
Spatio-Temporal Video Copy Detection

R. Cameron Harvey
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

cameron_harvey@sfu.ca

Mohamed Hefeeda
Qatar Computing Research Institute

Qatar Foundation
Doha, Qatar

mhefeeda@qf.org.qa

ABSTRACT

Video copy detection algorithms are used to find copies of
original video content even if the content has been altered.
Given the prevalence of video recording and copying devices
as well as the availability of many Internet sites for host-
ing videos, detecting video copies has become an important
problem especially for companies interested in managing and
controlling copyrights of their content. We propose a new
content-based video copy detection algorithm. The proposed
algorithm creates signatures that capture the spatial and
temporal features of videos. These spatio-temporal signa-
tures enable the algorithm to provide both high precision
and recall. In addition, these signatures require small stor-
age and are easy to compute and compare. Our extensive
experimental analysis with a large video dataset shows that
the proposed algorithm achieves high precision and recall
values while remaining robust to many video transforma-
tions that commonly occur in practice. The algorithm is
simple to implement and is more computationally efficient
than previous algorithms in literature.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering, Search process

General Terms

Algorithms, Experimentation

Keywords

Video copy detection, Video fingerprinting

1. INTRODUCTION
Camcorders and digital video recorders (DVRs) are read-

ily available and easily affordable. In fact, multimedia tech-
nologies have advanced to the point where video recording
capabilities are commonly bundled with electronic devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’12, February 22-24, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1131-1/12/02 ...$10.00.

such as digital cameras, cell phones and personal digital as-
sistants (PDAs). Virtually all modern video recorders store
data digitally. Moreover, they are built with connection
ports to easily connect and upload the recorded content onto
a computer. It is a simple matter to further distribute the
content from a computer onto social media websites such as
YouTube or facebook. More and more people are upload-
ing and sharing video content. This situation creates issues
relating to data management. One issue is database opti-
mization. It is inefficient to store multiple copies of the same
video in a database as it creates needless infrastructure ex-
penses and complicates search and retrieval algorithms. If
we can detect whether a video already exists in the database,
we can make more effective use of storage.

Another serious issue relates to copyright infringement.
It is relatively easy to copy commercial content and redis-
tribute it over the Internet. This can result in loss of revenue
for a business. It is not feasible to manually sift through
the countless hours of videos found on the Internet to see
if someone has made an illegal copy. There is a real need
to use automated video copy detection techniques to detect
copyright violations. Video copy detection can also be used
to monitor usage. For example, a company pays a televi-
sion channel for a commercial advertisement. It would like
to monitor the channel for when its advertisement is played
and how often. It can use these data to confirm that contract
terms have been met.

There are two fundamental approaches to video copy de-
tection: watermarking and content based. Watermarking
techniques embed information into the video content. This
information is unique to the video and under normal cir-
cumstances invisible. Copy detection becomes a matter of
searching the video content for this hidden information. This
method has several disadvantages. Legacy films which have
been released without a watermark cannot benefit from this
process. There may be too many un-watermarked copies in
existence which can be used as sources for copying. Also,
many video alterations (or transformations) affect the wa-
termark. If the video is copied and re-encoded in a way
which changes the watermark, then it is no longer useful for
copy detection purposes.

A better approach is to extract distinctive features from
the content. If two videos have the same features, then one
of the videos may be a copy of the other. This is known
as Content-Based Copy Detection (CBCD). The underlying
premise of Content-Based Copy Detection is that there is
enough information within a video to create a unique finger-
print. Another way to think of it is that the content itself

35

is a watermark.
Video copy detection is further complicated by the many

edit effects which may be added either intentionally or as a
by-product of the copying process. For example, the copied
video may be scaled or cropped. It may have its contrast,
brightness, or color balance adjusted. It can also be trans-
coded using different frame rates or different bit-rates. We
refer to changes in videos as transformations. A good video
copy detection system should represent the content of the
video by features which are not sensitive to transformations
which occur in practice. The feature set must be robust
and discriminating. Robustness is the ability of the features
to remain intact and recognizable in the face of encoding
distortions and edit effects. A discriminable feature is one
which is representative of the video content, but unlikely to
be found in videos which do not have the same content. It
will allow us to filter out videos that do not have matching
content.
In addition to being robust and discriminating, the fea-

ture set extracted should be compact. A compact signature
requires less storage space and less computation to evaluate
how closely two signatures match. The evaluation process
must be efficient and fast to effectively determine copies in
databases which may contain thousands of hours of video.
In this paper, we propose a novel content-based video copy

detection algorithm. The proposed algorithm uses highly
discriminative local interest points in a way which avoids the
computational complexity usually associated when matching
these high dimensional descriptors. Specifically, the pro-
posed algorithm creates combined signatures that capture
the spatial and temporal features of videos. These combined
signatures enable the algorithm to provide high accuracy (in
terms of precision and recall). In addition, these signatures
require small storage and are easy to compute and compare.
This makes the proposed algorithm more computationally
efficient than previous ones in literature.
We have implemented the proposed algorithm and con-

ducted extensive experimental analysis with a large video
dataset prepared for video copy detection by TRECVID [15].
We evaluated the precision and recall values achieved by
the proposed algorithm under many realistic scenarios, in-
cluding: (i) short clips of reference videos are copied, (ii)
copied video clips are subjected to individual video trans-
formations such as cropping, scaling, blurring, camcording,
logo insertion, and contrast change; we considered a total
of 16 different video transformations, and (iii) copied video
clips are subjected to multiple video transformations at the
same time. In addition, we analyzed the running time of
the proposed algorithm and how it can be substantially de-
creased for large-scale video copy detection systems. Our
rigorous results show that the proposed algorithm produces
high precision and recall values and it is robust to many
video transformations.
The rest of this paper is organized as follows. Section 2

summarizes the related works in literature. Section 3 presents
the details of the proposed algorithm. Section 4 presents the
setup of our experiments, summarizes our results, and com-
pares the performance of our algorithm versus others in lit-
erature. Section 5 concludes the paper and outlines possible
extensions for this work.

2. RELATED WORK
Some of the early video copy detection efforts focused

Searchable

database

Feature

Extractor

Reference Video

Reference Video

Reference Video

Query Video Search Engine
Feature

Extractor

Signature

Signature
Copy

Not a Copy

Figure 1: Common architecture for video copy de-

tection systems.

on using color as the discriminatory feature. For exam-
ple, Naphade et al. [12] propose a system which creates a
histogram in the YUV color space. The luminance, or Y-
channel, is quantized into 32 bins and each of the 2 chromi-
nance channels, U and V, are quantized into 16 bins. Each
frame in the video sequence is represented by these three his-
tograms. The distance between frames is calculated based
on a sliding window approach and the intersection of the
histograms. Color-based signatures are weak. Encoding or
re-encoding often cause global variations in color. Another
weakness of color signatures is that similar colors can be
present in very different video clips. An example of this is
two video clips with different ocean scenes. The resultant
histograms would have a high intersection because each his-
togram would be predominately blue, but they would not be
copies. In general, color signatures are not robust to com-
mon color shifts and they are not discriminating enough.

Two of the widely accepted feature detection algorithms
are SIFT (Scale Invariant Feature Transform) and SURF
(Speeded Up Robust Features) [1]. Both are invariant to
many common transformations, but SURF is about 6 times
faster [4] in calculating interest points. The feature vector
from SIFT has 128 dimensions, while that of SURF has 64
dimensions. In general, SIFT features are more discrimi-
nating, but harder to compute, require more storage, and
are more complex to compare with each other. They are
well suited for object recognition and image retrieval tasks.
SURF features are popular because they are faster and less
complex.

Local information captured by SIFT or SURF features are
more descriptive, but because of the high dimensionality of
each feature vector and the large number of features detected
on a frame, the computational complexity of the distance
matching is greatly increased.

Roth et al. [13] use the robustness of local descriptors in
their copy detection algorithm, but they reduce the high di-
mensionality of the resultant vectors in the following way.
They take every frame of the source video and divide it hor-
izontally and vertically by four. This forms 16 regions for
each frame. They then find local points of interest (SURF
features) in the frame. Typical feature extraction algorithms
will store for each point of interest an n-dimensional vector
describing the feature. The authors of this paper instead
choose to simply count the number of features identified in
each region and use this as the metric for copy detection.
They create a database of videos and store for each video,
the pre-processed SURF count for each frame. To determine
whether a query video is a copy, they perform the same re-

36

gion by region SURF count for each frame in the query video
and compare this to each source video. The comparison met-
ric is the normalized sum of the differences in SURF counts
for each region in the frame. Two frames are considered to
be a match if this normalized sum is below some threshold.
A copy is reported if the longest running subsequence of
matches is above another threshold. One problem with this
approach is its memory requirement. It needs to compare
every frame in the query against every frame of the refer-
ence and store a score for each comparison in a table for later
analysis. This requires O(NM) memory for a query of M
frames and a reference of N frames. Similarly, the running
time is O(NM). Our algorithm requires O(N+M) memory
and its running time is always better at O(NM −M2).

3. SYSTEM OVERVIEW AND PROPOSED

ALGORITHM
In this section, we first present an overview of the pro-

posed spatio-temporal video copy detection algorithm. Then,
we present the details. Finally, we analyze the time complex-
ity of the proposed algorithm.

3.1 Overview
We illustrate in Figure 1 the common architecture for

video copy detection systems. We define a reference video
as the original video that we want to locate copies of. Signa-
tures of reference videos are created and stored in a database
offline. A query video is tested to see whether it is a copy
by testing it against the database of reference videos using
the proposed video copy detection algorithm.
Our algorithm improves the spatial signature of [13] by

adding a temporal component using ordinal analysis. An
ordinal number refers to the position or rank in a sorted
list. The temporal component is calculated by ranking the
spatial SURF count regions along the time line. While the
actual counts may vary from frame to frame under various
transformations, it is assumed that the spatial ranking of
the blocks within the frames will change relatively slowly
within a video shot. This enables our algorithm to sub-
sample video sequences aggressively. That is, our algorithm
compares only sample frames from the query video to ref-
erence video. This sub-sampling yields substantial saving
in the storage space needed in the database for the signa-
tures as well as significantly reducing the running time of
the search algorithm since we are comparing fewer frames.
As detailed in the following section, there are several steps

in the algorithm. However, the main idea of the proposed
algorithm is to create combined and simple signatures that
capture the spatial and temporal features of videos. Com-
bined signatures improve the accuracy of the video copy de-
tection process. In addition, these signatures are easy to
compute and compare. This makes the proposed algorithm
more computationally efficient than previous ones in the lit-
erature.
Figure 3 shows a simple example of how we create a sig-

nature for a video clip of 4 frames. The spatial part of the
signature is computed by dividing each frame into regions.
We detect local SURF (Speeded Up Robust Feature) fea-
tures in each region. Then, we count the number of SURF
features found within each region. These counts of SURF
features in the regions of a frame represent the spatial part
of the signature for that frame. The matrix S shows the

(a) Video with letter-box transformation and PiP

(b) Mask of static pixels (c) Mask with Borders re-
moved

Figure 2: The mask for a combination of PIP and

letter-box transformations.

spatial part of the signature in Figure 3. To add the tem-
poral information to the signature, we sort the number of
counts in each region along the time line and assign an ordi-
nal value based on its temporal rank. In Figure 3, each row
of the matrix λ shows the temporal part of the signature
for one region. Notice that the element λi,j represents the
rank (or order) of region i in frame j. For example, region
1 in frame 1 has the smallest number of SURF features in
all four frames, and thus has a rank of 4 in the λ matrix.

The final combined signature of a video clip (matrix λ)
will have two parts: spatial information from partitioning
the frames into regions and temporal information by ranking
each region along the time-line. To detect copies, signatures
can be compared using any similarity metric; we use the L1
distance in our implementation.

3.2 Algorithm Details
The pseudo code of the proposed algorithm for video copy

detection is outlined in Algorithm 1. The algorithm runs
once for each query video. It creates a signature for this
query video. Then, it compares this signature against pre-
computed signatures of the reference videos. The algorithm
has several steps, which are described in the following.

1. Remove static borders, letter-box and pillar-box ef-
fects. This preprocessing step is done by examining
how the pixels change throughout the clip. Pixels with
very low variance are likely edit effects added to the
video. These effects include borders, logos, pattern in-
sertion as well as letter-box and pillar-box effects from
resizing.

37

Algorithm 1: The Proposed Algorithm

Input: Dbref : Reference videos signature Database
Input: Vquery Query video
Input: Threshold: Threshold distance
Input: Hr, Vr: Number of horizontal and vertical

regions
Output: True if the query is a copy, False otherwise
Output: Location of best match in the reference video

1 foreach Signature, Sigref in Dbref do

2 M ← Number of frames in the reference video
3 N ← Number of frames in in the query video
4 R ←Hr∗Vr : Number of regions in each signature
5 offset ← 0
6 minDist ← ∞
7 foreach Frame in Vquery do

8 Crop the frame to remove static borders,
letter-box and pillar-box effects

9 Divide into a grid of Hr x Vr regions
10 Calculate static pixels’ percentage in each region
11 Count the number or SURF interest points in

each region and rank each region temporally
12 Sigquery ← {r0, r1, ..., rR}, where ri is the

ranking vector of the M frames of region i
13 end

14 for i ← 1 to N −M do

15 foreach Usable region in the grid do

16 regionDist ← 1
M

∑M

k=1 |rank(Sigref (k +
offset)− Sigquery(k)|

17 end

18 dist ← 1
R

∑R

k=1 regionDist(k)
19 offset ← offset+ 1
20 if dist < minDist then

21 minDist ← dist
22 minOffset ← offset

23 end

24 end

25 if minDist ≤ Threshold then
Output: True
Output: minOffset

26 end

27 else Output: False

28 end

The variance is calculated using the formula of Mark
Hoemmen [16] on each pixel. The gray-scale value of
pixel x in frame i is xi.

Mk =

{

x1, k = 1

Mk−1 +
xk−Mk−1

k
, k = 2, ..., n

Qk =

{

0, k = 1

Qk−1 +
(k−1)(xk−Mk−1)2

k
, k = 2, ..., n

(1)

Once we get to the nth frame and have calculated Qn,
the variance is simply Qn/n. Figure 2(a) is an exam-
ple of a video with both a letter-box and a picture-
in-picture transformation. Its mask, shown in Figure
2(b), is used to remove borders on the outside of the

video. The red regions are pixels whose variance is be-
low threshold. If all pixels in a row (or column) on the
outside border have a variance below threshold, they
are removed from the image. The process is repeated
until a row (or column) is encountered where at least
one pixel shows variance above the threshold. The re-
sult is an image which is cropped of borders in which
the pixels do not vary. The sub-image corresponding
to the size of the cropped mask in Figure 2(c) is used
for further processing. This will remove any pillar-box
effects, letter-box effects, and borders from cropping
or shifting.

2. Divide the video into regions. This is a configurable
parameter. We can set the number of regions by speci-
fying the number of vertical and horizontal partitions.
For example, specifying 3 horizontal and 2 vertical par-
titions would divide the frame into a grid with 3 rows
and 2 columns for a total of 6 regions.

3. Calculate the percentage of static pixels in each re-
gion. Each region is examined for static pixels. The
presence of static pixels within the cropped image can
indicate the presence of an image, some text, a logo,
or a background pattern superimposed onto the video.
If a significant number of pixels within a region are
masked then too much of the area may be occluded
to get useful information. If this is the case, the re-
gion can be turned off. The distance will be calculated
based on the remaining regions. In Figure 2(c), we can
detect the presence of a picture in picture transforma-
tion shown in red. If the percentage of red pixels in a
region is too high, then that region is not used in the
distance calculation.

4. Count the number of SURF interest points in each
region. The SURF features for the frame are extracted.
Each interest point is described using a 64-dimensional
vector, but we are only interested in the location of the
interest point in the frame. We determine which region
the interest point belongs to and increment the count
for that region.

5. Create the temporal signature. The temporal aspect
of the signature is obtained by sorting the SURF fea-
ture counts in each region along the time-line. The
frame with the most SURF interest points is assigned
an ordinal value of 1. The frame with the next highest
number of interest points is assigned a value of 2, and
so on. Figure 3 provides an example of the signature
creation process. The end result is a matrix where each
row contains the ranking vector of a particular region.

More formally, for a video consisting of M frames and
L regions, each region ti would result in anM -dimension
vector, si = (fi,1, fi,2, ..., fi,M), where fi,k is the num-
ber of SURF features counted in region i of frame
k. The matrix Si = (s1, s2, ..., sL) is used to pro-
duce the ranking matrix, λ=(λ1, λ2, ..., λL). Each λi

= (ri1, r
i
2, ..., r

i
L), where rik is the rank of the ith region

of frame k.

For a video withM frames and L regions, the signature
for the video consists of an LxM matrix.

6. Calculate the distance between two signatures. The
distance between a reference video and a query video

38

is based on the L1 distance between them. Our general
approach will be this. The number of frames in the
reference video is N and the number of frames in the
query video isM , whereN ≥ M . We divide each video
into L regions.

We adopt a sliding window approach. First, we cal-
culate the distance between the query video and the
first M frames of the reference video. We then slide
our window of M frames over one frame and find the
distance between the query video and M frames in the
reference video starting at the second frame. We keep
track of the minimum distance and the frame offset,
p, for which this occurred as we continue sliding our
window. Once we reach the end of the reference video,
the best match occurs at the minimum distance.

If λi is the ranking vector of the ith region, the distance
between a query video Vq and a reference video Vr is
calculated as:

D(Vq, Vr) = argmin
p

(D(Vq, V
p
r)), (2)

where p is the frame offset in the reference video which
achieved this minimum and represents the location of
the best match between the query video and the refer-
ence video, and D(Vq, V

p
r) is given by:

D(Vq, V
p
r) =

1

L

L
∑

i=1

dp(λi
q, λ

i
r), where

dp(λk
q , λ

i
r) =

1

C(M)

M
∑

j=1

|λk
q (j)− λj

r(k)(p+ j)|.(3)

C(M) is a normalizing factor which is a function of the
size of the query. It represents the maximum possible
distance between the reference video and the query
video. This maximum distance occurs when the rank-
ing of the reference video is exactly opposite to that of
the query. There are two cases based on whether M
is even or odd. The case when M is even is illustrated
in Figure 4. It is twiece the sum of the first M/2 odd
integers. Similarly, when M is odd, C(M) is twice the
sum of the first (M−1)/2 even integers. Each of these
sequences can be computed directly as follows:

C(M) =

{

(

M
2

)2
, M even

(⌊

M
2

⌋) (⌊

M
2

⌋

+ 1
)

, M odd
(4)

7. Decide if the query video is a copy of the reference
video. If the minimum distance between the query
video and the reference video at offset p is below a
threshold, then it is likely that the query video is a
copy of the reference video. In this case, we report
that a copy has been located starting in frame p of the
reference video.

3.3 Algorithm Analysis
We analyze the time complexity of the proposed algorithm

in this subsection. We compute the time needed to process
a query video of M frames when it is compared against a

27 12

214

32 16

527

36 23

125

32 8

321

Frame 1 Frame 4Frame 3Frame 2

Rank is 4 Rank is 2 Rank is 1 Rank is 3

4

3

4

3

2

1

1

1

2

4

4

3

2

λ =

2 1 327

S =

32 36 32

12 16 23 8

14 27 25 21

2 5 1 3

Figure 3: Building the ranking matrix. Here, each

frame is divided into a 2x2 grid. The number of

SURF features are counted for each area of the grid

to produce the matrix S. The ranking matrix, λ, is

built as follows: each row stores the ordinal rank of

the corresponding frame over the length of the video

sequence.

10 9 8 7 6 5 4 3 2 1

9 7 5 3 1 1 3 5 7 9

1 2 3 4 5 6 7 8 9 10

Figure 4: The top two rows show the ranking vectors

between a query and a reference video where the

vectors are exactly opposite to each other. Here,

M=10 is even and the normalization factor, C(M),
is simply twice the sum of the first M/2 odd integers.

reference video of N frames. The algorithm starts by finding
the distance between the set of frames from the query video
and the first M frames in the reference video. It then shifts
the comparison window and finds the distance between the
query set and the reference set starting at the second frame
of the reference set. The algorithm continues for a total of
N −M + 1 calculations. For every calculation, it compares
the M frames in the query with M frames of the reference
video for a total of (N −M + 1)M comparisons. The total
running time is thus O(NM − M2 + M). As the ratio of
the number of frames in the query video to the number of
frames in the reference video M/N increases, the proposed
algorithm will run faster, achieving its best running time
as M/N approaches 1. In this case it becomes O(M) which
means the proposed algorithm would be ideal for finding full
length videos. Small queries also run very fast. Taking the
derivative of the running time and setting it equal to zero,
we see that that the worst running time is achieved when
M ≈ N

2
. Around this region our algorithm has a running

time of O(M2) and will greatly benefit from search space
reduction techniques.

Thus, our algorithm has a worst-case running time similar
to running times of other algorithms [2] [5] [7] [12] which use
a sliding window approach. However, for full-length videos
and short clips, the running time of our algorithm is much
smaller than previous ones as it needs only O(M) steps.

In addition, our algorithm has a better running time than
algorithms that compare frames pairwise such as [14] [13]
[17] [6]. These algorithms find the distance of all possible
pairs between the query set and the reference set. Since each

39

frame of the query set must be compared to each frame in
the reference set, the running time is always O(MN). Note
that N ≥ M . The proposed method will always be faster
than these algorithms, since we are always subtracting M2

from the running time of O(NM). This reduction in running
time is substantial especially as the ratio M/N approaches
1.
Furthermore, as shown in the evaluation section, the pro-

posed algorithm is quite robust to sub-sampling, i.e., the
accuracy of the returned results by our algorithm does not
decrease substantially when the algorithm compares only a
subset of the frames in the query and reference videos in-
stead of comparing all frames. This enables our algorithm
to substantially decrease its running time, especially when
used in large-scale video copy detection systems.

4. EXPERIMENTAL EVALUATION
We have implemented the proposed spatio-temporal video

copy detection algorithm, and we rigorously evaluated it us-
ing many real videos prepared for video copy detection by
TRECVID [15]. We start by describing our experimental
setup in the following section. Then, we present the results
of our different experiments. We then compare our algo-
rithm versus several recent algorithms in literature.

4.1 Experimental Setup
Video Dataset and Transformations. The videos

used in the evaluation come from the TRECVID 2009 dataset
[15]. These videos were provided by the Netherlands Insti-
tute for Sound and Vision. The videos vary in size from
50 seconds to over 1.5 hours. They are stored in MPEG-1
format at 352 x 288 pixels. Altogether, there are 399 videos
totaling 107 GB of data. This amounts to over 180 hours
of content and over 13 million frames. The videos are en-
coded at a frame rate of 25 frames per second. The dataset
contains a wide variety of video sequences including news-
casts, documentaries, interviews, educational programming,
and sporting events.
We call the 399 videos reference videos. They represent

the original videos from which we want to detect copies.
We create query videos as follows. We randomly choose
seven videos from the reference videos. Since users usu-
ally copy (and post online) clips of different sizes of original
videos, we choose segments of different sizes and starting at
random locations. Segment sizes range from few frames to
full videos, depending on the experiment being conducted.
When copied, video clips can be changed either intentionally
or as a side effect of the recording and copying process. In-
tentional modifications on video clips can be used to avoid
detection, insert ads into videos, reduce bit rates, and/or
change a video’s resolutions. On the other hand, recording
and copying equipment can introduce noise and blurring,
record videos in different resolutions, change video contrast,
and/or change the gamma shift parameter. We refer to these
video changes as video transformations. Therefore, query
videos are created from clips of different sizes, which can be
subjected to one or more transformations.
To perform thorough evaluation of our algorithm, we con-

sider query videos that are subjected to many video trans-
formations. We consider videos that are subjected to indi-
vidual transformations as well as those subjected to multiple
transformations at the same time. In particular, we applied
the following individual transformations:

Transformations
2 pixel blur contrast +20% letter-box
5% crop 10% noise gamma shift 0.8
10% noise text insertion 3 pixel Blur
scale 120% horizontal flip rotate 5o

camcording 15o − 15o pillar-box contrast -20%
shift (20,10) rotate 10o horizontal flip

camcording 20o − 20o gamma shift 1.3 contrast -30%
scale 75% 5% crop shift (50,30)

text insertion stretch letter-box
20% noise horizontal flip 5% crop

Table 1: Combined transformations applied to cre-

ate query videos.

• Gaussian blur of 3 pixels in radius

• Gamma shift to 0.5

• Gamma shift to 1.6

• Image rotation by 10o

• Image shift by 50 horizontally and 40 pixels vertically

• Image crop of 20 pixels from all sides

• Addition of random noise to 20% of the pixels

• Addition of text

• Image height scaled by 75% creating both a horizontal
stretch and a letter-box effect

• Camera angle adjusted by 20o horizontally and 20o

vertically

• Image resize to 50% of its original size

• Image resize to 200% of its original size

• Contrast decreased 30%

• Contrast increased 30%

• Zoomed to 125%

• Flipped along vertical axis centered horizontally on the
video

Including the untransformed clips, the above transforma-
tions resulted in 119 query videos, which we used in the
experiments. The magnitude of each transformation is cho-
sen based on the maximum used in TRECVID’s evaluation
criterion for that transformation.

For multiple transformations, we combined 3 different trans-
formations in various configurations. We created 10 different
combinations, which are summarized in Table 1 along with
their parameters, and applied them on each of the randomly
chosen 7 videos. This adds a total of 70 transformed videos
to the query videos.

We used the Adobe Premier Pro tool to choose video seg-
ments and to apply various transformations on them. To
visually illustrate the meaning of the various video trans-
formations and help the reader understand their impact on
videos, we present an example in Figure 5, which we created
using the Adobe Premier Pro tool.

40

(a) Original Image (b) Picture in picture (c) Camcording

(d) Text/logo insertion (e) Gamma decreased (f) Gamma increased

(g) Blur (h) Rotate (i) Contrast decreased

(j) Addition of noise (k) Pillar box (l) Crop

(m) Shift (n) Flip (o) Letter-box with stretch

Figure 5: Illustration of common transformations that can be applied on copied videos.

41

Performance Metrics. We use two main metrics to
assess the performance of the proposed algorithm: precision
and recall, which are defined in the following two equations.

precision =
number of correctly identified copies

total number of reported copies
. (5)

recall =
number of correctly identified copies

actual number of copies
. (6)

In addition, we measure the running time of the algorithm,
which is an important metric because in practice video copy
detection algorithms are expected to process thousands of
videos in a short period (typically, video copy detection sys-
tems crawl online video websites every few hours to down-
load and check newly posted videos for copies). Experi-

ments Conducted. We conduct the following experiments,
which are detailed in later sections:

• Base case : evaluate the proposed algorithm with query
videos that have no transformations.

• Robustness against individual transformations: eval-
uate the proposed algorithm with query videos that
were subjected to individual transformations.

• Robustness against multiple transformations: evaluate
the proposed algorithm with query videos that were
subjected to combined transformations.

• Computational complexity and sub-sampling: measure
the running time of the proposed algorithm and the
tradeoff between sub-sampling, running time, precision
and recall.

• Comparison: compare against recent algorithms in the
literature.

4.2 Base Case Evaluation
The purpose of this experiment is to test the effectiveness

of the proposed algorithm on copied video clips that do not
have any transformations. This scenario happens, for exam-
ple, when a clip is directly taken from a digital video stored
a on DVD or hard disk. We create 7 query videos, each
has 750 frames (30 sec), which is the minimum query length
used by TRECVID. Each query video is compared against
all 399 reference videos. We vary the distance threshold be-
tween 0.0 and 1.0 and compute the precision and recall for
each case. We plot the results in Figure 6. The figure shows
that the proposed algorithm can achieve 100% precision and
100% recall using a threshold value in the range of 0.23 to
0.28.

4.3 Robustness against Individual Transforma-
tions

In this experiment, we apply individual transformations
on query videos. This is to test the robustness of the pro-
posed algorithm against video changes that usually occur in
practice when videos are copied. We apply all transforma-
tions mentioned in Section 4.1, and illustrated in Figure 5,
one by one on all query videos. That is, we repeat the exper-
iment 16 times, and in each repetition, we vary the distance
threshold between 0.0 and 1.0 and compute the precision
and recall for each case. Then, we compute the average

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Threshold

P
re

ci
si

o
n
/R

ec
al

l
(%

)

Precision

Recall

Figure 6: Performance of the proposed algorithm on

videos with no transformations.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Distance Threshold

P
re

ci
si

o
n
/r

ec
al

l
(%

)

Recall

Precision

Figure 7: Performance of the proposed algorithm

on videos with individual transformations: Average

results across all transformations.

values across all experiments for the corresponding values
of threshold. We plot the average precision and recall val-
ues in Figure 7. The figure shows that at threshold of 0.28,
the proposed algorithm can still achieve 100% precision with
77% recall. The intersection point of the precision and re-
call curves occurs at a threshold of 0.30 where both recall
and precision have a relatively high value of 85%, given that
copied clips of the videos have been significantly changed
from the original ones. Lowering the threshold gives greater
precision, but more copies may go undetected. Raising the
threshold catches more copies, but false positives could be
reported.

In Figure 8, we plot four samples of the precision-recall
curves that we obtained for individual transformations. This
figure shows that some transformations affect the precision
and recall values more than others. For example, the blur
and contrast transformations have less impact on the preci-
sion and recall curves than the noise and scale transforma-
tions.

42

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Distance Threshold

P
re

ci
si

o
n
/R

ec
al

l
(%

)

Precision

Recall

(a) Scale

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Distance Threshold

P
re

ci
si

o
n
/R

ec
al

l
(%

)

Precision

Recall

(b) Noise

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Distance Threshold

P
re

ci
si

o
n
/R

ec
al

l
(%

)

Precision

Recall

(c) Contrast

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Distance Threshold

P
re

ci
si

o
n
/R

ec
al

l
(%

)

Precision

Recall

(d) Blur

Figure 8: Performance of the proposed algorithm on videos with individual transformations: sample results

for individual transformations.

43

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Threshold

P
re

ci
si

o
n
/r

ec
al

l
(%

)

Precision

Recall

Figure 9: Performance of the proposed algorithm on

videos with multiple transformations.

4.4 Robustness against Multiple Transforma-
tions

In this experiment, we evaluate how well our system is
able to detect copied video clips altered by applying multiple
transformations on them at the same time. We apply the
10 combined transformations mentioned in Table 1 on all
query videos. We repeat the experiment 10 times, once for
each combined transformation. In each experiment, we vary
the distance threshold between 0.0 and 1.0 and compute the
precision and recall for each case.
Then, we compute the average values across all experi-

ments for the corresponding values of threshold. We plot
the average precision and recall values in Figure 9. As the
figure shows, the best recall for 100% precision is 64%, which
is achieved using a threshold of 0.29. The intersection point
of the precision and recall curves occurs at a threshold of
0.31. At this point, the precision and recall values are 71%.
We note see that the recall rate for the same precision is
lower than in the previous case where individual transfor-
mations are applied. This is expected, since the more the
video is transformed, the less it resembles the original, and
the greater the distance between them.
In summary, the results in this subsection and the previ-

ous two show that the proposed video copy detection algo-
rithm achieves high precision and recall values and is robust
to common transformations performed on copied videos.

4.5 Time Complexity and Sub-sampling
In this subsection, we measure the running time of the

proposed algorithm and study the effect of the query length
on the running time. We also show that the running time of
our algorithm can further be reduced by applying it only on
a subset of the video frames without substantially decreasing
the precision and recall values achieved by the algorithm.
In the first experiment, we focus on one long reference

video which has a length of 15 minutes. We create query
videos with increasing sizes, starting from a length of 50
frames (2 sec) with increments of 50 frames. We compare
the query videos against the reference video, one by one,
and measure the total processing time for each query. We
do not sub-sample frames in this experiment. We plot the

0 20 40 60 80 100
0

2

4

6

8

10

12

Ratio of query video to reference video

T
im

e
(s

)

Figure 10: Running time as a function of the ratio

of query to reference video length.

results in Figure 10, where the x-axis shows the ratio of
the length of the query video to the length of the reference
video, and the y-axis shows the time in seconds. The figure
first shows that the proposed algorithm is fairly efficient as it
terminates in a few seconds in the worst case, which happens
when the query length is about 50% of the length of the
reference video (which is 15 minutes). That is, examining a
7.5-minute query video (11,250 frames) against a 15-minute
(22,500 frames) took less than 10 seconds on a commodity
PC with unoptimized implementation of our algorithm and
without sub-sampling frames.

The second point shown by the results in Figure 10 is that
the running of the proposed algorithm is minimal when the
ratio of the query video length to the reference video length
is either small or close to one. The measurements obtained
during this experiment confirm the theoretical analysis of
the time complexity presented in Section 3.3.

Although the running time of the proposed algorithm is
small, we aim to further shorten it in order to support large-
scale video copy detection systems with reasonable comput-
ing hardware resources. We accomplish this by reducing the
search space when comparing a query video versus a refer-
ence video by comparing only a subset of the frames. We
refer to this as sub-sampling of the video frames. This will
speed up the search phase of our algorithm. In order for
this to be effective, the algorithm must deliver close pre-
cision and recall values using sub-sampling as in the case
without sub-sampling.

We repeat the experiments presented in Sections 4.2 and
4.3, but we use different sampling ratios. A sampling ratio
of 1:X means that we consider every Xth frame for compar-
ison, instead of considering each single frame. We conduct
three experiments with sampling ratios of 1:10, 1:6, and 1:1
(no sampling). In each one of them, we vary the distance
threshold from 0.0 to 1.0 and we measure the total running
time for processing all queries and the precision and recall
values achieved.

The total running time for processing all 119 queries are
about 16 hours, 46 minutes, and 18 minutes for sampling
ratios of 1:1, 1:6, and 1:10, respectively. These values clearly
show the substantial saving in running times that can be

44

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.45
0

10

20

30

40

50

60

70

80

90

100

Threshold Distance

P
re

ci
si

o
n
 (

%
)

Sampling ratio 1:10

Sampling Ratio 1:6

No Sub−sampling

(a) Precision

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.450.45
0

10

20

30

40

50

60

70

80

90

100

Threshold Distance

R
ec

al
l

(%
)

Sampling ratio 1:10

Sampling Ratio 1:6

No Sub−sampling

(b) Recall

Figure 11: Precision and recall graphs for different sampling ratios.

achieved by sub-sampling. For example, a speed up factor
of more than 20 (=16*60/46) can be achieved with a modest
sampling ratio of 1:6. We note that the running time is not
affected by the distance threshold value used.
Next, we show the impact of sub-sampling on the accu-

racy of the results produced by the algorithm. We plot the
precision and recall values in Figure 11 for the considered
three sampling ratios and for a range of distance threshold
values. The results in this figure show that there is a very
small impact on precision and recall, especially for the sam-
pling ratio 1:6. That is, the substantial saving in running
time (factor of 20+) comes at almost negligible reduction in
the accuracy of the results.
In summary, the experiments in this subsection show that

the proposed algorithm is computationally efficient and it
offers administrators of video copy detection systems a con-
trol knob (the sampling ratio) to further reduce the running
time at a small loss in accuracy.

4.6 Comparison against other Algorithms
In this subsection, we compare our proposed algorithm

against others in the literature. We first note that this com-
parison is a bit tricky, since previous algorithms usually use
different datasets and sometimes even different evaluation
criteria. In addition, there are typically several parameters
in each algorithm that need to be fine tuned. We take a
conservative approach in conducting this comparison: we
contrast our results to the best results reported in the pre-
vious papers by their authors. This is conservative as au-
thors typically optimize their algorithms to yield the best
performance.
We start with the system proposed by Chen et al. [3]. This

system was evaluated using only few simple transformations,
namely: Change in contrast ± 25%, resize to 80% and 120%,
Gaussian blur of radius 2, and letter-box and pillar-box. The
authors compared their system against the systems in [7], [8],
and [9]. They showed that their system performs the best
among all compared systems. In contrast, our work han-
dles many and more complex transformations and achieves
better results than the system proposed by Chen et al. [3].
For example, at 90% precision, our algorithm achieved an

overall recall rate of 82% for the 16 different types of trans-
formations evaluated. The system of Chen et al. [3] had
a recall rate under 80% for the 90% precision, and that is
achieved only with 4 simple transformations. Since our sys-
tem outperforms the one in [3], we can conclude that it also
outperforms the ones in [7], [8], and [9].

The algorithm proposed by Wu et al. [17] achieves 100%
recall and precision. Since this algorithm is designed for
video retrieval, queries prepared by the authors did not have
any transformations applied to them. Li et al. [11] achieve
100% recall with 100% precision by evaluating only sim-
ple transformations applied singly. They evaluated blurring,
cropping, flipping and resizing. They set the levels of each
transformation low which made them easier to detect. Our
algorithm is also able to obtain both 100% recall and preci-
sion on untransformed videos and high precision and recall
values on videos with many individual and combined trans-
formations, which is more realistic.

The system of Zhang et al. [18] is tested against some
of the transformations evaluated in our system, but they
do not consider zooming, camcording, shifting, cropping, or
flipping. Their system tests small increases and decreases in
playback speed and rotations of 90o, 180o, 270o. Including
3 simple transformations of this type artificially boosts the
results of the recall and precision metric. For most of the
transformations, they do not indicate the level of transfor-
mation. This makes it difficult for an accurate comparison.
In their testing, they attained 86% precision with 75% recall.
These results are comparable with our system if the levels
of transformations are similar. In addition, our algorithm
is robust against multiple transformations, which they did
not consider. Law-To et al. [10] achieved 95% precision with
90% recall using a query length of 60 seconds. That is twice
as long as ours which was just 30 seconds. Doubling our
query length would further improve our results. Our algo-
rithm is an improvement of the system of Roth et al. [13].
However, our system has lower computational complexity.
They tested their system more rigorously on queries which
had combinations of several transformations to obtain 50%
recall for the same precision of 86%. We expect that with

45

the same data our system would be much faster, particularly
for full length queries.
Douze et al. [6] were unable to handle flipping. They were

also unable to detect copies that were scaled to 30% of the
original size. They got around these limitations by adding
the signature of a flipped version and one resized by 50% to
the database. Using SIFT features, they achieved close to
perfect precision and recall for similar transformations as our
system. However, the computational complexity of dealing
with the high dimensional descriptors resulted in a running
time too high to make this a useful system. Finally, we
suspect that the algorithm of Chen and Stenfiford [3] may
yield slightly better precision and recall values than ours,
but at much higher computational cost. However, we could
not confirm this because their video database and queries
are not available to us.

5. CONCLUSIONS AND FUTURE WORK
We have presented a new algorithm for detecting video

copies. The algorithm creates a signature to describe the
content of a video. This signature has the following proper-
ties: (i) it has a spatial component from dividing the frame
into regions, (ii) it has a temporal component by consider-
ing the ordinal ranking along the time line, (iii) it is robust
to many common transformations, even at extreme limits,
and (iv) it is compact, requiring just 16 bytes per frame.
The proposed algorithm is computationally efficient. For
example, our experimental results show that it can process
a database of 13 million frames in under 20 seconds on a
commodity workstation. We conducted an extensive experi-
mental study to show that the proposed algorithm produces
high accuracy. Specifically, the algorithm achieves 100% pre-
cision and 100% recall when the query videos are unmodified
clips from the reference videos. Our results also show that
the proposed algorithm is robust to many video transfor-
mations even when multiples transformations are applied at
the same time.
The work in this paper can be extended in different di-

rections. For example, the current implementation assumes
that the query video is a copy of only 1 reference video.
Some copied videos may contain content from many differ-
ent sources. This is not a difficult obstacle to overcome. We
can incorporate shot detection into this work to divide a
complex query into a number of sub-queries based on shot
boundaries. These sub-queries can be run independently on
the current system.

Acknowledgments

This work is partially supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada and the
British Columbia Innovation Council (BCIC).

6. REFERENCES
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Gool.

Speeded-up robust features (surf). Computer Vision
and Image Understanding, 110(3):346 – 359, 2008.
Similarity Matching in Computer Vision and
Multimedia.

[2] D. Bhat and S. Nayar. Ordinal measures for image
correspondence. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(4):415 –423,
April 1998.

[3] L. Chen and F. W. M. Stentiford. Video sequence
matching based on temporal ordinal measurement.
Pattern Recognition Letters, 29:1824–1831, 2008.

[4] S. Chen, J. Wang, Y. Ouyang, B. Wang, Q. Tian, and
H. Lu. Multi-level trajectory modeling for video copy
detection. In Proc. of the IEEE International
Conference on Acoustics Speech and Signal Processing
(ICASSP’10), pages 2378 –2381, March 2010.

[5] C. Chiu and H. Wang. A novel video matching
framework for copy detection. In Proc. of the 21th
IPPR Conference on Computer Vision, Graphics and
Image Processing (CVGIP’2008), August 2008.

[6] M. Douze, H. Jegou, and C. Schmid. An image-based
approach to video copy detection with spatio-temporal
post-filtering. IEEE Transactions on Multimedia,
12(4):257 –266, June 2010.

[7] A. Hampapur, K. Hyun, and R. M. Bolle. Comparison
of sequence matching techniques for video copy
detection. In Storage and Retrieval for Media
Databases, pages 194–201, 2002.

[8] X. Hua, X. Chen, and H. Zhang. Robust video
signature based on ordinal measure. In Proc. of the
International Conference on Image Processing
(ICIP’04), volume 1, pages 685 – 688 Vol. 1, October
2004.

[9] C. Kim and B. Vasudev. Spatiotemporal sequence
matching for efficient video copy detection. IEEE
Transactions on Circuits and Systems for Video
Technology, 15(1):127 – 132, January 2005.

[10] J. Law-To, O. Buisson, V. Gouet-Brunet, and
N. Boujemaa. Robust voting algorithm based on labels
of behavior for video copy detection. In Proc. of the
14th annual ACM international conference on
Multimedia (MULTIMEDIA’06).

[11] Z. Li and J. Chen. Efficient compressed domain video
copy detection. pages 1 –4, August 2010.

[12] M. R. Naphade, M. M. Yeung, and B. Yeo. Novel
scheme for fast and efficient video sequence matching
using compact signatures. 3972(1):564–572, 1999.

[13] G. Roth, R. Laganière, P. Lambert, I. Lakhmiri, and
T. Janati. A simple but effective approach to video
copy detection. In Proc. of the 2010 Canadian
Conference on Computer and Robot Vision (CRV’10),
pages 63–70, Washington, DC, 2010. IEEE Computer
Society.

[14] K. Tasdemir and A. E. Cetin. Motion vector based
features for content based video copy detection.
International Conference on Pattern Recognition,
0:3134–3137, 2010.

[15] Trecvid website. http://trecvid.nist.gov/.

[16] Hoemmen’s one pass variance algorithm.
http://www.eecs.berkeley.edu/~mhoemmen/cs194/

Tutorials/variance.pdf.

[17] Z. Wu, Q. Huang, and S.Jiang. Robust copy detection
by mining temporal self-similarities. In Proc. of the
2009 IEEE international conference on Multimedia
and Expo (ICME’09), pages 554–557, Piscataway, NJ,
2009. IEEE Press.

[18] Z. Zhang and J. Zou. Compressed video copy detection
based on edge analysis. pages 2497 –2501, June 2010.

46

