DIMO: Distributed Index for Matching Multimedia Objects
using MapReduce

Ahmed Abdelsadek
School of Computing Science
Simon Fraser University
Surrey, BC, Canada

ABSTRACT

This paper presents the design and evaluation of DIMO, a dis-
tributed system for matching high-dimensional multimedia objects.
DIMO provides multimedia applications with the basic function of
computing the K nearest neighbors on large-scale datasets. It also
allows multimedia applications to define application-specific func-
tions to further process the computed nearest neighbors. DIMO
presents a novel method for partitioning, searching, and storing
high-dimensional datasets on distributed infrastructures that sup-
port the MapReduce programming model. We have implemented
DIMO and extensively evaluated it on Amazon clusters with num-
ber of machines ranging from 8 to 128. We have experimented with
large datasets of sizes up to 160 million data points extracted from
images, and each point has 128 dimensions. Our experimental re-
sults show that DIMO: (i) results in high precision when compared
against the ground-truth nearest neighbors, (ii) can elastically uti-
lize varying amounts of computing resources, (iii) does not impose
high network overheads, (iv) does not require large main memory
even for processing large datasets, and (v) balances the load across
the used computing machines. In addition, DIMO outperforms the
closest system in the literature by a large margin (up to 20%) in
terms of the achieved average precision of the computed nearest
neighbors. Furthermore, DIMO requires at least three orders of
magnitudes less storage than the other system, and it is more com-
putationally efficient.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Distributed systems; H.2.4 [Database Management]: Sys-
tems—Multimedia databases

General Terms
Design

Keywords

Object matching, nearest neighbors, multimedia search, high di-
mensional data, large-scale data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MMSys 14, March 19-21 2014, Singapore

Copyright 2014 ACM 978-1-4503-2705-3/14/03 ...$15.00
http://dx.doi.org/10.1145/2557642.2557650.

115

Mohamed Hefeeda
Qatar Computing Research Institute
Qatar Foundation
Doha, Qatar

1. INTRODUCTION

The rapidly increasing volume of multimedia content over the In-
ternet creates many research challenges for efficiently storing, pro-
cessing, and searching such sheer volume. In this paper, we address
one of these challenges: matching multimedia objects, which is the
problem of finding similar objects to a given multimedia object. We
address this problem for large-scale multimedia datasets that are
characterized by a large number of high-dimension points. Object
matching is an important problem with numerous real-life appli-
cations, such as image retrieval, document classification, duplicate
removal, video copy detection, among many others. To solve this
problem, a method for finding the nearest neighbors of a given data
point is needed. This is known as the K -nearest neighbors prob-
lem, where K > 1. After obtaining the nearest neighbors for a
given point or group of points, other processing steps may need to
be applied for obtaining the final object matching results. These
steps depend on the specific application that uses the object match-
ing results. For example, in a video copy detection application [16],
individual frames from a suspected query video are first matched
against frames from reference videos. Then, the temporal aspects
of the matched frames are considered in order to decide whether
the suspected video is a copy of one of the reference videos.

We propose a distributed system for matching multimedia ob-
jects, which we call DIMO. DIMO provides the primitive function
of finding K -nearest neighbors (KNN). It also supports application-
specific functions to be applied on the computed nearest neighbors.
There are several centralized approaches for solving the K -nearest
neighbors problem in the literature, including ones that produce ex-
act neighbors [30, 8], and others that compute approximate neigh-
bors [7, 3, 10]. However, these centralized approaches do not scale
to the currently-available massive volumes of multimedia objects.
Distributed approaches have also been proposed, such as [31, 20,
1]. However, most of these approaches either do not support high
(100+) dimensions [31, 20] or they are customized for a specific
application [1]. In contrast, the proposed DIMO system offers the
following desirable properties:

e General. DIMO can be used for different object matching
applications. It produces approximate K neighbors, where
the accuracy of the neighbors can be traded off with the com-
putational complexity. DIMO can support high dimensional
multimedia data. In our experiments, we use data points with
128 dimensions, extracted from images.

e Scalable. DIMO is designed for large-scale datasets. In
some of our experiments, we use more than 160 million data
points.

e Elastic. DIMO can automatically use varying number of
computing machines. We show in our experiments that DIMO

can scale almost linearly with the available number of com-
puting machines.

e Dynamic. Data points can be added and removed from the
system in dynamic manner, without the need to re-build the
whole system.

We have implemented DIMO and extensively evaluated it on
clusters of different numbers of machines and on large-scale datasets.
We used publically-available, large image data sets [11, 2] in our
experiments. Our results show that DIMO: (i) yields high precision,
(ii) scales almost linearly with data size and number of machines,
(iii) outperforms the closest system in the literature, and (iv) does
not impose significant storage or network overheads on the dis-
tributed cluster. Furthermore, DIMO can run on tens to thousands
of machines, because it has no hot-spot central machine or single
point of failure.

The rest of this paper is organized as follows. Section 2 surveys
the related works in the literature. Section 3 presents the details of
the proposed system, and Section 4 presents our evaluation setup
and results. Section 5 concludes the paper.

2. RELATED WORK

Nearest neighbors search has hundreds of applications in many
fields in computer science. Our focus in this paper is on the chal-
lenging high dimensional multimedia datasets. Khodabakhshi and
Hefeeda [16] develop a system for copy detection of 3D videos,
where they depend on a K nearest neighbors algorithm in the un-
derlying index. Smith et al. [25] use nearest neighbors algorithm
in character classification. Zhang et al. [32] combine a K nearest
neighbors algorithm with support vector machine (SVM) for dif-
ferent tasks of visual category recognition. They experiment with
tasks like handwritten character recognition, texture analysis, and
object categorization. Kulis et al. [17] integrate locality-sensitive
hashing (LSH) with a kernel machine algorithm for scalable image
search and object recognition tasks. Our proposed DIMO system
can support such applications.

Techniques for solving the K -nearest neighbors problem can be
divided into two main categories: (i) hierarchical space division
and (ii) space mapping. In the first category, algorithms are used
to hierarchically divide the search space into tree-based structures.
Then, branch and bound methods are used to search and manip-
ulate these structures. These techniques can be used either in the
Euclidean space, e.g., R tree [14] and KD tree [5], or in the general
metric space, e.g., VP tree [30] and M tree [8]. These techniques
are mainly designed to return exact neighbors, and are suitable only
for low dimensional datasets.

For high-dimensional datasets, exact neighbors are costly to find,
because most nearest neighbors search methods will do no better
than linear scan of the whole dataset [6]. Thus, approximate near-
est neighbors search methods have been proposed in the literature.
These methods constitute the second category, space mapping, for
solving the nearest neighbors problem. These methods first mod-
ify, or map, the search space, either by changing the distance used
to compare objects or by modifying the dimensions of the object
space. Then, they solve the problem on the new (approximate)
space, where the search is simpler. Examples of such techniques
are those that approximate vectors using a fixed number of bits
such as vector approximation (VA-Files) [7]; ones that are based
on locality-sensitive hashing (LSH) [13, 3]; or those based on di-
mensionality reduction using projections [10, 21].

The above nearest neighbors search techniques were mainly de-
signed to run on a single machine. Several works have attempted to

116

solve the nearest neighbors problem in a distributed manner in or-
der to support the rapidly-increasing volumes of data being created
nowadays. For example, some works exploit peer-to-peer (P2P)
networks for distributed similarity search [12, 15, 29]. In [12],
Flachi et al. introduce M-CAN, which is based on the Content-
addressable Network (CAN) P2P architecture [23]. M-CAN uses
a pivot-based technique to project objects from the metric space to
an IN-dimensional vector space, and it then maps them to peers.
Haghani et al. [15] use LSH on top of the Chord P2P architecture
[26]. In [29], Wang et al. propose RT-CAN, a distributed sim-
ilarity index, which implements a variation of the R-tree on top
of CAN. For massive datasets, approaches that use structured P2P
networks could suffer from multiple practical issues. First the mis-
match between the overlay and physical networks, i.e., neighbor-
ing nodes in the overlay can be far away in the physical network,
can increase the communication delay and overhead between dis-
tributed machines. Second, node failures cause the employed P2P
networks to invoke failure recovery schemes, which impose com-
munication and computation overheads. Unlike our proposed sys-
tem, the works in [12, 15, 29] did not focus on large-scale multi-
media datasets that are characterized by high dimensions. These
works either used low dimensional data, e.g., five dimensions in
[29], or simulation on a single machine in [15].

Another class of works for solving the nearest neighbors problem
in a distributed manner relies on distributed processing frameworks
such as MapReduce. In [18], Liao et al. build a multi-dimensional
index using R-tree on top of the Hadoop distributed file system
(HDEFES) [24]. Their index, however, can only handle low dimen-
sional datasets—they performed their experiments with two dimen-
sional data. In addition, their index is optimized for queries in a
static environment. In contrast, our proposed system is dynamic
and scalable, where data points can be added/removed without re-
building the main data structures.

The authors of [20] and [31] solve the K nearest neighbors over
large datasets using MapReduce [9]. Lu et al. [20] construct a
Voronoi-like diagram, using some selected pivot objects. They then
group the data points around the closest pivots and assign them to
partitions, where searching can be done in parallel. Zhang et al.
[31] split both query and reference datasets into a number of dis-
joint equal-sized subsets, where operations can be done in paral-
lel. The systems in [20, 31] are also designed for low dimensional
datasets; they did not consider data with more than 30 dimensions.
In contrast, in our experiments we used image descriptors with 128
dimensions.

In [27], Stupar et al. present a method for implementing a dis-
tributed LSH index on a computing cluster. They maintain a num-
ber of hash tables over a set of machines, and they use MapReduce
primitives for searching the tables for similar points. A major draw-
back of this approach is that it requires storing multiple replicas of
the datasets in hash tables. This incurs significant storage cost and
it increases the number of I/O operations. In contrast, our system
stores the dataset only once and it produces higher precision in the
returned neighbors.

Finally, Aly et al. [1] present two approaches to construct dis-
tributed KD trees on MapReduce for finding similar images. The
first, called Independent KD-tree (IKdt), partitions the image dataset
into equal-sized subsets. Each partition is assigned to a machine
that builds an independent KD tree. At query time, all machines
search in parallel for the closest match. The second approach,
called Distributed KD-tree (DKdt), builds a global KD tree across
all machines. A single root machine stores the top of the tree, while
multiple leaf machines store the rest of the tree. At query time, the
root machine forwards data points to a subset of the leaf machines.

Reference
Points

Query
Points

Build Index
- Create Directing Tree
¢ Distribute points to bins

Match Objects
- Partition Query Points
- Find K nearest neighbors

- App-specific processing

Directing
Tree

Matching
Results

|
| |

Figure 1: High-level architecture of DIMO . Round boxes are
MapReduce jobs. The top part of the index, directing tree, is
serialized and used by multiple machines, while bin at the lower
part contain data points and are stored on the distributed file
system.

One of the drawbacks of this work is the single root machine that
directs all query points, which makes it a single point of failure as
well as a bottleneck that could slow down the whole system. Our
system does not use a central node, and thus it is more robust and
scalable. In addition, the work in [1] is tailored to image search,
while our system is more general. For example, the authors of [1]
report only the accuracy at the application level (image matching).
Whereas we quantify the accuracy of the returned nearest neighbors
(low level), which is general and important for various applications.

3. PROPOSED SYSTEM

In this section, we start by presenting an overview of the pro-
posed system, which is followed by the details of its main compo-
nents in separate subsections.

3.1 Overview

DIMO is a general system for matching multimedia objects that
are characterized by many features and each feature is of high di-
mensions. For example, an image can be characterized by 100-200
SIFT descriptors, and each has up to 128 dimensions, and a video
object will have even more features extracted from its frames. To
achieve this general matching task, DIMO first provides an effi-
cient, distributed, implementation for computing K nearest neigh-
bors for high-dimensional data. Then, DIMO provides a generic
interface for post processing these neighbors based on the differ-
ent needs of various applications. Thus, many applications can be
built on top of DIMO, such as image search and video copy detec-
tion. DIMO is designed to handle large datasets with millions of
points, and it can elastically utilize varying number of computing
machines.

Basically, DIMO takes two sets: reference points R and query
points . Each set contains d-dimensional data points. There are

117

no constraints on the sizes of @) and R. However, R is assumed
to change at a slower rate, by adding/removing objects to/from it.
Whereas) can change faster. For example, in an image search
application, an archive of stored images would constitute R, while
images submitted to the application for finding ones similar to them
would make). DIMO builds a distributed index over R and it then
uses it to match objects in . The cost of building the index is
amortized over processing many queries. Note that data points in
R and @ represent features of multimedia objects. Thus, multiple
data points can belong to one object. We assign the ID of an object
to each data point generated from that object. This allows us to
group the results of the K nearest neighbors phase based on object
IDs to support various multimedia applications.

At a high level, DIMO partitions the reference points R into
bins. These bins are mapped to files and stored on a distributed
file system. The bins are searched in parallel against query objects.
The core component in our system that enables efficient partition-
ing, mapping, and searching for objects is the Distributed Index.
Figure 1 shows the high-level architecture of the DIMO system.
There are two main computational tasks: Build Index and Match
Objects. Build Index takes the reference points and creates the Dis-
tributed Index. Match Objects computes the nearest neighbors for
each query point as well as it performs application-specific object
matching functions using the found nearest neighbors.

DIMO is implemented using the MapReduce distributed pro-
gramming model [9]. The two computational tasks mentioned above
are MapReduce jobs that run on multiple machines. The MapRe-
duce framework provides an infrastructure that runs on a cluster
of machines, which automatically manages the execution of multi-
ple computations in parallel as well as the communications among
these computations. It also provides transparent redundancy and
fault tolerance to computations. In its simplest form, a computation
in MapReduce (called MapReduce job) is composed of two func-
tions: mapper and reducer. The inputs and outputs of both func-
tions are in the form of key-value pairs, where the key and value can
be complex objects. The programer specifies the computations that
should be performed in the mapper and reducer functions as well
as the format of the output pairs. The MapReduce infrastructure
creates multiple mapper instances, divides the data among them,
runs them on the available machines, aggregates their outputs and
passes them to reducers, and finally produces the outputs from the
reducers. The MapReduce infrastructure also monitors the execu-
tion of mappers/reducers on all machines and it can handle machine
failures/slowness by restarting failed/delayed mappers/reducers on
different machines. Although the MapReduce infrastructure pro-
vides quite useful services, MapReduce programs need to be care-
fully designed to achieve good performance as there are several
important issues that should be considered, such as the volume of
data exchanged among mappers and reducers and the number of
/0O operations that need to be performed. In addition, MapReduce
programs may have no reducers (only mappers). Other functions,
e.g. combiners, are also possible in MapReduce programs.

The proposed design of the DIMO system achieves the desired
properties mentioned in Section 1. For example, it is general, be-
cause multiple applications can be supported by implementing the
application-specific object matching functions in the Match Objects
task, after the basic nearest neighbors search function is performed.
The elasticity feature of DIMO, i.e., the ability to automatically use
various number of machines, is achieved by the MapReduce frame-
work. Finally, in Section 3.4, we discuss how DIMO can scale to
very large datasets and how it can dynamically add/remove data
points to the reference set.

3.2 Building the Distributed Index

We design a scalable, elastic, and distributed index for the high-
dimensional object matching problem. As shown in the left part of
Figure 1, the index is divided into two parts: (i) directing tree and
(ii) bins . Directing tree is a space partitioning tree [22] that is used
to group similar points in the same or close-by bins. It is also used
to forward query points to the bins with potential matches. Bins are
the leaf nodes of the directing tree, but they are stored as files on
the distributed file system.

The design of our index has has two main features that make
it simple to implement in a distributed manner, yet efficient and
scalable. First, data points are stored only at the leaf nodes. In-
termediate nodes do not store any data, they only store meta data
to guide the search through the tree. This significantly reduces the
size of the directing tree and makes it fit easily in the main memory
of a single machine even for large datasets. This feature allows us
to distribute copies of the directing tree to computing machines to
process queries in parallel. Replicating the directing tree on dif-
ferent machines not only facilitates parallel processing, but it also
greatly improves the robustness and efficiency of the system. The
robustness is improved because there is no single point of failures.
The efficiency is improved because there is no central machine or
set of machines that other machines need to contact during the com-
putation. The second feature of our index design is the separation
of the leaf nodes (bins) and storing them as files on the distributed
file system. This increases reliability as well as simplifies the im-
plementation of the parallel computations in our system, because
the concurrent access of data points is facilitated by the distributed
file system. In addition, having data points only al leaves makes
updating the index easier as explained in Section 3.4.

The distributed index is constructed from the reference R dataset,
which is done before processing any queries. Constructing the in-
dex involves two steps: (i) creating the directing tree and (ii) dis-
tributing the reference dataset to bins. The directing tree is created
using a sample from the reference dataset and it is done on one
machine; details are given in Section 3.2.1. Once created, the di-
recting tree is serialized as one object and stored on the distributed
file system. This serialized object can be loaded in memory by var-
ious computational tasks running on multiple machines in parallel.
Distribution of data is done in parallel on multiple machines us-
ing the Distribute Data MapReduce task; details are presented in
Section 3.2.2.

3.2.1 Constructing the Directing Tree

The directing tree is the top part of the index, which contains all
non-leaf nodes. Different types of trees [22] can be used as our di-
recting tree, after we perform our ideas of keeping data points only
at leaves, aggregating data points into bins, and storing bins on the
distributed file system. We chose the KD tree [5] as the base for our
directing tree, because of its efficiency and simplicity. A KD tree
is binary tree in which every node is a K -dimensional point. Every
non-leaf node can be considered as a splitting hyperplane that di-
vides the space into two parts. Points to the left of this hyperplane
represent the left sub-tree of that node and points to the right of the
hyperplane represent the right sub-tree. The hyperplane direction is
chosen in a way such that every node in the tree is associated with
one of the K dimensions, with the hyperplane perpendicular to that
dimension’s axis, and it splits the data points around it into two
equal-size subsets. The equal-size subsets make the tree balanced.

Figure 2(a) shows a simple KD tree constructed from 15 high
dimensional data points. The figure shows that each node stores a
data point and that every level of the tree uses a different dimen-
sions to split the dataset around it.

118

(6.5,7.8,...)

(2,5,2,6,...) (8,2,58,...)

(1,8,89,...) (9,83.2,...)

(13,1,8,.) (34,76,..) (1,87.1,..) (2692..) (9.434,.)

(a) KD Tree

(85.82,...) (99,15...) (7.854,.)

Directing

Tree No data

(2,5,2,6,...) (1889..) 6,5,7.8,..) | 1(8,7,58,...)
(34,5,1,...) (1'8’7’1"") (7,462,..) | 1(9832,...)
(1,3,1,8,...) (2’6’9’2"“) (9,4,34,...) (9,9,1,5,...)
(3,4,7,6,...) KR 8,582,..) | (7.854,...)

(b) Directing Tree

Figure 2: Classical KD Tree and Directing Tree.

We are interested in matching objects with high dimensions. Thus,
if we use the traditional KD tree, it will be too deep with too many
leaf nodes and each has only one data point, which is not efficient
especially in distributed processing environment where accessing
any node may involve communications over the network. We con-
trol the depth of the tree based on the size of the dataset such that
the size of bins at the bottom of the tree roughly matches the stor-
age block size of the distributed file system. Figure 2(b) shows our
directing tree for the same 15 data points used in Figure 2(a). No-
tice that interior nodes only contain the splitting values and all data
points are stored in the leaf nodes. In real deployment, the size of a
leaf node is in the order of 64 to 128 MBs, which means that each
leaf node will contain thousands of data points. Thus, the size of
our directing tree will be small; only three nodes in this example
(compared to 15) and each node stores only one value (compared
to a multi-dimensional point).

Since we compress the depth of the tree, we use only a subset of
the dimensions of the data points. Multiple methods can be used
to choose this subset of dimensions. For example, we may use the
dimensions that have the highest variance in the dataset. In our
implementation, we use the principal component analysis (PCA) to
choose the most representative dimensions to project the dataset on.
PCA is a well studied technique for dimension reduction. It finds
a hyperplane of the required target dimensionality to project the
actual points on, such that the variance among them after projection
is maximized. It finds this hyperplane by calculating the singular
value decomposition (SVD) of the covariance matrix of the input
points.

| _Reace_|

1
|
|

in Files
[pup—— |

" Data Points

r
]
|

Load Directing Tree

|

|

L

:2) Direct points to bins Write points to files
1

|

|

:1) Group points by BinID
2)

|

1

Figure 3: Illustration of the Distribute Data MapReduce job.

In order to construct the directing tree, we use a random sample
of the reference dataset, if the reference dataset is large. Note that
the directing tree is used in distributing all data points to bins as
explained in Section 3.2.2, but the construction of the tree is done
from a sample of the reference data points.

The following steps are performed to construct the directing tree.

e Decide on the number of levels numLevels in the direct-
ing tree. This is calculated from the size of the reference
dataset re f Size and the storage block size bockSize of the
distributed file system. If the tree has numLevels levels,
then it will have 2%l Jeaf nodes or bins, and each
bin can store up to blockSize/pointSize data points, where
pointSize is the size of each data point. Thus, the the total
number of points that can be stored in the distributed index is
gnumlevels o blockSize/pointSize which must be greater
than or equal to the number of data points in the reference
dataset re fSize/pointSize. Thus, the number of levels is
given by: numLevels > [log, (refSize/blockSize)].

e Decide on the number of dimensions numDim of the data
points that will be used. Recall that we partition the dataset
based on a different dimension in each level of the tree.

e Compute the splitting value for each level in the tree. First,
we apply PCA on a random sample of the reference dataset
to estimate numDim principal components.

o Construct the directing tree using a depth first algorithm. For
each level in the tree, we project all data points in the random
sample on the principal component that corresponds to that
level. Then, we sort all data points with respect to this princi-
pal component, and we use the median as the splitting value.
Since we use the median value for partitioning, roughly half
of the data points will be directed to the left subtree and the
other half to the right subtree in each level, which leads to a
balanced tree. We say roughly half of the data, because the
principal component analysis is not performed on the whole
dataset. However, randomly choosing a reasonable-size sam-
ple will unlikely lead to unbalanced tree. A fully-balanced
tree can be achieved by applying PCA on the whole dataset,
which is also doable especially that this is done only once
on the reference dataset and the tree will be used to answer
many queries. Nonetheless, our experiments with large im-
age datasets indicate that random sampling is practically suf-
ficient to provide a balanced tree.

119

Procedure 1 Distribute Data MapReduce Job

MAPPER
1: function SETUP > Loaded once per machine
2: DirectingTree dt = LoadDirectingTree ()
3: end function

// Input: Files containing data points
// Output: List of [(BinID, point)]

1: function MAP(FileID i, File f)
2 for each Point p in File f do
3: Bins = GetClosestBins (dt, p, 1)
4: for each Bin in Bins do
5 Emit (Bin.getID(), p)
6 end for
7: end for
8: end function
REDUCER

//nput: pairs of (BinID, point)
//Output: Create a file for each bin and store all points that corre-
spond to that bin in it.
1: function REDUCE([(BinID bid, Point p)])
2: Write a file for each bin and and store all points that corre-
spond to that bin in it
3: end function

3.2.2 Distributing Data Points

Distribution of data points to bins is achieved in parallel using
the Distribute Data MapReduce job, which is illustrated pictorially
in Figure 3 and described in pseudo code in Procedure 1.

Data points are assumed to be stored in files. Each data point
is a multi-dimensional vector. Each mapper instance will process
a group of data points. The mapper starts by loading the directing
tree from the distributed file system. Then, for each data point, the
mapper traverses the directing tree to find the closest bin to this
point using GetClosestBins() function. After finding the closest
bin for each point, the mapper emits key-value pairs in the form of
(BinID, point). Pairs having the same BinID are sent to the same
reducer by the MapReduce infrastructure. The reducer, in turn,
groups all points with the same BinID and writes them to a file on
the distributed file system, which is identified by the BinID.

The GetClosetBins() function returns the requested number of
closest bins to a given point. Procedure 2 shows the pseudo code
of this functions, which is a variant of the best bin first algorithm
in [4]. The idea of the algorithm is to search the candidate bins in
ascending order of their distances to the query point, instead of their
original order in the directing tree. This is done by maintaining a
priority queue, based on the distance between the query point and
nodes in the tree. The queue is initialized by inserting the root of
the directing tree in it. Then, while the algorithm traverses down
the directing tree to reach the closest bin, it adds more nodes to
the priority queue, which will be inspected later to find other close
bins. Once it reaches a leaf node at the bottom of the directing
tree, it adds the bin ID corresponding to that leaf node to the list of
closest bins. If more bins are still needed, the algorithm traverses
the directing tree again starting from the head of the priority queue.
Otherwise, the algorithm returns the list of closest bins.

3.3 Matching Objects

The DIMO system is better suited for processing large query
datasets in batch mode. This batch mode is useful for applications
such as image/video de-duplication in multimedia databases and
video copy detection, in which many data points in the query set

Procedure 2 Finding Closest Bins to Given Data Point

1: function GETCLOSETBINS(DirectingTree dt, Point p, int
count)

2: List closestBins = []

3: PriorityQueue @ = root of dt

4: DirectingTreeNode current N ode = null

5: while @ is not empty do

6: currentNode = top of Q

7: while current N ode is not leaf do

8: distance = Calculate distance between p and

currentNode

9: if distance < 0 then > closer to left child
10: Add right child of currentNode to Q

11: currentN ode = left child of current N ode
12: else > closer to right child
13: Add left child of currentNode to @

14: currentNode = right child of currentNode
15: end if

16: end while

17: Add bin ID of currentNode to closest Bins

18: if size of closetBins = count then return

closetBins

19: end if
20: end while

21: end function

are processed together. Extending the DIMO system to process
online queries is possible and is part of our future work; this may
require optimization of the MapReduce jobs in the system to reduce
the overhead involved in executing them for short online queries.

DIMO takes a query dataset and matches it against the distributed
index, which represents the reference dataset. This matching pro-
cess is done in three steps: (i) partitioning query dataset, (ii) find-
ing K nearest neighbors for each data point in the query dataset,
and (iii) performing application-specific object matching using the
found K nearest neighbors. Each of these three steps is executed
in parallel on the MapReduce infrastructure.

The first step does not randomly divides the query dataset. In-
stead, it partitions the query dataset such that each partition con-
tains a bin and a list of data points that are likely to have neighbors
in that bin. This partitioning is accomplished using the Partition
Queries task, which is similar to the Distribute Data task used in
constructing the distributed index (Figure 3 and Procedure 1), ex-
cept for two modifications. The first modification is that the reducer
in the Partition Queries task does not store bins on the distributed
file system. Rather, it emits bin IDs and lists of query data points;
one list for each bin ID. The directing tree is used to create the list
of data points that corresponds to each bin, in the same way as de-
scribed in Section 3.2.2. The second modification is the setting of
the number of bins parameter in GetClosetBins() function in line 4
of Procedure 1. While the number of bins is set to one in the Dis-
tribute Data task, since each reference data point is stored in only
one bin, the number of bins is variable and used to control the accu-
racy of the computed K nearest neighbors in the Partition Queries
task. If the number of bins is set to n, then each query data point
is compared against all reference points in n bins, which increases
the accuracy but requires more computing resources.

The second and third steps of matching objects are finding the K
nearest neighbors and applying application-specific function(s) on
them to produce the final object matching results. These two steps
are illustrated in Figure 4. The figure shows that these two steps
are achieved through one MapReduce job that has one mapper and

120

1
[}
1
il

in Files
[e P

Data Points
“Results Files

r
1

=
I
|

11) Sort the neighbours |
12) Load its queries file |to a query point
| 3) Compute distances |2) Return top-K of them|
[} 1 [}

11) Load a bin 1) Group by object ID

I2) Do object matching

Figure 4: Illustration of the second and third steps of the object
matching process in the DIMO system.

two consecutive reducers.! The mapper and first reducer compute
the K nearest neighbors for all points in the query dataset. The
second reducer is a place holder for any application-specific post
processing function on the K nearest neighbors. For example, in a
video copy detection application [16], individual matching of query
frames with reference frames is not sufficient to determine video
copies. In this case, the temporal aspects of the frames should also
be considered which is done in the second reducer.

The pseudo code of the Matching Objects MapReduce job is
shown in Figure 3. The mapper takes the output of the Partition
Queries task (the first step) in the form: (BinID, [pl,p2,...]). It
then loads the file corresponding to BinI D from the distributed file
system. The distance between every query pointin [pl, p2, . ..] and
every reference point in the loaded file is computed, and if the dis-
tance between any pair of points is less than a pre-defined threshold,
this pair will be emitted for further processing in the following re-
ducer(s). Note that every query point can be matched against points
in multiple bins for increasing the accuracy. Thus, the first set of
reducers combine the results from all mappers, which are keyed on
query points IDs. The reducers then sort neighbors collected from
all bins, and output the nearest K neighbors for each query point.
The output of the first set of reducers contains the object ID of the
query point as well as the object IDs of the K nearest reference
points and the distance between each reference point and the query
point. Recall that multiple data points (e.g., SIFT features) can be-
long to one object (e.g., image) and that we identify all data points
of the same object with the ID of that object. Specifically, we give
each point an ID that is composed of two components: (ObjectID,
Offset), where Offset is an identifier for the point within the object.
The output of the first set of reducers is the query object ID as key
of the out key-value pair. That is, for a query object all the data
points from all candidate reference objects are grouped together
and fed to the second set of reducers for any post-processing of the
K nearest neighbors desired by the considered application.

3.4 Updating the Distributed Index

The distributed index is built from the reference dataset, which
is assumed to change at slower rate than the query dataset. Our de-
sign of the index, which aggregates all data points and stores them
in leaf nodes, makes updating the index less complex than other
space partitioning data structures that store data in interior nodes.
When a data point is added or removed, we only change leaf nodes,
and we do not need to manipulate or adjust the internal structure
of the tree, which can involve significant computation and commu-

"'We note that the current implementation of Hadoop requires hav-
ing an empty mapper before the second reducer.

Procedure 3 Object Matching MapReduce Job
MAPPER
/MMnput: BinID and list of query points
/[Output: List of [(pointID,neighbor)], where neighbor =
(pointI D, distance)
1: function MAP(BinID bid, Point qList[])
2 Point r List[] = Load points from file corresponding to bid
3 for each ¢ in qList do
4: for each r in r List do
5 .
6
7

d = Calculate distance between ¢ and r
if d < threshold then
: Emit(g.getPointID(), (r.getPointID(), d)) > We
emit only point IDs to reduce communications overhead
8: end if
9: end for
10: end for
11: end function
REDUCER 1
/Mnput: List of pair of points and distance between them
/[Output: List of [(pointI D, [(neighborlD,d)])]
1: function REDUCE(PointID ¢/ D, Neighbor nList[])
2: Sort nList based on distance to g
3: Emit (¢I D, [nList[1],nList[2],...
4: end function
REDUCER 2
/MMnput: List of [(objectI D, [(neighborID,d)])]
//Output: Application Specific
1: function REDUCE(ObjectID ¢I D, Neighbor knn List|])
2: Application-specific processing
3: end function

,nList[K]])

nication overheads in distributed environments. In addition, since
leaf nodes are stored as separate files on the distributed file sys-
tem, accessing and updating them can easily be done in parallel, as
concurrent file accesses are managed by the distributed file system.
Furthermore, the sizes of files containing the data points are used to
monitor the balance of the index and whether restructuring of the
index is needed, as will be explained below.

Adding/Removing Points. For adding/removing a data point,
we first traverse the directing tree to find the bin (leaf node) that
this point belongs to. Then, the file corresponding to that bin is
accessed through the file system and the point is added/removed.
For adding/removing multiple points (batch mode), the bin identi-
fication of all points is done first using the directing tree. Then, all
points that belong to the same bin are added/removed to the corre-
sponding file at once. In actual deployment of the DIMO system,
the number of levels in the directing tree should be conservatively
chosen such that the bins are not fully filed with data after the first
construction of the index. Thus, since the bins are relatively large
(64 to 128 MBs each), the internal structure of the index will not
be impacted by small updates.

Scaling Index Up/Down. When the number of points in the
index increases/decreases significantly, the internal tree structure
of the index needs to be scaled up or down to handle the change of
the data size. We scale the index by controlling the number of levels
numLevels in the directing tree. If the number of points increases
beyond the initial capacity of the index, the num Levels parameter
will be increased by 1, which means doubling the number of bins
at the bottom of the tree and hence doubling the total number of
points that can be managed by the index. To achieve this, we select
a dimension to be considered for the new level. Recall that the

121

dimensions are computed by performing PCA on a sample of the
reference dataset. If we have used all dimensions already in the
tree, we recycle through them again. That is, the dimension for the
new level of the tree will be the same as the first level of the tree.
Then, as we do for the initial index construction, we project and
sort the data points (of the random sample) based on the value of
the new dimension. Then, we compute the median and split each
leaf node into two based on it. Similar steps are used for scaling
down the index when more than half of the points are removed. In
this case, the number of levels in the tree is decreased by one and
each pair of leaf nodes will be merged into one.

Monitoring Index Imbalance. If there are major updates to the
index which involve adding/removing sizable fractions of the refer-
ence points, the balance of the index can be affected, especially if
the added/removed data points change the probabilistic distribution
of the reference data points. For example, if the added/removed
data points make the data distribution more/less skewed. An imbal-
ance in the index can result in some bins become quite large while
others are empty or have few points. This means that large bins
would require multiple storage blocks of the distributed file sys-
tem to be read and processed, which translates to longer processing
times. Whereas little processing is performed for small bins, while
the system still pays the I/O overhead to access the almost-empty
blocks of the distributed file system. The imbalance in the index
can easily be detected by monitoring the sizes of the bins on the
distributed file system. If the bin size distribution significantly de-
viates from the expected uniform distribution, the index should be
re-built from scratch, by repeating the steps in Section 3.2. The de-
viation from the uniform distribution is quantified by measuring the
variance in the bin sizes and if it exceeds a pre-defined threshold,
the index re-building process is initiated.

4. EVALUATION

In this section, we evaluate the performance of the proposed
DIMO system and compare it against the closest system in the lit-
erature. We note that DIMO is designed to be a general object
matching system that can work for different applications. All ap-
plications built on top of DIMO rely on the accuracy of the nearest
neighbors computed by DIMO, while these applications may use
different metrics to assess their performance. Thus, in our exper-
iments, we focus on evaluating the accuracy of the nearest neigh-
bors computed by DIMO and we do not consider application-level
performance metrics as they vary from one application to another.

We first describe our experimental setup and datasets. Then,
we compare the nearest neighbors computed by DIMO versus the
ground-truth neighbors. Then, we compare our system versus the
best results reported by the RankReduce system [27]. Then, we
analyze the elasticity and scalability of DIMO. Finally, we analyze
various overhead imposed by DIMO.

4.1 Experimental Setup and Datasets

Platform. We have implemented the DIMO system using Java
1.7 and Apache Hadoop 1.0.3. We conduct several experiments
on clusters of various sizes from the Amazon Elastic MapReduce
(EMR) cloud service. To show the elasticity and scalability of
our system, we conduct experiments on EMR clusters of sizes 8,
16, 32, 64, and 128 machines. Each machine in the cluster is an
Amazon EC2 Medium Instance, which has 3.75 GB of memory, 2
EC2 Compute Units, and 410 GB storage, and it runs 64-bit De-
bian 6.0.5 (Squeeze) linux as its operating system. In addition, we
have created a virtual Hadoop cluster on a single machine in our
lab. This machine is a Dell T1600 server with 8-core Intel Xeon
E3-1245 3.3 GHz processor, and 16 GB main memory. The op-

Ju—

1

0.9 — -\-\.\.
< 50'8 —_— . g 0.8
208)
Z 506 £ 06
2 2 ksi
g0y g S04
g 06 g 04 o
a2 —e—Precision@1 =z <02

0.51% - ¢ -Precision@10 0.2 '

2 ‘=% Precision@20 0
0'40 16 32 48 64 80 96 112 128 00 5 10 15 20 0 100 200 300 400

Number of Scanned Bins

(a) Varying number of bins.

K Nearest Neighbors

(b) Varying number of nearest neighbors.

Reference Dataset Size (Thousands)

(c) Varying data size.

Figure 5: Comparing DIMO versus ground truth.

erating system is 64-bit Ubuntu linux 12.04. We used this virtual
Hadoop cluster for small-scale experiments.

Datasets. We assess the performance of the DIMO system using
data points extracted from images. We emphasize that DIMO is a
general system and we use data from images as an example of real
data and because they are more available than other data types. We
extract SIFT [19] features from images and use each SIFT feature
as a data point. We use the VLFeat 0.9.17 [28] implementation
of the SIFT algorithm. On average, we extract 200 SIFT features
from each image, and each feature has 128 dimensions. We use
two image datasets in our experiments:

e Caltech Dataset. This dataset is composed of data points ex-
tracted from 2,500 images. The images are obtained from
the Caltech Buildings and Game Covers datasets [2]. Caltech
Buildings is a set of images taken for 50 buildings around the
Caltech campus. Five different images were taken for each
building from different angles and distances, giving a total
of 250 images. Caltech Game Covers is a set of CD/DVD
covers of video games, it includes around 11,400 images for
games on different consoles. We extract around 200 data
points from each image. Thus, this dataset contains 500,000
reference data points. We use all points in the construction of
the directing tree. The query set contains 10,000 data points
randomly selected from the 500,000 points. We refer to this
dataset as the small dataset and it is used to compare the near-
est neighbors computed by our system versus the actual near-
est neighbors (ground truth), which are computed using an
expensive brute force approach that tries all possibilities.

ImageNet Dataset [11]. ImageNet is an open image database
with millions of images organized according to the Word-
Net hierarchy,where each group of images illustrate a con-
cept in WordNet. We downloaded 1 million images from
ImageNet. With 200 data points extracted from each image,
this dataset contains 200 million data points and it is used
to test the scalability of our system. To build the directing
tree, we randomly select 1 million points out of the 200 mil-
lions. The query set contains 100,000 data points randomly
selected from the 200 million points.

Performance Metrics. The main goal of the DIMO system is
to provide accurate nearest neighbors. The accuracy of the re-
trieved K nearest neighbors for a point p is assessed using the
Precision@QK (p) metric, which is given by:

Zfil{Ti <= K}

Precision@QK (p) = % ,

ey

122

where T is the rank of a true neighbor. T; <= K equals 1 if a true
neighbor is within the retrieved K, and 0 otherwise.

The average precision of the retrieved K nearest neighbors across
all points in the query set () points is:

Z'ZZ‘I {PrecisionQK (i)}
Q|

We use the AvgPrecision@QK metric with different values for
K in our experiments.

In addition, we measure various other performance metrics, in-
cluding the total running time, and the amount of data exchanged
over the network.

AvgPrecisionQK = 2)

4.2 Comparison Against Ground Truth

We compare the accuracy of the returned nearest neighbors by
DIMO against the true nearest neighbors computed by a brute force
approach. The true nearest neighbors are computed by calculating
the distance between each pair of reference point and query point.
Since computing true neighbors is computationally expensive and
not possible for large datasets, we use the small Caltech Dataset
in this experiment, which has 500,000 reference points and 10,000
query points.

We plot the AvgPrecision@K in Figure 5(a) for K = 1,10
and 20. On the x-axis, we vary the number of scanned bins when
searching for nearest neighbors, as explained in Section 3.3. We
scan different number of bins at values of 4, 8, 16, 32, 64 and 128
bins out of 1024 total bins. The scanned bins represent 0.39%,
0.78%, 1.5%, 3.125%, 6.25%, and 12.5% of the data size, respec-
tively. We measure the average precision of 10,000 query data
points against the 500,000 reference data points. The results show
that DIMO achieves high precision. For example, when we scan
16 bins out of 1,024 representing only 1.5% of the data size, the
precision is more than 80% for K = 1 and it is more than 70%
for K = 10, and 20. In addition, when we set the number of
scanned bins to 64, DIMO achieves an average precision of more
than 93% for K = 1, 10, and 20. This means that, on average, 93%
of the true K nearest neighbors are found in the returned K neigh-
bors by DIMO. We note that the number of scanned bins controls
the trade-off between the average precision achieved and the com-
puting resources needed, which makes DIMO suitable for various
applications with different requirements.

In the next experiment, we study the effect of changing the num-
ber of the retrieved K nearest neighbors. We measure the average
precision at different values of K. We fix the number of scanned
bins at 16 representing only 1.5% of the data size. The results

1 _

= 0.8

=

9 0.67

wn

D

£ 0.4

0

< 0.2t - ®- RankReduce

—=— DIMO

0 I I i i i
0 5 10 15 20 25

Scanned percentage of the dataset

Figure 6: Comparing DIMO versus the closest system in the
literature, RankReduce.

are plotted in Figure 5(b), which show that the average precision
achieved by DIMO is not significantly impacted by increasing K.

Next, we show the effect of changing the reference dataset size,
while keeping the number of scanned bins fixed for each query
data point. We take the average precision of 10,000 query data
points against different number of reference data points of 50,000,
100,000, 200,000, and 400,000. For each reference dataset, we
build a directing tree of an increasing size. We start by a 10-level
tree for the 50,000 points having 1,024 leaf nodes (bins). We in-
crease the number of levels in the directing tree as the reference
dataset increases, until we reach 13 levels in the tree for the refer-
ence dataset of size 400,000 points. In this case, there are 8,192 leaf
nodes. We calculate average precision at K = 1 (the nearest neigh-
bor) and plot the results in Figure 5(c). At query time, we always
scan the same number of bins, which is 64. Hence, the scanned
bins represent different percentages of the reference datasets, which
are 6.25%, 3.125%, 1.5%, and 0.78% for the 50,000, 100,000,
200,000, and 400,000 datasets, respectively. Note that, since we
double the total number of bins when we double the dataset size,
each bin will roughly have the same number of points. Figure 5(c)
shows that DIMO achieves high average precision of at least 80%,
even when we scan a small fraction of less than 1% of the ref-
erence dataset. The figure also shows that the average precision is
decreased by less than 15% after increasing the reference dataset by
8 folds, while scanning the same number of bins (64). Note that,
scanning fixed number of bins, regardless of the data size, yields
the same running time. That is, keeping the same response time
even when the load increases § times.

The experiments in this section show that the DIMO system re-
sults in high average precision when compared against the ground
truth nearest neighbors. And this high precision is maintained in
different settings of increasing the number of nearest neighbors K,
number of scanned bins, and size of the reference dataset.

4.3 Comparison Against RankReduce

We compare the proposed DIMO system against the closest one
in the literature, which is RankReduce [27]. RankReduce imple-
ments a distributed LSH index. It maintains a number of hash ta-
bles over a set of machines on a distributed file system, and it uses
MapReduce for searching the tables for similar points. We compare

123

the results achieved by DIMO against the best results mentioned in
[27] using the same dataset and the same settings. We did not im-
plement RankReduce; rather we use the the best stated results in its
paper. We use the same dataset size of 32,000 points extracted from
visual features of images. We measure the average precision at 20
nearest neighbors at the same percentage of scanned bins, which
are called probed buckets in RankReduce terms.

We plot the comparison results in Figure 6. The results show
that DIMO consistently outperforms RankReduce. And the per-
formance improvements are significant (15-20%) especially in the
practical settings when we scan 5-10% of the data points. For ex-
ample, when the fraction of scanned data points is 5%, the aver-
age precision achieved by DIMO is about 84%, while the average
precision achieved by RankReduce is less than 65% for the same
fraction of scanned data points. For RankReduce to achieve 84%
average precision, it needs to scan at least 15% of the dataset (3X
more than DIMO), which incurs significantly more computation
and I/O overheads than DIMO. Similarly, when scanning 10% of
the data points, DIMO achieves more than 97% average precision,
while RankReduce achieves less than 80% average precision. We
note that the performance of DIMO and RankReduce is close when
we scan a large fraction of the data (both will get close to 100% av-
erage precision), but this is not relevant in practice because of the
huge computational costs needed. Similarly, when scanning a tiny
fraction of data (< 1%), both systems produce low average preci-
sion, which may also not be useful for many practical applications.
Nonetheless, in all cases, the performance of DIMO is better than
that of RankReduce.

In addition to the superior performance in terms of average pre-
cision, DIMO is also more efficient in terms of storage and compu-
tation. For storage, RankReduce needs to store the whole reference
dataset multiple times in hash tables; up to 32 times. On the other
hand, DIMO stores the reference dataset only once in bins. Stor-
age requirements for a dataset of size 32,000 points indicate that
RankReduce needs up to 8 GB of storage, while DIMO needs up
to 5 MB , which is more than 3 orders of magnitude less. These
storage requirements may render RankReduce not applicable for
large datasets with millions of points, while DIMO can scale well
to support massive datasets.

For computation resources, DIMO and RankReduce use similar
scan method to reference points found in bins or buckets. How-
ever, as discussed above, RankReduce needs to scan more buckets
to produce similar precision as DIMO. This makes DIMO more
computationally efficient for a certain target precision, as it scans
fewer bins.

In summary, the results in this section show that DIMO outper-
forms the closest system in the literature (RabkReduce [27]) by a
large margin in terms of the achieved average precision of the com-
puted nearest neighbors. Furthermore, DIMO requires at least 3
orders of magnitude less storage than RankReduce and it is more
computationally efficient.

4.4 Scalability and Elasticity of DIMO

We conduct multiple experiments to show that DIMO is scalable
and elastic. Scalability means the ability to process large volumes
of data, while elasticity indicates the ability to efficiently utilize
various amounts of computing resources. Both are important char-
acteristics: scalability is needed to keep up with the continuously
increasing volumes of data and elasticity is quite useful in cloud
computing settings where computing resources can be acquired on
demand.

We run DIMO on datasets of different sizes from 10 to 160 mil-
lion data points, and on clusters of sizes ranging from 8 to 128

250

—O— 8 Machines
—— 16 Machines
—— 32 Machines
—/— 64 Machines
—A— 128 Machines

= N N
N O N
o o O

Minutes)

[¢)]
o
T

1251

Running Time
[\ [6)] ~ 3
[6)] o [6)] o

50

(=]

75 100 125 150 175

2‘5
Reference Dataset Size (Millions)

o

Figure 7: Scalability and elasticity of DIMO: Running times of
different dataset sizes on different number of machines.

machines. In all experiments, we compute the X = 10 nearest
neighbors for a query dataset of size 100,000 data points. We mea-
sure the total running time to complete processing all queries, and
we plot the results in Figure 7. The figure shows that DIMO is able
to handle large datasets, up to 160 million reference data points
are used in creating the distributed index. More importantly, the
running time grows almost linearly with increasing the dataset size
on the same number of machines. Consider for example the curve
showing the running times on 32 machines. The running times for
the reference dataset of sizes 40, 80, and 160 million data points
are about 40, 85, and 190 minutes, respectively.

In addition, the results in Figure 7 clearly indicate that DIMO can
efficiently utilize any available computing resources. This is shown
by the almost linear reduction in the running time of processing the
same dataset with more machines. For example, the running times
of processing a reference dataset of size of 80 million data points
are 160, 85, 52, and 27 minutes for clusters of sizes 16, 32, 64, and
128 machines, respectively.

The scalability and elasticity of DIMO are obtained mainly by
our design of the distributed index, which partitions the datasets
into independent and non-overlapping bins. These bins are allo-
cated independently to computing machines for further processing.
This data partitioning and allocation to bins enable flexible and dy-
namic distribution of the computational workload to the available
computing resources, which is supported by the MapReduce frame-
work.

In summary, the experiments in this section show that DIMO
can process large datasets and the processing time proportionally
decreases as more computing resources become available to DIMO.

4.5 Overhead Analysis of DIMO

In this section, we analyze various aspects of the DIMO system.

Network Overhead. It is important to minimize the amount of
data exchanged over the network in the DIMO system; otherwise
DIMO may not be able to process large datasets or run on large
clusters. We run different sets of experiments on a fixed-size clus-
ter of 16 machines, and we measure the amount of data exchanged
among computing nodes across the network. We measure this net-
work overhead for various reference data sizes as well as for differ-
ent query sizes, and we plot the results in Figure 8. We obtain the

124

25001

20001

15001

10001

500¢

——a—

Data Shuffled over Network (MBs)

0 20 40 60 80 100
Reference Dataset Size (Millions)
(a) Different sizes of reference datasets
25001
2000+
1500+
1000

500¢

0 i i i i i i
0 100 200 300 400 500 600
Query Dataset Size (Thousands)

Data Shuffled over Network (MBs)

(b) Different sizes of query datasets

Figure 8: Network overhead imposed by DIMO.

amount of data exchanged from Hadoop logs. In Figure 8(a), we
vary the reference dataset size from 10 to 160 million data points,
and we fix the query dataset size at 100,000 data points. The figure
shows that the amount of data shuffled across the network is not af-
fected by the increase of the reference dataset size, which indicates
that DIMO effectively partitions the reference dataset to minimize
the network communication; if otherwise, more data would have
been shuffled across the network as the size of the reference dataset
increases, which proportionally increases the size of the distributed
index.

In Figure 8(b), we vary the query dataset size from 100,000 to
500,000 data points, and we fix the reference dataset size at 10
million data points data points. The results show a linear increase
in the total amount of data shuffled across the network as the size
of the query dataset increases.

Storage Usage. Our usage of storage is predictable before run-
ning the system. We write the data points in binary format, and
store them as fixed-length records in flat files. We limit the file size
to fit in one distributed file system block (64 MB or 128 MB). This
enables fast I/O operations by reading the whole bin using the min-
imum number of I/O operations. In addition, the distributed file
system uses a lazy allocation strategy. That is, if data points inside
a bin are less than the the block size, the distributed file system
used only the required space without allocating the whole block
size. This yields good utilization of the storage system.

In our experiments with image datasets, we use 128-dimension
SIFT features as data points. Each data point is stored in 136 bytes:
8 bytes for object ID and point ID, and 128 bytes for the 128 di-
mensions. Thus, for example, for a 1 million data point, we need

_2500;

o it [\®)
(9) 1% =
= [=3 (=
(=] (=] S (=]

Total CPU Time (Minutes

% 16 32 48 64 80 96 112 128 144
Number of Machines

(a) Total CPU time across all machines

144
1281
1127
961
80r
64r
481
32r
161
0 16 32 48 64 80 96 112 128 144
Number of Machines

CPU Time / Machine (Minutes)

(b) Average CPU time per machine

Figure 9: Analysis of CPU usage by DIMO for different cluster
sizes.

136 MB of storage on the distributed file system. We confirmed
these calculations by inspecting the Hadoop logs, which showed
close numbers. The storage overhead in this case is 8 bytes (for
storing IDs for each point) divided by 136 bytes (total size needed
for each point), which is less than 6%. In addition, we store the
upper part of the distributed index (the directing tree) only once on
the distributed file system. The size of the directing tree depends
on the number of data points in the reference dataset. However, as
mentioned in Section 3.2.1, the nodes in the directing tree do not
store data points; they only store meta data (splitting values). This
meta data is a scalar value, which means that each node in the tree
needs up to 4 bytes. Therefore, the directing tree takes a negligible
space on the storage system compared to the reference dataset.

Memory Usage. The DIMO system does not require large mem-
ory. For our experiments, we set the maximum allowed memory to
512 MB per node for reducer tasks, and 256 MB per node for map-
per tasks. Thus, DIMO can run on regular off-the-shelf servers,
even for processing very large datasets.

CPU Usage and Load Distribution. Two important aspects of
any distributed system are how it can balance the workload among
the computing machines, and whether adding more machines in-
troduces more overheads. Load imbalance results in inefficient uti-
lization of resources and increased running times. More overheads
ultimately limit the scalability of the system. To analyze the per-
formance of DIMO along these two important issues, we fix the to-
tal workload and increase the cluster size from 8 to 128 machines.
The workload is composed of processing 100,000 query data points
against 40 million reference data points. For each cluster size, we

125

run the experiment and measure the total CPU time, which is the
summation of CPU times on all machines in the cluster. We also
measure the average CPU time per machine in each case. The re-
sults are shown in Figure 9. We obtain these measurements from
Hadoop logs. The results in Figure 9(a) show that DIMO does not
introduce any significant overheads when the cluster size increases,
because the total CPU time remains around 1,000 minutes while the
number of machines varies from 8 to 128. In addition, Figure 9(b)
shows that the workload (the 1,000 total CPU time) is equally dis-
tributed across all machines. For example, increasing the number
of machines from 16 to 32 results in commensurate reduction in the
CPU time per machine from 64 to 32 minutes.

In summary, the results in this section indicate that DIMO: (i)
does not impose high network overhead, (ii) uses the storage sys-
tem efficiently, (iii) does not require large main memory even for
processing large datasets, and (iv) balances the load across the used
computing machines.

S. CONCLUSIONS

We presented a new method to store and index large-scale high-
dimensional data points for fast searching and matching. Unlike
systems proposed in previous works, our index is general and can
be used by multiple applications that require nearest neighbors search
in high-dimensional spaces. Our method computes approximate
nearest neighbors, where the accuracy of the computed neighbors
can be to traded off with the required computing resources. This
feature makes our method useful for diverse multimedia applica-
tions that have different accuracy requirements and run on comput-
ing platforms with various capacities. We implemented our method
in a complete system called DIMO using the MapReduce program-
ming model. We installed and experimented with our system on
clusters of different sizes from the Amazon Elastic MapReduce
(EMR) cloud service. We extracted more than 160 million data
points from more than 1 million images from the public ImageNet
dataset. The data points are SIFT features, where each one has 128
dimensions. We rigorously assessed the performance of the DIMO
system and compared it against the closest one in the literature,
which is called RankReduce [27]. Our results showed that our sys-
tem achieves high accuracy of up to 95% compared to the ground-
truth nearest neighbors. Our results also showed that DIMO is scal-
able and elastic in the sense that it can efficiently utilize varying
amounts of computing resources, which is a desirable feature given
the wide adoption of the on-demand cloud computing model for
acquiring computing resources. In addition, our comparison re-
sults showed that DIMO outperforms RankReduce in terms of the
achieved precision of the computed nearest neighbors, uses three
orders of magnitudes less storage.

Acknowledgments

This work is partially supported by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada and the British
Columbia Innovation Council (BCIC).

6. REFERENCES

[1] M. Aly, M. Munich, and P. Perona. Distributed Kd-Trees for
Retrieval from Very Large Image Collections. In Proc. of
British Machine Vision Conference (BMVC), 2011.

[2] M. Aly, P. Welinder, M. Munich, and P. Perona. Scaling
Object Recognition: Benchmark of Current State of the Art
Techniques. In Proc. of IEEE Workshop on Emergent Issues
in Large Amounts of Visual Data (WS-LAVD), pages
2117-2124, 2009.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In Proc. of

(4]

(5]

(6]

[7

—

(8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

IEEE Symposium on Foundations of Computer Science
(FOCS), pages 459468, 2006.

S. Arya and D. Mount. Algorithms for fast vector
quantization. In Proc. of Data Compression Conference
(DCC), pages 381-390, 1993.

J. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, pages
509-517, 1975.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is nearest neighbor meaningful? In Proc. of
Conference on Database Theory (ICDT), pages 217-235,
1999.

S. Blott and R. Weber. A simple vector-approximation file
for similarity search in high-dimensional vector spaces.
ESPRIT Technical Report TR19, ca, 1997.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proc.
of Conference on Very Large Databases (VLDB), 1997.

J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In Proc. of Symposium on
Operating Systems Design and Implementation (OSDI),
pages 137-150, 2004.

S. Deegalla and H. Bostrom. Reducing high-dimensional
data by principal component analysis vs. random projection
for nearest neighbor classification. In Proc. of Conference on
Machine Learning and Applications (ICMLA), pages
245-250, 2006.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In
Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248-255, 2009.

F. Falchi, C. Gennaro, and P. Zezula. A content-addressable
network for similarity search in metric spaces. In Proc. of
conference on Databases, information systems, and
peer-to-peer computing (DBISP2P), pages 98—110, 2007.
A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proc. of Conference on Very
Large Data Bases (VLDB), pages 518-529, 1999.

A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. of ACM Conference on Management of
Data (SIGMOD), pages 47-57, 1984.

P. Haghani, S. Michel, and K. Aberer. Distributed similarity
search in high dimensions using locality sensitive hashing. In
Proc. of Conference on Extending Database Technology
(EDBT), pages 744-755, 2009.

N. Khodabakhshi and M. Hefeeda. Spider: A system for
finding 3d video copies. ACM Transactions on Multimedia
Computing, Communications, and Applications
(TOMCCAP), 9(1), 2013.

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In Proc. of IEEE
Conference on Computer Vision (ICCV), pages 2130-2137,
2009.

H. Liao, J. Han, and J. Fang. Multi-dimensional index on
hadoop distributed file system. In Proc. of IEEE Conference
on Networking, Architecture and Storage (NAS), pages
240-249, 2010.

D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, pages

126

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

91-110, 2004.

W. Lu, Y. Shen, S. Chen, and B. Ooi. Efficient processing of
k nearest neighbor joins using mapreduce. Proceedings of
the VLDB Endowment (PVLDB), 5(10):1016-1027, 2012.

J. McNames. A fast nearest-neighbor algorithm based on a
principal axis search tree. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), pages 964-976,
2001.

P. Ram and A. Gray. Which space partitioning tree to use for
search? In Proc. of Advances in Neural Information
Processing Systems (NIPS), pages 656—-664, 2013.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In Proc.
of conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM),
pages 161-172, 2001.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In Proc. of IEEE Symposium
on Mass Storage Systems and Technologies (MSST), pages
1-10, 2010.

S. Smith, M. Bourgoin, K. Sims, and H. Voorhees.
Handwritten character classification using nearest neighbor
in large databases. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), pages 915-919, 1994.

L. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of conference on
Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM), pages 149-160,
2001.

A. Stupar, S. Michel, and R. Schenkel. Rankreduce -
processing k-nearest neighbor queries on top of mapreduce.
In Proc. of Workshop on Large-Scale Distributed Systems for
Information Retrieval(LSDS-IR), pages 13—18, 2010.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

J. Wang, S. Wu, H. Gao, J. Li, and B. Ooi. Indexing
multi-dimensional data in a cloud system. In Proc. of ACM
Conference on Management of data (SIGMOD), pages
591-602, 2010.

P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proc. of ACM
Symposium on Discrete algorithms (SODA), pages 311-321,
1993.

C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for
large data in mapreduce. In Proc. of Conference on
Extending Database Technology (EDBT), pages 3849,
2012.

H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn:
Discriminative nearest neighbor classification for visual
category recognition. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
2126-2136, 2006.

