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ABSTRACT
Reflections in videos are obstructions that often occur when videos
are taken behind reflective surfaces like glass. These reflections re-
duce the quality of such videos, lead to information loss and degrade
the accuracy of many computer vision algorithms. A video contain-
ing reflections is a combination of background and reflection layers.
Thus, reflection removal is equivalent to decomposing the video into
two layers. This, however, is a challenging and ill-posed problem as
there is an infinite number of valid decompositions. To address this
problem, we propose a user-assisted method for video reflection re-
moval. We rely on both spatial and temporal information and utilize
sparse user hints to help improve separation. The proposed method
removes complex reflections in videos by including the user in the
loop. The method is flexible and can accept various levels of user
annotations, within each frame and in the number of frames being
annotated. The user provides some strokes in some of the frames
in the video, and our method propagates these strokes within the
frame using a random walk computation as well as across frames
using a point-based motion tracking method. We implement and
evaluate the proposed method through quantitative and qualitative
results on real and synthetic videos. Our experiments show that
the proposed method successfully removes reflection from video
sequences, does not introduce visual distortions, and significantly
outperforms the state-of-the-art reflection removal methods in the
literature.
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1 INTRODUCTION
With the popularity of digital devices and videography, videos have
become one of the most important information carriers. Users of
such devices are encountered with video capturing conditions that
can be far from optimal. For example, when taking videos behind
glass windows inside a building or car, reflections from indoor
objects may obstruct the outdoor scene of interest. These reflections
reduce the quality of such videos and decrease the visibility of target
objects.

Removing reflections from videos results in clearer and better-
quality videos, which is important for professional photographers
as well as normal users. In addition, cameras in self-driving cars
are often mounted behind glass windshields causing reflections to
exist in the captured scene. This leads to poor understanding of the
surrounding environment. Furthermore, removing reflections is an
important pre-processing step for many video processing applica-
tions and systems. For example, one of the most common tasks in
video surveillance applications is classifying and tracking objects.
Reflections greatly degrade the localization and tracking accuracy
of such algorithms. Robust systems for scene understanding, e.g.,
robots and self-driving cars, require removing reflections to fac-
tor out the noise in their visual representations and increase their
accuracy.

A video containing reflections can be viewed as a combination of
two layers: background layer and reflection layer. Thus, removing
reflection artifacts from the input video is equivalent to decompos-
ing the video into two layers. This an ill-posed problem, as there
could be infinite number of valid decompositions for it. Most cur-
rent methods for reflection removal are targeted towards single
images. Applying such methods on videos frame by frame results
in temporal flickering and incomplete separation. A recent work on
videos [9] utilizes temporal information to overcome the problem
of temporal flickering. However, this work assumes that the relative
motion of the two layers is non-dynamic and easily distinctive. This
assumption leads to incomplete separation in many natural scenes
where the motions in the different layers are complex and dynamic.

We propose a method to remove reflections from videos with
complex motion and reflection patterns. The proposed method
incorporates simple user hints with the temporal information avail-
able naturally in videos using a computational approach. Ourmethod
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uses motion cues to separate the background and reflection lay-
ers. Sparse user annotations (hints) are used to improve the layer
separation, especially in videos with complex motions. Reflection
removal in videos is a complex problem, because reflection can
occur in numerous scenarios, e.g., indoors, outdoors, and various
lighting conditions. Fully automated methods can succeed only
in limited cases, where the reflection and background layers have
simple planar motions and videos do not have weak features (e.g.,
no transparent or low color areas). Our proposed method handles
complex, but common, reflections by including the user in the loop.
The method is flexible and can accept various levels of user an-
notations, within each frame and in the number of frames being
annotated. Within each frame, the user provides some strokes, and
we propagate these strokes within the frame using a random walk
computation.We annotate only one frame in eachwindow of frames
(in our experiment, the window is 30 frames). We also propagate
the annotations across frames using a point-based motion tracking
method.

We have implemented the proposed method and compared it
against the most recent video reflection removal method in [9] as
well as the state-of-the-art image reflection method in [2], after
extending it to support video sequences. We captured and collected
videos from prior works in various natural scenarios to test the
proposed method in different conditions. The dataset has videos
shot indoors, outdoors, in mobile environments, and on different
reflective surfaces. Natural scenes with reflections have no ground
truth decomposition. Thus, we created synthetic videos that mimic
the behavior of reflections to provide quantitative analysis between
our method and prior works. Our performance analysis shows that
our method significantly improves the separation output measured
both qualitatively and quantitatively.

The rest of this paper is organized as follows. We summarize the
related work in Section 2. We formally define the video reflection
removal problem and present our solution for it in Section 3. We
describe our experimental evaluation in Section 4, and we conclude
the paper in Section 5.

2 RELATEDWORK
The problem of removing reflections has been explored extensively
in the image domain under several setups. Whereas the problem of
video reflection removal has received less attention. We review the
related literature on image as well as video reflection removal.

Reflections in natural images are a particular case of layer com-
position, where two layers are mixed together through addition
forming the final image. Traditional single image reflection removal
handles the ill-posed nature of the problem by relying on strong
assumptions. For example, Levin et al. [5] use statistics of derivative
filters and edge detectors in natural sequences as image priors to
decompose the image into two layers. Li and Brown [7] assume that
both the background and the reflection layers have sparse gradients
where the latter is much smoother. Shih et al. [12] utilize sparse
image statistics and encode them as a Gaussian mixture model.
They further constrain the solution using the ghosting artifact as-
sumption. Arvanitopoulos et al. [1] suppress reflection artifacts
by constraining the number of non zero gradients on the output.

However, these assumptions can only cover a limited number of
natural scenarios.

Fan et al. [2] explore image reflection removal using deep neural
networks. They introduce two sub-networks: one for predicting
the edge map of the background layer and another to reconstruct
the background layer by adopting this edge map. However, this
technique is limited only to blurring reflection artifacts. In scenarios
with strongly textured reflections, the edge prediction sub-network
fails and ruins the background layer reconstruction. Wan et al. [16]
use gradients reconstructions as hints to recover the details of the
background. Zhang et al. [22] utilize perceptual and adversarial
losses to recover the visual perception and properties of the sepa-
rated images. Wen et al. [18] use a non-linear synthesis model with
generative adversarial network (GAN) to remove reflections from
single images.

All the previously mentioned approaches are designed to remove
reflections from one image. In this paper, we focus on recovering
the background and reflection layer in a video sequence. Simply
extending the previous techniques of images to videos, such as
applying the method on a frame by frame manner, does not provide
accurate results as it leads to incomplete separation and temporal
flickering. To overcome these issues, Nandoriya et al. [9] propose
an extension of the work in [19] by formulating an initialization
and optimization strategy taking into account the temporal aspects
to remove reflections from videos. This has shown to overcome the
temporal flickering issue. However, this approach assumes that the
two layers have simple non-dynamic motion that is easily distinc-
tive for each layer. For example, if two objects in one layer move
with different speeds and directions, the algorithm assigns each
object to a different layer instead of both objects to the same layer,
failing to provide an accurate separation. Furthermore, the method
in [9] utilizes motion trackers that fail to track weak features with
low color information often found in natural sequences with re-
flections. For example, if a reflection part is blurry with low color
information, their method fails to track this feature and thus it
remains in the recovered background layer.

In this work, we extend the method in [9] so that it can handle
common reflections without relying on specific motion constraints
that do not work on the general case of reflections. We overcome
the limitations associated with motion estimation by incorporating
minimal user assistance. Our method shows good separation results
in videos with complex reflection texture and dynamic motion.

3 PROBLEM DEFINITION AND PROPOSED
METHOD

3.1 Problem Definition
We mathematically model a video with reflections as a composition
of two layers as shown in Eq. (1), where 𝐼𝑡 is the video frame, 𝐵𝑡 is
the background layer and 𝑅𝑡 is the reflection layer at time 𝑡 .

𝐼𝑡 = 𝐵𝑡 + 𝑅𝑡 . (1)

Making use of the temporal relationship between frames in
videos, we define a motion field𝑊 𝐵

𝑡,𝜌 as the background layer warp-
ing motion field from frame 𝜌 to frame 𝑡 . Similarly,𝑊 𝑅

𝑡,𝜌 is defined
as the reflection layer warping motion field from frame 𝜌 to frame
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Figure 1: Overview of the proposed method. We start by estimating the motion fields for each layer with the help of sparse
user annotations. We then utilize the motion fields to stabilize each layer and provide initial estimates for the background
and reflection frames. Lastly, the initial estimates pass through an optimisation step to produce the final separated outputs.

𝑡 . Thus, the video compositing equation can be defined as:

𝐼𝑡 =𝑊 𝐵
𝑡,𝜌𝐵𝜌 +𝑊 𝑅

𝑡,𝜌𝑅𝜌 , 𝑡 = 1, 2, . . . , 𝑁 . (2)

The problem addressed in this paper can be stated as follows:
Given an input video of length 𝑁 frames that is a mixture of back-
ground and reflection layers, we would like to decompose this video
into two separate layers each with 𝑁 frames. Clearly, there is an
infinite number of valid decompositions which makes this problem
severely ill-posed, and thus challenging to solve.

3.2 Overview of the Proposed Method
The idea of the proposed video reflection removal method is to use
motion cues to separate the background layer from the reflection
layer. In addition, since motion in natural videos are quite complex,
we utilize sparse user hints in the layer separation.

A high-level illustration of the proposed method is shown in
Figure 1. We start by estimating the motion of each layer with
the help of sparse user hints. We utilize the estimated motion to
stabilize both layers and provide initial separation.We then perform
an optimization process on the initially separated layers to provide
the final output for each layer.

As detailed in Section 3.3, motion initialization consists of two
parts, computing motion tracks and then clustering them. Motion
initialization is actually quite difficult to perform, because motions
of objects in the background and reflection layers can overlap and/or
obstruct each other, which can lead to incomplete layer separation.
Thus, we propose a user-assisted motion initialization method that
improves the accuracy of the estimated motion tracks. This is done
with the help of an intuitive graphical user interface that improves
motion tracking by allowing the user to annotate new tracks and
in turn improves the clustering accuracy of these tracks.

After motion initialization, motion fields are known for both
layers. In Section 3.4, we describe how we use a sliding window and
background motion fields to stabilize the background motion in
this window. This results in a stable background layer that can be
separated by temporal filtering. Thus, providing an initial estimate
of the first background frame in this window. The corresponding
reflection frame is then estimated as the residual. We shift the
window frame by frame to estimate the initial layer separation
across all frames.

Figure 2: Top: Two frames from a video shot, from the
human motion database HMDB [4]. Bottom: Clustering of
point tracks indicating regions with similar motion.

Finally in Section 3.5, we describe the optimization process to
improve the initial estimates and provide the final separated layers.
The optimization function consists of three terms: data term, layer
prior term, and a smoothness term. The data term is to make sure
that the recovered layers satisfy the video compositing model in
Eq. (2). The layer prior term imposes labeling constraints on the
initially estimated layers. The smoothness term is used for the
spatial smoothness of the recovered layers.

In the following subsections, we describe the details of each step
in our method.

3.3 User-assisted Motion Initialization
The objective of the user-assisted motion initialization is to esti-
mate the two dominating motions in the video. We achieve this by
computing motion tracks and clustering them. Specifically, motion
tracks have been shown before to help in classifying objects with
different motions, e.g., in [10]. To illustrate this concept, we show
an example in Figure 2. In this figure, a track is represented by a
colored dot and defined as a point in the 2-dimensional space of
a scene tracked over a number of frames. The figure shows two
frames from a video sequence where the person in the scene has a
different motion than the background. This is shown by the cluster-
ing of the green dots relative to the red dots. Thus, motion tracks
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Figure 3: An example of dead tracks in videos with reflec-
tions. The helmet of the bicycle driver was obstructed by the
reflection layer causing the track to die at frame 12.
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Figure 4: An example of weak features in videos with reflec-
tions. The tracker cannot capture the movement of the per-
son in the reflection layer. Thus, when zooming on the boxes
in the bottom row, no tracks (blue dots) are found.

over a sequence of frames can, in principle, differentiate among
objects with different motions.

As described before, a video with reflection is a mixture of two
layers, where each layer is likely to have a motion pattern inde-
pendent of the other layer. For example, when capturing a scene
from inside a moving bus through a glass window, objects inside
the bus will be reflected on the captured outside scene. Objects
inside the bus, however, typically have different motion patterns
than the outside objects. We exploit this observation to separate
the background layer from the reflection layer. In particular, the
first step of our motion initialization is to compute motion tracks
across multiple frames using a point-based tracking method such
as [13]. This method tracks features such as corners and edges and
provides subpixel accuracy. We chose point-based tracking instead

of object-based tracking, e.g., [15], because it provides finer granu-
larity and hence it can potentially improve the accuracy of layer
separation in videos with reflection.

Motion tracking, however, faces two main problems when ap-
plied on videos with reflection, namely: dead tracks and weak fea-
tures. A dead track occurs when a trajectory is identified for a
limited number of frames only. One of the most common reasons
that dead tracks exist in videos with reflections is occlusion and/or
obstruction by the other layer. This makes the tracker not able to
recognize the features of the target layer in the frames where the
obstruction occurs from the other layer, and thus the trajectory
dies. We illustrate the problem of dead tracks in Figure 3, where
the helmet of the person on the bike is detected in frame 1 but due
to the obstruction from reflection its trajectory died in frame 12.

The second problem for motion tracking in videos with reflection
is the frequent presence of weak features, i.e, features having low
contrast that are difficult to detect by the tracker. Color information
is essential for the tracker to detect and track a feature, and if there
is not enough color information, target tracking is hard or not
possible. We show an example of weak features in Figure 4, where
the motion tracker could not capture the movement of the person
in the reflection layer due to the low color information.

Dead tracks and weak features make motion tracking in videos
with reflection very challenging, and therefore results in inaccurate
layer separation and visual distortions. To address this problem,
we propose using sparse user hints to guide the reflection removal
process. Specifically, we utilize user hints in two ways: first to im-
prove the labeling of the preliminary tracks and second to add more
tracks. Preliminary tracks are the ones automatically computed by
the point tracker. We design a simple graphical user interface to
collect sparse hints from users in one frame. Then, we carefully
propagate these hints within the frame as well as to other frames.
Our graphical user interface is based on the motion clustering
method in [11], which utilizes temporal propagation, long term
motion, color distributions, and volume consistencies.

We illustrative our user-assisted motion initialization method by
the example in Figure 5. The top row in the figure shows samples
of the input video from frame 0 to frame 30. The second row shows
samples of the preliminary unlabeled tracks. In the third row, we
show the sparse user hints in frame 0. The hints are given in the
form of blue and red scribbles referring to the background and
reflection, respectively. These hints propagate the labeling to all
other tracks in the same frame using a random walk computation
[3]. This means that within one frame while annotating the video,
the user does not have to mark all areas, just make a few scribbles in
areas with and without reflection. Then, the labeling is propagated
across frames within the considered window of frames using the
point-based tracking method [13]. We combine the newly added
tracks by the user with the preliminary tracks. Each track 𝑡𝑖 is
identified by a set of (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) coordinates and by a label 𝑙𝑖 . The
(𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) coordinate indicates the spatial position of track 𝑡𝑖 in
frame 𝑗 . The label 𝑙𝑖 indicates to which layer this track belongs
to; 1 for the background and 2 for the reflection. Using the labeled
tracks, we obtain the initial motion fields for each layer between
each pair of frames.

To calculate the motion fields from frame 𝑖 to frame 𝑗 , we first
identify which tracks in frame 𝑖 are still tracked at frame 𝑗 . However,
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Figure 5: Illustration of sparse user assistance in motion ini-
tialization. The first row shows frame samples of the given
video with reflections. The preliminary tracks are shown in
the second row. The user sparsely provides simple annota-
tions as shown in the third row. The blue and red hints cor-
respond to the background and reflection areas, respectively.
The annotations are propagatedwithin the frame and across
the frames as shown in the bottom row.

since many tracks will die from frame 𝑖 to frame 𝑗 if the difference
between them is large, we create a sliding window to secure more
point correspondence between each pair of frames. We choose
10 as the length of our window as it showed good separation in
most results. Then, in each window, we calculate the projective
warping matrix (homography) from each frame to the first frame
in this window using the shared point tracks between them. This is
done using the iterative re-weighted least squares (IRLS) similar to
[21]. Then, we slide the window frame by frame and calculate the
projective warping matrix between each frame and the first frame
in this window.

3.4 Stabilization and Initial Layer Separation
After motion initialization, the projective warping matrices are
known for both the background and reflection. We use the back-
ground warping matrices to stabilize the background layer and
provide initial background estimation. To perform this, we use a
sliding window of length 10 frames. We stabilize the background
motion in this window by warping the last 9 frames in it onto the
first one using the background warping matrices. This results in
a warped version of each frame on the first frame in this window
where the background motion is nearly stable. We then extract the
initial background layer of the first frame in the window using min-
imum temporal filtering which calculates the minimum intensity
across all warped frames. We use a minimum operation instead
of the mean since the minimum is an upper bound for the back-
ground’s intensity [14]. This is based on the idea that the reflection
layer can only add to the intensity of the dominant (background)
layer, i.e., any contribution from the reflection layer will only be

increasing the background layer intensity. So for each pixel we
calculate its minimum value in all the warped frames and assign
this value to the recovered background layer.

Let 𝐼𝐵
𝑟,𝑖

be the warped version of frame 𝑖 on the reference frame 𝑟 ,
i.e., the first frame in the window, using the estimated background
warping field𝑊 𝐵

𝑟,𝑖
. The initial estimate of the background layer

frame 𝑟 of the sliding window Ω can then be calculated as:

𝐵𝑟 =𝑚𝑖𝑛(𝐼𝐵𝑟,𝑖 ), ∀𝑖 ∈ Ω. (3)
The corresponding reflection layer can be taken as the residual

component from Eq. (1) as:

𝑅𝑟 = 𝐼𝑟 − 𝐵𝑟 , (4)

where 𝐵𝑟 is set as the frame with minimum intensity across all
warped frames in the window. We then slide the window frame by
frame and perform the same operation to get initial estimates of all
the background and reflection frames.

3.5 Optimization
Optimization is done on the initial estimates of the background and
reflection frames to improve the separation accuracy. The optimiza-
tion function consists of three terms, the data term (𝐸𝑑 ), layer prior
term (𝐸𝑙 ) and the smoothness term (𝐸𝑠 ), which is defined as:

𝐸 = 𝜆𝑑𝐸𝑑 + 𝜆𝑙𝐸𝑙 + 𝜆𝑠𝐸𝑠 , (5)
where 𝜆𝑑 , 𝜆𝑙 and 𝜆𝑠 are weights we assign to each of these terms,
respectively. The data term 𝐸𝑑 is to make sure that the recovered
layers satisfy the video compositing model formulated earlier in Eq.
(2). This is done by minimizing the error between a layer at time 𝑡
and its warped version from time 𝜌 as shown in Eq. (6) where ∥𝑥 ∥1
is the L1-norm and 𝑁 is the total number of frames in the video.
We chose the L1-norm for its robustness in optimization [20]. The
linear additive model itself is simple and has been used successfully
in the past in solving many computer vision problems including
reflection [7].

𝐸𝑑 =

𝑁∑
𝑡=1

𝑁∑
𝜌=1

∥𝐵𝑡 −𝑊 𝐵
𝑡,𝜌𝐵𝜌 ∥1 + ∥𝑅𝑡 −𝑊 𝑅

𝑡,𝜌𝑅𝜌 ∥1 . (6)

To provide some prior information to our optimisation we use
a similar approach to [6]. We define a layer prior term 𝐸𝑙 that im-
poses labeling constraints on the initial estimated layers. We do this
by defining a binary map𝑀𝑡 indicating to which layer each pixel
belongs to.𝑀𝑡 = 0 for the background and𝑀𝑡 = 1 otherwise.This is
based on the assumption that the background edges and the reflec-
tion edges are independent. That is, if we observe a strong gradient
in the input image, it most likely belongs either to the background
component or the reflection component, but not to both [19]. As
explained earlier during stabilization, we stabilize the motion of
the background layer by warping all frames in the window on the
first frame. Making the background motion in the warped (aligned)
frames stable means that the high frequency components, such
as edges, will have nearly stable magnitudes in all warped frames.
However, the high frequency components not belonging to the
background will have sparse magnitudes across the warped frames.
We then estimate 𝑀𝑡 once by thresholding the alignment errors



MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Amgad Ahmed, Suhong Kim, Mohamed Elgharib, and Mohamed Hefeeda

of the high frequency components during the background layer
stabilization. The formulation for the layer prior term is shown in
Eq. (7), where ∇𝐼𝑡 is estimated by a canny edge detector and |∇𝐵𝑡 |
and |∇𝑅𝑡 | are the first order spatial gradients of the background
and reflection respectively.

𝐸𝑙 =

𝑁∑
𝑡=1

(𝑀𝑡∇𝐼𝑡 |∇𝐵𝑡 | + (1 −𝑀𝑡 )∇𝐼𝑡 |∇𝑅𝑡 |). (7)

The third term 𝐸𝑠 in Eq. (5) is used to provide spatial processing
on the reconstructed frames by enforcing spatial smoothness. This
is done by minimizing the first order spatial gradients as follows:

𝐸𝑠 =

𝑁∑
𝑡=1

( |∇𝐵𝑡 | + |∇𝑅𝑡 |). (8)

We use an Iterative Re-weighted Least Square (IRLS) method to
solve the optimize the objective function in Eq. 5. We initialize the
solver using the initial layer estimates. We fix the motion fields to
solve for background and reflection layers. Then we fix the layer
estimates to solve for the motion fields. This process is repeated
until convergence. A similar approach was used in [8]. There are
three terms in our optimization, 𝐸𝑑 , 𝐸𝑙 , 𝐸𝑠 , which have weights
𝜆𝑑 , 𝜆𝑙 , 𝜆𝑠 , respectively. 𝐸𝑑 ensures the background and reflection
layers can be warped from other points in time. 𝐸𝑙 is a layer prior
to create an edge map for each layer. 𝐸𝑠 ensures spatial smoothness.
We consider 𝐸𝑠 as the least important term, while the edge map and
layer prior are both equally important in recovering the background
and reflection layers and their edges. Based on this intuition, we set
the weights as [2,2,1]. Our experiments showed that these values
lead to better separation with clear edges in both layers. The values
of the weights are fixed for ALL videos in the dataset.

4 EVALUATION
In this section, we first describe the video dataset used in the exper-
iments. Then, we assess the performance of our method on several
videos. Then, we compare our methods against two recent methods
in the literature. Then, we compare our method as well as others
using a synthetically created video for which we can compute the
ground truth reflection layer. Finally, we analyze the impact of the
user-provided hints on the performance of our method.

4.1 Dataset
We collected and used a large dataset of (natural) videos with re-
flections. Some of of these videos were used in prior works [19]
and [9]. There are 156 diverse videos in our dataset, which were
captured in various environments. The number of frames in each
video ranges between 62 to 120 frames. These videos represent
realistic scenarios where reflections occur. They captured many
real-life scenes shot from behind different types of reflective sur-
faces. Some videos were taken indoors (e.g., Figure 6(a) and (d)) and
outdoors (e.g., Figure 6(b)). Videos were taken at different times
of the day to represent different lighting conditions. Some videos
(e.g., Figure 6(a), (b), and (c)) have highly textured background and
reflections which our method manages to recover accurately.

We have performed experiments on real and synthetic videos
from the dataset under different scenarios, with different back-
ground and reflection objects and various lighting conditions.

Input Separated ReflectionSeparated Background

(a)

(b)

(c)

(d)

(e)

Figure 6: Example outputs of our method on natural videos.

4.2 Performance of our Method
We first note that the best way to see our results is by viewing
the actual videos with and without reflection. We have created a
combined sequence with multiple videos showing the performance
of our method as well as others and posted it on YouTube.1 In the
following, we present sample representative frames from multiple
sequences.

Figure 6 shows the result of our method on a few sample videos
where reflections frequently occur. One of these common cases is
capturing reflective surfaces such as glass covered billboard (Fig-
ure 6 (b), (d)). Our method performs well in such sequences. For
example, in Figure 6 (b), the reflection is strong and highly textured
with many details of the reflection objects, e.g., the trees and the
person capturing the video. However, our method manages to pro-
duce good separation where words on the sign are clearly visible
and the reflection details are recovered.

Moreover, reflections often occur when capturing outdoor scenes
through indoor windows as shown in Figures 6 (a), (c) and (e).
Our method produces a clean recovery of the outdoor scene while
showing the indoor scene details that were hard to see in the original
video. Recovering the background is usually the subject of interest,
however, recovering details from the reflection scene might be
useful in some cases where information needs to be extracted from
the reflection layer.

4.3 Comparison Against Stat-of-the-Art
We compare our method against two state-of-the-art methods for
removing reflections. To the best of our knowledge, there is only

1https://youtu.be/7mnyB9-J-vY

https://youtu.be/7mnyB9-J-vY
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Figure 7: Comparison of our method versus state-of-the-art on two natural videos with reflections. We zoom in with blue and
green patches on different locations in the background and reflection layers to show the differences.
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Figure 8: Creating a synthetic video representing the ground
truth to objectively evaluate the proposed video reflection
removal method.
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Figure 9: Comparison of ourmethod against state-of-the-art
using a ground truth (synthetic) video.

one work specifically designed for removing reflections in videos in
[9]. We compare against this work and refer to it as VRR (short for
Video Reflection Removal) in the figures. In addition, we compare
against the work by Fan et al. [2] for removing reflections in images,
after extending it to work on videos by applying their method on a
frame by frame manner. We refer to this work as FbF_RR.
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Figure 10: SSIM measured against the ground truth for the
background and reflection frames. 𝑛 is the frame number.

In Figure 7, we show side-by-side comparisons on two sequences.
In the first sequence, shown in Figure 7 (a), our method manages
to remove reflections from the background layer completely, while
there are noticeable artifacts in the results of the other approaches.
For example, as shown in the blue and green patches in the back-
ground layer, FbF_RR results in a blurry backgroundwith noticeable
color changes and reflection artifacts. VRR leads to incomplete sep-
aration and noticeable reflection artifacts. Our method produces a
clean background layer with no noticeable reflection effects and
better color consistency. Moreover, the reflection image recovered
by our method is cleaner than the ones produced by the other meth-
ods. For example, as shown in the green patch in the reflection layer,
the buildings in the background are still visible in the recovered
reflection layer in the results of VRR, while the results of FbF_RR
have color changes and unclear reflection recovery. Our method
recovers the reflection part in this area more accurately. In the blue
patch, FbF_RR cannot capture the reflection part in the corner, VRR



MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Amgad Ahmed, Suhong Kim, Mohamed Elgharib, and Mohamed Hefeeda

Input Video 

Precomputed Tracks

 Clustering

User Clustering User Added Tracks Combined Tracks

 Background

 Background

 Reflection

 Reflection

F
in

al
 O

u
tp

u
t

M
o

ti
o

n
 In

it
ia

liz
at

io
n

 
W

it
h

o
u

t 
U

se
r 

A
ss

is
ta

n
ce

F
in

al
 O

u
tp

u
t

U
se

r-
as

si
st

ed
 

M
o

ti
o

n
 In

it
ia

liz
at

io
n

  

Figure 11: User-assistance leads to more accurate motion initialization and final separation.

results in a blurred recovery while our approach recovers most of
the reflection texture.

In Figure 7 (b), we show a challenging sequence where the video
was taken from inside a moving bus. The background includes vari-
ous objects with complicated local movements. For the background
layer, other methods result in color changes and reflection artifacts,
while our method produces clean separation with most of the re-
flection parts removed. For example, the blue patch on the helmet
of the bicycle driver still has the reflection part in VRR and FbF_RR
results, while our method removes most of the reflection part in
this area. In the green patch, FbF_RR cannot remove the reflection
part while both our approach and VRR manage to remove it. Since
this is a challenging sequence, the reflection part recovery is hard.
However, our approach recovers most of the reflection parts. As
shown in the blue patch, FbF_RR and VRR cannot recover the re-
flection structure in this area while our method manages to recover
most of the reflection texture.

In summary, the proposed method significantly improves layer
separation compared to current methods in the literature.

4.4 Comparison Against Ground Truth
We are not aware of any public dataset of videos with reflections
along with their ground truth layer separation. It is, actually, im-
practical to capture such ground truth separations in a natural
environment, as this would need capturing the same scene with
and without the reflective surface at the same time.

Recall that a video with reflection is modeled as two mixed
layers. To mimic this scenario, we generate synthetic videos using
an additive layer composition model. We do this by averaging
two synthetic videos 𝑉1 and 𝑉2 with different coefficients as 𝑉 =

𝛼𝑉1 + (1 − 𝛼)𝑉2, where 𝛼 is the mixing parameter ranging between
0 and 1. For example, Figure 8 shows the output of such generation
scheme for 𝛼 = 0.8. In this video, we treat the buildings picture as
the background and the black square as the reflection. We introduce
two different global movements for both layers of magnitude +3 and
-3 pixels per frame in the horizontal direction for the background
and reflection layers, respectively.

After generating the synthetic sequence, we process it using
FbF_RR, VRR, and our method. The background reconstruction
results for this sequence are shown in Figure 9. The figure shows
that that our method produces more accurate reflection removal

than others for the synthetic example. For instance, FbF_RR back-
ground reconstruction was blurry and has reflection artifacts. VRR
results were visually better, but still included reflection artifacts.
Ourmethod produced a cleaner background reconstruction than the
other methods, where reflection is not visible in the reconstructed
background layer.

Finally, we objectively compare our methods versus FbF_RR and
VRR, by calculating the accuracy of separation using the spatial
similarity of the recovered layers with the ground truth. Spatial
similarity is measured using the Structural Similarity Index (SSIM)
[17]. An SSIM value of 1 means perfect match between the video
layer (background or reflection) and the corresponding ground
truth, i.e., perfect separation. Figure 10 shows the values of the SSIM
measured against the ground truth for both the background and
reflection frames. The figure shows that our method consistently
outperforms the other two methods. We note that the drop in the
SSIM in Figure 10 is mostly due to the sparse user annotations.
We annotated an early frame in the window and we propagated
the annotations to other frames. After about 30–40 frames, the
annotation accuracy starts to drop. It is why the user may need to
provide new annotations every 30–40 frames.

4.5 Impact of User Assistance
Finally, we analyze the importance of user-assistance in our ap-
proach. We show the results of applying our method with and
without user assistance on a sample sequence in Figure 11. The
same preliminary tracks are used in both cases. Clustering without
user assistance is performed using a k-means clustering. We show
the motion initialization output in both cases. The figure shows
that motion initialization is more accurate with user hints, which
results in better final layer separation.

5 CONCLUSION
We have presented a user-assisted method to remove undesired
reflections from videos. The method utilizes motion cues as well
as sparse user hints for separating the background layer from the
reflection layer. We overcome the limitations associated with the
state-of-the-art methods for reflection removal by improving the
separation results of videos with a complex dynamic motion that
is hardly distinctive for each layer. We presented quantitative and
qualitative results on challenging real and synthetic examples. Our
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method produces clean separation of both the background and
reflection layers. We compared against state-of-the-art video re-
flection removal and video extensions of image reflection removal
methods. Our quantitative and qualitative results show that our
method leads to significant improvements in the separation quality
than prior works.

We envision that the proposed method used in an iterative and
interactive way. For videos with simple reflections, good separation
can be obtained with sparse annotations in a few frames. For videos
with complex reflections, users may need to iteratively add more
hints to achieve the desired separation. Recall that reflection re-
moval does not really have a ground truth result, as it is not possible
to capture a given scene with and without reflection at the same
time. The results are mostly subjective, and it is why we believe
our method provides a natural way to integrate user inputs into the
solution. Note that even for complex videos, our method requires
the user to provide simple scribbles.
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