simul-
taneously by the phone. At a high level, the reconstruction
model functions as follows. The input RGB and NIR signals,
containing sparse spectral information in the visible and NIR
range, are first upsampled to 𝑁 spectral features. Then, each
feature is embedded as a token in the spectral domain. This
embedding maps similar spectral features to positions close
to each other, which assists the self-attention mechanism in
capturing the long-range inter-dependencies among features
in the visible and NIR ranges. This helps in reconstructing
bands in the NIR range, where the input signal is sparse but
has similar characteristics to the nearby bands.

In the following subsections, we describe how we improve
the robustness of this model.

3.4 Handling Limited Illumination
We analyze and address the limitations of common illumi-
nation sources. In hyperspectral imaging, the reflected light
from the captured scene is divided into components using a
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Figure 6: Spectral characteristics of light sources.

prism or grating [7, 26], as illustrated in Figure 3. We denote
the image value in the hyperspectral band 𝑛 at the spatial
position (𝑥,𝑦) as 𝐼 (𝑥,𝑦, 𝜆𝑛), which can be defined as [15]:

𝐼 (𝑥,𝑦, 𝜆𝑛) =
∫

𝑅(𝑥,𝑦, 𝜆) · 𝐿(𝑥,𝑦, 𝜆) ·𝐶𝑛 (𝜆) · 𝑑𝜆, (1)

where 𝐿(𝑥,𝑦, 𝜆) is the illumination intensity at position (𝑥,𝑦)
which is a function of the wavelength 𝜆, 𝑅(𝑥,𝑦, 𝜆) is the
surface reflectance at position (𝑥,𝑦) which depends on the
optical properties of the materials in the scene, and 𝐶𝑛 (𝜆)
is the sensitivity function of the camera for the 𝑛𝑡ℎ band
which is specified by the camera manufacturer. In practice,
the spectral information is discretized across the wavelength,
and Equation (1) can be rewritten as:

𝐼 (𝑥,𝑦, 𝜆𝑛) =
𝑁∑︁
𝑖=1

𝑅(𝑥,𝑦, 𝜆𝑖 ) · 𝐿(𝑥,𝑦, 𝜆𝑖 ) ·𝐶𝑛 (𝜆𝑖 ), (2)

where 𝜆𝑛, 𝑛 = 1, 2, . . . , 𝑁 , is the discrete representation of
wavelength 𝜆 into 𝑁 spectral bands. Equation (2) highlights
the crucial role of illumination in hyperspectral imaging: the
source 𝐿(𝑥,𝑦, 𝜆𝑛) should emit power across all wavelengths
to be represented in the captured hyperspectral image.

We experimentally analyze the characteristics of different
illumination sources and their impact on hyperspectral imag-
ing. We consider three categories of common light sources:
halogen, LED, and fluorescent. We plot in Figure 6.a the
normalized power emitted across various bands when the
halogen light source is used. We produced this figure by illu-
minating a white object, which reflects all wavelengths, with
a halogen light source and capturing the reflected signals
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using a hyperspectral camera. We repeated the experiment
with multiple LED light sources that have different color
temperatures (Figure 6.b) and a fluorescent light source (Fig-
ure 6.c). Figure 6 shows that the halogen source emits power
across most of the 400–1000 nm range, while the LED and
fluorescent sources emit power mostly in parts of the visible
range and almost nothing in the NIR range. The curves in
Figure 6 along with Equation (2) explain the reasons behind
the damaged NIR bands in Figure 4.b, which were captured
using an LED source.
In addition, Figure 6.b shows that the three LED sources

have diverse spectral curves, and all are different from the
fluorescent one in Figure 6.c. This variability leads to incon-
sistent pixel values of captured images, which creates another
illumination challenge for hyperspectral applications.
In summary, practical illumination sources, e.g., LED

and fluorescent, pose two main problems: (i) small power
emitted in the NIR range and (ii) variability of the emitted
power based on the color temperatures.
To partially mitigate the first problem, we propose using

the infrared illumination source that is already available on
recent phones. Specifically, as mentioned before, most recent
phones have NIR cameras for face identification. For such
NIR cameras to work in dark and low-light environments,
manufacturers equip their phones with an infrared illumina-
tion source, which emits infrared light, typically around the
932 nm wavelength. We utilize this source to complement the
ambient light sources in common everyday environments,
which are usually LED and fluorescent sources.

In Figure 6.d, we analyze the spectral characteristics of the
infrared light source on phones. Notice that, although the
infrared source does not cover most of the NIR range, as in
the case of the halogen source (Figure 6.a), it provides amuch-
needed power in that range. Our spectral reconstruction
model capitalizes on this NIR power to improve its robustness
under practical illumination conditions.
The variability of the emitted power from various light

sources affects the captured images, and it interacts with the
processing pipeline in the camera. We address this issue §3.5.

3.5 Handling Diversity in Illumination and
Camera Processing Pipeline

Regular cameras perform multiple processing steps on the
captured raw data to improve the visual quality of the final
RGB image. These steps include white balancing, demosaic-
ing, color transformation, and color rendering. All of these
steps are performed by the integrated signal processor (ISP),
which is part of the camera hardware. White balancing is the
most crucial step in the processing pipeline since it depends
on the sensitivity of the sensor and the scene’s illumination,
while other steps mostly apply standard functions.

Halogen HS camera
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Figure 7: Image normalization in MobiSpectral.

White balancing strives to make all objects in the scene ap-
pear as if they were captured under an ideal “white light”. It
consists of two steps. The first step estimates the camera sen-
sor’s response to the illumination in the scene and produces
the raw RGB channels. The second step applies linear scaling
to each of the RGB channels to adjust the illumination. The
camera sensor and the illumination estimation method vary
across camera manufacturers and models. Further, manufac-
turers usually employ various proprietary enhancements to
improve the image appearance. This indicates that the white
balancing, and the entire processing pipeline in general, per-
form non-linear operations that vary across cameras, which
may result in significant differences in the produced RGB
images. This complicates the training of the hyperspectral
reconstruction model and reduces its accuracy.
To handle the wide diversity in illuminations and phone

cameras, we propose abstracting the processing pipelines of
different cameras using a non-linear function. This function
maps the camera’s raw input data to a normalized output
format that is independent of the camera sensor sensitivity
and the scene’s illumination. The normalized format will be
used in both the training and inference of the reconstruction
model, thus enabling our model to produce accurate bands
for different cameras and illumination conditions.
Specifically, we design a deep-learning encoder-decoder

model for image normalization, which is illustrated in Fig-
ure 7. Our design is based on the recent model in [2]. Unlike
[2], however, we normalize all input images to a common
illumination setting, regardless of the specific details of the
camera(s) that captured these images and the likely different
illumination(s) that were present during capturing, whereas
the model in [2] tries to achieve the best white-balancing
results for each camera. In our experiments, we normalize
all images to the daylight illumination setting, which has
a color temperature of 5500 Kelvin (K). While our model
would work with any temperature, we chose daylight for
better visualization.
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Figure 7 summarizes the normalization process for the
ground truth images captured by actual hyperspectral cam-
eras and used in training the reconstruction model. Hyper-
spectral images must be captured using a halogen illumi-
nation source. In addition, hyperspectral cameras are not
designed to produce regular RGB images; rather, they pro-
duce many narrow bands. We synthesize RGB images from
the spectral bands. Then, the synthesized RGB images are
normalized and used with the ground truth bands to train
the reconstruction model.
The image normalization process is also used in the in-

ference stage. All RGB images captured by various phone
cameras and under diverse illuminations are normalized to
the common setting. The normalized RGB images are then
used with the NIR images to reconstruct their corresponding
hyperspectral bands using the pre-trained reconstruction
model. Note that we do not normalize the NIR images as
they are not impacted by illumination in the visible range.
It is important to notice that without our normalization

process, it would be difficult to train the reconstruction
model. This is because the model needs to be trained using
ground truth hyperspectral images captured in halogen illu-
mination, which is not common in everyday environments.
At the same time, the inference must be done on images
captured by mobile phones under arbitrary illumination.

4 IDENTIFYING ORGANIC FOODS
4.1 Limitations of Current Approaches
Organic farming prohibits the use of most synthetic fertiliz-
ers, pesticides, and genetically modified organisms, which
improves biodiversity and reduces the risk of exposure to
carcinogenic substances for farm workers [16]. The global
market of organic food has been steadily increasing over
the past few decades, recently reaching $120B USD annually
[1]. Organic foods come at higher prices than non-organic
ones, which may provide incentives for some producers or
distributors to cheat. Currently, producers need to follow
strict rules to obtain organic certificates, which allow them
to label their products as organic. Most countries have or-
ganizations that issue organic certificates and periodically
check the compliance of producers. Certification typically
involves dispatching human agents to farms, sending food
and soil samples to specialized labs for chemical and biologi-
cal analyses, and inspecting used fertilizers and pesticides.
This is a time-consuming and laborious process, which adds
a significant cost to the production of organic foods. This
increases the prices of organic foods, which, in turn, creates
more incentives for cheating.

In addition to cost, the scale of the organic certification or-
ganizations is limited. Further, policing the truthful labeling
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Figure 8: Spectral signatures of apples.

of organic foods is challenging, because of the multiple enti-
ties involved in the production, storage, and transportation of
foods. For example, some small growers and businesses may
make organic claims without realizing that they require cer-
tification. Illegal organic labeling can also occur outside the
production farms by, for instance, third parties involved in
the supply chains. Moreover, currently, there is no easy way
for end consumers or even merchants to check the validity of
organic claims other than trusting the organic labels, which
may not provide enough deterrence to potential offenders.

Multiple works in the literature proposed using spectrome-
ters operating in different spectral ranges to identify organic
foods. For example, Song et al. [30] used the 900–1700 nm
range to identify organic apples, Gupta et al. [24] used the
400–2100 nm range to identify organic apples, oranges, green
onions, and bell peppers, and Xiao et at. [28] used the 800–
2500 nm range to identify organic rice. Spectrometers are
expensive (tens of thousands of dollars) and bulky devices,
and they require careful calibration and strict illumination;
they are mostly used in specialized laboratories. In addition,
these spectrometers operate in spectral ranges not available
in the sensors of mobile phone cameras.

4.2 Spectral Analysis of Organic Foods
We conduct a feasibility study to test the hypothesis that
organic and non-organic foods can be distinguished utiliz-
ing spectral analysis in the 400–1000 nm range, which is
the range available in phone cameras. This is unlike prior
works, e.g., [24, 28, 30], that used specialized spectrometers
operating in wider spectral ranges, as discussed above.
First, we note that multiple studies, e.g., [8, 16, 35], have

analyzed the chemical and biological characteristics of or-
ganic foods and compared them to non-organic ones. For
example, it has been shown that organic fruits and vegetables
have lower concentrations of nitrate and higher concentra-
tions of antioxidants, vitamins, minerals (e.g., iron, magne-
sium, phosphorous, and zinc), and bioactive compounds (e.g.,
carotenoids and tocopherols).
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Figure 9: Accuracy of identifying organic fruits using
spectral signatures in the 400–1000 nm range.

Second, light absorption, scattering, and reflection are
affected by the chemical composition and biological struc-
tures of foods. For example, water, protein, and pigments
absorb light at different wavelengths. Similarly, structural
properties, such as density, particle size, and shape, affect the
scattering of light. This means that various light wavelengths
will undergo different scattering and absorption behavior as
they reflect from biological materials. Since hyperspectral
cameras provide detailed information across many wave-
lengths, they can potentially detect various biomarkers that
identify organic foods in a non-destructive manner.
We start with a simple subjective analysis to explain the

idea. We captured multiple hyperspectral images of organic
and non-organic apples using a hyperspectral camera that
operates in the 400-1000 nm range (the camera model is
Specim IQ, and it captures 204 bands). We illuminated the
scene using a halogen light source as recommended by the
manufacturer of the camera. We plot the spectral signatures
of two sample apples (one organic and one non-organic) in
Figure 8 for illustration. Recall that a spectral signature is
the amount of light energy reflected by an object across the
different wavelengths in the spectral range for each pixel.
Typically, the signature is averaged across multiple neighbor-
ing pixels formore robustness. In this example, the signatures
are averaged across the rectangular areas shown in the left
part of Figure 8, which are 8 by 8 pixels.
Two observations can be made on Figure 8. First, the sig-

natures of organic and non-organic apples mostly overlap
in the visible range, which is expected as the two apples
have similar colors. Second, there are noticeable differences
between the two signatures, especially beyond the visible
range. Some critical areas are magnified in the two small
sub-figure inlets on the right. The 650–750 nm range is af-
fected by the chlorophyll concentration, while the 900–1000
nm range captures the variations in the so-called C-H bond
stretching, which relates to the sugar content in apples [34].
Next, we present a quantitative analysis of a large and

diverse dataset. We captured 346 hyperspectral images of five
fruits: apples, kiwis, tomatoes, strawberries, and blueberries.
These fruits have different textures, colors, shapes, sizes, and

Capturing Area

Halogen Lamp

Hyperspectral Camera

LED Lamp

Illumination Setup

Mobile Devices
Fluorescent Lamp

Figure 10: The setup used in our experiments.

chemical compositions. Half of the images were for organic
fruits. All images were captured using our hyperspectral
camera under ideal (halogen) illumination. Each image is a
cube of 204 bands. More details are given in §5.1. We created
spectral signatures, similar to the ones in Figure 8, for each
hyperspectral image. We then designed and trained a simple
neural network classifier to identify organic fruits using
spectral signatures. The classifier is a Multilayer Perceptron
(MLP) with three fully connected hidden layers that have
200, 150, and 100 neurons, respectively.

We plot the accuracy of classifying different organic fruits
in Figure 9, which shows an accuracy between 91–96%. This
accuracy is comparable to ones reported in prior works, e.g.,
[24, 28, 30], that used expensive spectrometers working in
wider and more specialized spectral ranges. We note that the
relatively lower accuracy for identifying organic strawber-
ries and blueberries is mostly due to their small sizes.
In summary, the analysis in this section shows that hy-

perspectral imaging in the 400–1000 nm range can be used
in identifying organic foods. However, the analysis was con-
ducted with a high-end hyperspectral camera under perfect
illumination conditions. MobiSpectral strives to achieve com-
parable performance using low-cost mobile phones working
in common illumination conditions.

5 EVALUATION
We first show the accuracy of the reconstructed bands by
MobiSpectral compared to the ground truth, which demon-
strates the generality of MobiSpectral and the potential of
using it in designing novel mobile applications. Then, we
assess the accuracy of identifying organic foods using Mo-
biSpectral. Finally, we analyze the performance impact of
various components of MobiSpectral.

5.1 Experimental Setup and Datasets
Hardware Setup. The setup of our experiments is shown in
Figure 10. We use a high-end hyperspectral camera (model:
Specim IQ and costs about $25K), which is a line-scanning
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Figure 11: Samples from the mobile images dataset.

camera with a CMOS sensor operating in the 400–1000 nm
range. It captures 204 bands with a spectral resolution of
about 3nm. The camera is portable and has internal storage
(32 GB) to save the captured data. It also has a mini display to
help in focusing the camera lens before capturing. Captured
images are later transferred to a workstation for processing.
The camera comes with software to visualize the data.

In addition, we use two different mobile phones (Google
Pixel 4XL and OnePlus 8 Pro) in the experiments as well as
multiple diverse light sources, including halogen, LED, and
fluorescent (CFL) sources.
Hyperspectral Images Dataset. We collected a total of
346 hyperspectral images of five different fruits using a halo-
gen light source. These fruits have diverse characteristics in
terms of textures, colors, shapes, sizes, and chemical compo-
sitions. Specifically, the dataset has images of: (i) 246 apples
of various types (e.g., gala and ambrosia), (ii) 40 kiwis, (iii) 20
grape tomatoes, (iv) 20 strawberries, and (v) 20 blueberries.
For each type of fruit, we captured 50% of the images for
organic samples and the other 50% for non-organic ones.
We captured each fruit individually and in groups of several
pieces of the same type. In addition, we conducted our ex-
periments over a long period of time (few months). Some
fruits were kept for multiple weeks, and we took images
on successive days. Further, the fruits were purchased from
several stores and at different times throughout our study;
that is, the fruits came from different sources/farms, and they
had diverse freshness/ripeness levels. Thus, we believe our
dataset is diverse and representative of realistic situations.

Each hyperspectral image has 204 bands, where each band
is a grey-scale image with a resolution of 512 x 512 pixels.
That is, this dataset has 70,584 bands of different fruits. This
is a significant dataset in the hyperspectral imaging domain.
Capturing hyperspectral images requires camera calibration
and strict illumination and is time consuming; each image
takes about 2 min to capture since the hyperspectral camera
needs to scan the scene linearly (mechanically).
We synthesize the RGB image corresponding to each hy-

perspectral image using the software that comes with the
camera.We then normalize the RGB images using themethod
in §3.5. The hyperspectral images dataset is used to train and

evaluate the accuracy of the reconstruction model, as it has
ground truth bands for each associated RGB image.
Mobile Images Dataset. To evaluate the accuracy of iden-
tifying organic foods using MobiSpectral in real environ-
ments, we collected another dataset using the Google Pixel
4 XL phone. This dataset has pairs of RGB and NIR images.
We note that we could not use other common phones, e.g.,
iPhones, as they currently do not allow public access to their
NIR modules.
We consider multiple illumination settings while collect-

ing this dataset: halogen, LED, fluorescent, and arbitrary. In
the arbitrary setting, we do not control the light source at all.
Rather we allow a mixture of sources, including the sunlight
coming through the windows and the light bulbs installed
in the ceiling of our lab. The arbitrary setting also contains
images captured outdoors in direct sunlight as well as in the
shade. In addition, we vary the capturing distance between
20 and 50 cm, as this is the operating range of the phone’s
NIR camera. Specifically, for each fruit sample, we choose an
illumination setting and then capture it at multiple distances.
Then, we repeat for a different illumination. Then, the whole
experiment is repeated for another sample.
The mobile images dataset has a total of 900 images of:

(i) 400 apples, (ii) 90 kiwis, (iii) 90 grape tomatoes, (iv) 126
strawberries, and (v) 124 blueberries. Half of the images are of
organic fruits. Samples of this dataset are shown in Figure 11,
demonstrating the diversity of objects, illumination settings,
and capturing distances. The fruits in this dataset are totally
different from the ones in the hyperspectral images dataset.
The images in this dataset are normalized using the method
in §3.5 to mitigate the effect of different illuminations. This
dataset is not used in training the reconstruction model.

5.2 Accuracy of the Reconstructed Bands
We analyze the accuracy of the reconstructed bands by com-
paring them against the ground truth ones. For this compari-
son to be accurate/fair, the reconstructed and ground truth
bands must be taken under the same conditions: camera sen-
sor characteristics, lighting source, and capturing distance
and angle. To achieve this, we use the hyperspectral camera,
which produces actual hyperspectral bands as well as their
corresponding RGB images. We apply our reconstruction
model to those RGB images to reconstruct 𝑁 bands. Then,
we compare each of the 𝑁 reconstructed bands with its cor-
responding ground truth using multiple metrics. For the
experiments in this subsection and §5.3, we fix 𝑁 = 68 bands,
which means the distance between the reconstructed bands
is only 9 nm, providing a fine-grained spectral resolution for
most mobile applications. Previous spectral reconstruction
works, e.g., [6], also used 𝑁 = 68. In §5.4, we analyze the
impact of varying 𝑁 .
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MRAE RMSE SAM SID SSIM PSNR

Apples 0.096 0.021 0.063 0.005 0.985 34.3
Kiwis 0.082 0.026 0.053 0.006 0.975 31.8
Blueberries 0.111 0.023 0.066 0.009 0.972 33.4

Average 0.096 0.023 0.060 0.006 0.977 33.2

Table 1: Average accuracy of the reconstructed bands
relative to the ground truth.

We note that images captured by regular RGB cameras,
e.g., ones on phones, do not have corresponding ground truth
bands, and thus cannot be used in this comparison. Even if we
were to capture the same scene with two cameras (phone and
hyperspectral) simultaneously, the comparison would still
be inaccurate. This is because the sensor sensitivity function,
𝐶𝑛 (𝜆𝑛), differs across cameras, and as shown by Equation (1),
𝐶𝑛 (𝜆) impacts the resulting pixel values.𝐶𝑛 (𝜆) varies across
cameras and manufacturers, and it is not publicly available.

We use the following performance metrics in the analysis,
which are commonly used in hyperspectral imaging works.
Due to space limitations and since they can easily be found
in prior works, we remove the equations of these metrics.

• Mean Relative Absolute Error (MRAE): measures the relative
absolute error between the reconstructed and ground truth
bands.

• Root Mean Square Error (RMSE): measures the second-order
error between the reconstructed and ground truth bands.

• Spectral Angle Matching (SAM): measures the difference
between two spectral signatures by computing the angle
between them in the geometrical space [21].

• Spectral Information Divergence (SID): measures the differ-
ence between the probability distributions of two spectral
signatures [10].

• Peak Signal to Noise Ratio (PSNR): measures the quality of
the reconstructed bands relative to the ground truth.

• Structural Similarity Index (SSIM): measures the similarity
of the reconstructed bands to the ground truth.

Performance on Seen Fruits. We first consider training
the reconstruction model only on three fruits: apples, kiwis,
and blueberries. We divide the hyperspectral images of these
three fruits into three disjoint partitions: 70% for training,
15% for validation, and 15% for testing.

We summarize the average results for all metrics in Table 1,
which were computed on the testing partition of the dataset.
The table shows that all error-related metrics (MARE, RMSE,
SAM, and SID) are close to zero, which indicates the very
close similarity of the reconstructed and ground truth bands.
In hyperspectral imaging applications, SID and SAM are
typically the most important metrics, because they measure
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Figure 12: Accuracy of the reconstructed bands. Error
metrics in (a)-(d) are close to zero for most bands. PSNR
and SSIM metrics in (e) and (f) indicate good quality.

the similarity between the given two spectra. SID ranges be-
tween 0 and 1.0 and SAM between 0 to 𝜋 . As the table shows,
the average values of the SID and SAM metrics across all
fruits are 0.006 and 0.06 radian (3.44 degrees), respectively.
These are very small error values, which means that any
hyperspectral application, e.g., classification or clustering,
that uses our reconstructed bands will produce almost the
same accuracy as if it were using bands captured by real hy-
perspectral cameras. Table 1 also shows that the SSIM metric
is close to 1, which means that the reconstructed and ground
truth bands have almost identical image structures. Further,
the PSNR is consistently higher than 30 dB, indicating that
the distortion level in the reconstructed bands is small.

We further analyze the accuracy of each band and present
the results for all metrics in Figure 12. The figure confirms
the high accuracy of all bands. We note that the PSNR values
close to 400 nm (Figure 12.e) are relatively high because
pixels in this range are quite dark, and both the reconstructed
and ground truth bands do not show many details. We also
note that bands around 400 nm and 700 nm have slightly
higher error levels than other bands. This is because these
bands are in the boundary regions in the spectrum: 400 nm
is the transition from the ultraviolet (UV) range to the visible
range, and 700 nm is the transition from the visible to the
NIR range. And the reflected signals around these transition
points are typically weak because of the sensor sensitivity.
Sample Visual Results. In Figure 13, we present samples
of the reconstructed and ground truth bands and plot the dif-
ference (error) between corresponding bands as a heat map.
The figure demonstrates the quality of the reconstructed
bands and their similarity to the ground truth ones. The fig-
ure also shows that the error is fairly small, especially in the
relevant areas that have objects (apples). Recall that the test-
ing partition of the dataset may contain different numbers
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MRAE RMSE SAM SID SSIM PSNR

Tomatoes 0.395 0.115 0.218 0.096 0.739 18.8
Strawberries 0.408 0.138 0.188 0.067 0.732 17.3

After Transfer Learning

Tomatoes 0.063 0.015 0.043 0.004 0.983 36.9
Strawberries 0.124 0.026 0.073 0.011 0.959 31.8

Table 2: Accuracy of the reconstructed bands relative
to the ground truth for two fruits not seen during the
training, before and after transfer learning.

and arrangements of fruits than the training and validation
partitions. Yet, the model was able to produce accurate bands.
Performance on Unseen Fruits.We test the reconstruc-
tion model on two fruits (tomatoes and strawberries) that
were not seen at all during the training of the model. We
present the results in the top part of Table 2, which shows
that the error metrics are still small, although they are higher
than the ones in Table 1. For example, the average values of
SID and SAM are around 0.082 and 0.20 radian (or 11 degrees),
respectively, which indicate that the produced spectral bands
would still be useful for hyperspectral applications; our re-
sults on identifying organic fruits in §5.3 confirm this. The
intuition behind why our reconstruction model worked on
fruits that were never seen in training is that the internal
structures of most fruits and vegetables are composed of
similar chemical components, and thus they will likely have
similar spectral characteristics.

We note that the PSNR and SSIM metrics are much lower
in this case because tomatoes and strawberries have quite
different shapes and colors than the fruits the model was
trained on (apples, kiwis, and blueberries). PSNR and SSIM
mostly model external features, which are less important
in hyperspectral applications. The internal structures and
compositions of fruits are captured by the variations across
spectral bands, which are better modeled by SID and SAM.
Transfer Learning. Next, we use transfer learning to fine-
tune the reconstruction model on tomatoes and strawberries.
We freeze all layers in the model except the last decoder layer
and train only on a small number of images (20 tomatoes
and 20 strawberries). The results, presented in the lower two
rows of Table 2, show that all performance metrics have
been significantly improved. That is, our model can easily
be fine-tuned for new fruits to increase its accuracy further.
In summary, the results in this section show that our

reconstructionmodel produces accurate hyperspectral bands,
and it can easily be fine-tuned for new fruits.

5.3 Accuracy of Identifying Organic Foods
We developed a mobile application to identify organic foods
and deployed it on two phones: Google Pixel 4 XL and One-
Plus 8 Pro; a screenshot is shown in Figure 14.a. The NIR
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Figure 13: Similarity of the reconstructed and ground
truth bands. The third row shows the differences be-
tween the corresponding images in the top two rows.

camera on Google Pixel is front facing, while on OnePlus, it
is back facing. To facilitate capturing, especially with front-
facing cameras, the application captures the RGB and NIR
images after a short (3-sec) delay from clicking on the cap-
ture button. The application then shows a bounding box
from which the spectral signatures will be created. Users
can change the location of the box by tapping anywhere in
the image. The area of the bounding box is divided into 16
equal size zones. We compute one spectral signature from
each zone across all bands. The application processes all sig-
natures and outputs Organic or Non-Organic. It also allows
users to inspect bands and visualize spectral signatures.

To assess the accuracy of identifying organic fruits using
MobiSpectral, we use the reconstruction model trained on
images of only three fruits (apples, kiwis, and blueberries)
from the hyperspectral images dataset. We test the accuracy
using the mobile images dataset that was captured under
diverse and realistic illumination conditions and at different
distances. The mobile images dataset was not used in the
training of the model and has totally different fruit samples.
We use the neural network classifier mentioned in §4.2,

and we train it for each fruit. We divide the mobile images
dataset into two partitions: 80% for training and 20% for
testing. Then, we use 4-fold cross-validation to divide the
training data into train-validation splits, and we run the clas-
sifier four times and compute the average precision, recall,
and accuracy on the test data.
We report the accuracy in Figure 14.b for five different

fruits. The results show that MobiSpectral is fairly accurate
in all cases. Specifically, MobiSpectral can identify organic
apples with an accuracy of 93% and kiwis with an accuracy
of 94%, from images captured by regular phones. Although
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Figure 14: Analysis and performance of MobiSpectral.

blueberries are small and have irregular shapes, MobiSpec-
tral was able to identify whether they are organic with an
accuracy of 89%. In addition, MobiSpectral was not trained
on organic tomatoes and strawberries. Yet, it was able to iden-
tify them with accuracies of 92% and 90%, respectively. As
explained in §5.2, while the reconstructed bands have some
visual distortions (shown by PSNR and SSIM) for the case of
unseen fruits that have quite different external shapes and
structures, MobiSpectral was able to create accurate spec-
tral signatures (quantified by SID and SAM). And since the
performance of applications mostly relies on spectral sig-
natures, the accuracy of identifying organic tomatoes and
strawberries was not significantly affected.

5.4 Analysis of MobiSpectral
Processing Time and Memory Usage. The average pro-
cessing time (measured across more than 100 images) of Mo-
biSpectral is 2.5 sec on Google Pixel and 2.2 sec on OnePlus
Pro. Most of the time is spent in the spectral reconstruction
step; all other steps took only a few msec. MobiSpectral used
less than 300MB of memory on both phones.
Ablation Study. We analyze the performance contributions
of themain components of MobiSpectral: spectral reconstruc-
tion and image normalization. The reconstruction model is
trained to predict hyperspectral bands from the input RGB
and NIR images, whereas image normalization transforms
all images to a common reference to mitigate the effects of
different capturing environments.
First, we do not use the reconstruction model at all. We

only use the RGB and NIR images captured by the phone
to identify organic apples. Then, we add the reconstruction
model but do not use the image normalization step. Finally,
we use all components of MobiSpectral. We also consider
identifying organic fruits using only RGB images as a base
reference. Our results, shown in Figure 14.c, confirm the im-
portance of both the spectral reconstruction and image nor-
malization components. The first provides the fine-grained
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Figure 15: Generality ofMobiSpectral in reconstructing
different number of spectral bands.

bands from which we create accurate spectral signatures,
which help in the identification process. The second adds
robustness to the model by handling various illuminations.
Impact of capturing distance. The NIR camera has a lim-
ited operating range, typically between 10 and 50 cm. We
analyze the impact of the capturing distance on the accuracy
of the produced spectral signatures by MobiSpectral. We
capture an apple at five distances: 10, 20, 30, 40, and 50 cm,
and we create the spectral signature in each case. From our
experiments, we found out that the ideal capturing distance
for the NIR camera is around 30 cm. Thus, we use it as a ref-
erence distance. Then, we measure the deviations (using the
SIDmetric) of signatures created at other capturing distances
relative to the reference distance. Our results (the figure is
omitted due to space limitations) show that the SID value is
very small (between 0.02 and 0.06) for capturing distances in
the range of 20 to 40 cm. The signatures are distorted when
capturing at 10- and 50-cm distances, where the SID values
are 6.75 and 4.18, respectively. This is because the strength
of the NIR signal starts to decay rapidly beyond 50 cm, and
when the phone is too close to the object (10 cm or less), it
does not capture all reflected NIR signals.
Generality of MobiSpectral.MobiSpectral is designed to
be flexible to support various applications. We demonstrate
that MobiSpectral can accurately reconstruct different num-
bers of bands 𝑁 , and we analyze the associated costs in
each case. As mentioned before, our hyperspectral camera
captures 204 bands, which represent the ground truth. We
sample these bands with a factor 𝑥 , where 𝑥 ∈ [1, 2, 3, . . . , 10].
𝑥 = 1 means that we consider each band, that is, 𝑁 = 204.
When 𝑥 = 2, we sample every other band, i.e., 𝑁 = 102, and
so on. Then, we train ten different reconstruction models,
one for each value of 𝑁 . We reconstruct the bands in each
case and compare them against their corresponding ground
truth ones using the SAM and SID metrics.
The results for the SAM metric are shown in Figure 15.a;

SID results are similar. For each value of 𝑥 , we display a
boxplot summarizing the distribution of the SAM metric
computed from all bands. We show only a few samples to
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avoid cluttering the figure. The results demonstrate that
MobiSpectral consistently produces accurate bands in all
cases. For example, the maximum SAM is less than 0.1 radian
(or 5.7 degrees) for all values of 𝑥 .

Reconstruction models that produce a larger number of
bands contain more trainable parameters, and thus they take
longer to train. In Figure 15.b, we report the training and
inference times for different values of 𝑥 , which, as expected,
decrease as the model reconstructs fewer bands.
Deployment Options and Limitations.MobiSpectral is
designed for end users to assess the quality of their foods.
Currently, it only supports verifying organic claims. But it
can be extended for other applications, such as determining
fat contents in meats. We also believe that MobiSpectral can
be of interest to grocery stores, restaurants, and producers of
organic foods. For example, grocery stores can perform fast
analysis of samples from food shipments, whereas expensive
methods can be used in suspicious cases. Restaurants that
use organic products can quickly check the claims of new
suppliers. Some organic food suppliers may promote the use
of MobiSpectral to protect their products and fight cheating.
MobiSpectral makes use of NIR cameras, which exist in

many phones, but not all of them. In addition, some manufac-
turers, e.g., Apple and Samsung, currently do not allow appli-
cation developers to access their NIR modules. Furthermore,
the reconstruction model in MobiSpectral requires hyper-
spectral images for training. This can partially be mitigated
by using our pre-trained models and possibly fine-tuning
them via transfer learning with a small number of images.

6 RELATEDWORK
Mobile Applications. Several novel applications have been
proposed for mobile devices capitalizing on their increasing
processing and sensing capabilities, e.g., [22, 27, 38]. Mao
et al. [22] present an acoustic imaging approach for mobile
devices to help imaging in dark environments and in pres-
ence of obstructions. Prakash et al. [27] enable real-time
augmented reality on mobile devices by estimating the il-
lumination of the scene. Zhang et al. [38] use phones as
part of a home-based rehabilitation system, utilizing vari-
ous sensors for real-time analysis of human activities. The
ideas proposed in this paper bring features of hyperspectral
imaging to mobile devices, which can enable many more
innovative applications on such devices.
Recently, multiple works proposed mobile applications

to detect food fraud, e.g., [19, 32, 36]. LiquidHash [32] de-
tects adulteration in bottled liquids by tracking the shape
and movement of air bubbles that form inside the bottles. Vi-
Liquid [19] identifies various liquids by measuring their vis-
cosity coefficients using the built-in accelerometer in phones.
CapCam [36] estimates the surface tension of liquids and

uses it to identify water contamination and alcohol concen-
tration. These works rely on inspecting various physical
properties of liquids, and they do not apply to solid foods.
Hyperspectral Imaging.Multiple prior works have consid-
ered various aspects of capturing and processing hyperspec-
tral images. For example, Goel et al. present HyperCam [17],
which captures and adaptively prioritizes frames based on
the application’s needs. Arab et al. [3] capture multiple hy-
perspectral bands and use them with RGB images to improve
the accuracy of face-based authentication systems. These
works require special setups that are not possible for mobile
applications. For example, HyperCam requires a special illu-
mination source that has 17 LEDs in different wavelengths.
Recent works, e.g., [7, 18, 20, 25, 31], have considered

obtaining some aspects of hyperspectral imaging without
expensive hyperspectral cameras. However, unlike MobiS-
pectral, all prior works require additional hardware, change
the camera system, and/or require extensive calibration. For
example, Baek et al. [7] propose adding a prism in front of
the lens of a regular RGB camera. Prisms are expensive and
highly engineered components. Kim et al. [20] use color fil-
ters to capture hyperspectral images, which requires chang-
ing the camera hardware. He and Wang [18] reconstruct 16
bands from RGB images using theWiener estimationmethod.
But their method involves complex calibration using an ex-
pensive snapshot hyperspectral camera and reference color
charts, and it assumes a fixed illumination setting.

7 CONCLUSIONS AND FUTUREWORK
Hyperspectral imaging systems offer rich information and
enable many important applications. They, however, are ex-
pensive, complex, and require strict illumination conditions;
thus, they are not widely used for end-user applications. We
proposed MobiSpectral, which enables hyperspectral appli-
cations on phones without requiring any hardware changes.
MobiSpectral takes regular RGB and near-infrared (NIR) im-
ages captured by phones and converts them to many hyper-
spectral bands covering the entire visible and NIR spectral
range (400–1000 nm). We presented methods to make MobiS-
pectral robust and to function in real environments with lim-
ited and diverse illuminations.We demonstrated the accuracy
of the produced bands by comparing them against ground-
truth ones captured by a high-end hyperspectral camera for
a large dataset. In addition, we developed a proof-of-concept
prototype of MobiSpectral on Android and showed that it
can identify organic foods with high accuracy.
MobiSpectral can potentially be used for many applica-

tions, including determining: fat contents in meat (e.g., for
steak grading), ripeness degree of fruits (e.g., for selecting
avocados), sugar and fiber contents of vegetables (e.g., for
sorting potatoes), which we will consider in our future work.
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