
Live Peer-to-Peer Streaming with Scalable Video Coding
and Networking Coding

Shabnam Mirshokraie
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

ABSTRACT

We present the design of a peer-to-peer (P2P) live stream-
ing system that uses scalable video coding as well as network
coding. The proposed design enables flexible customization
of video streams to support heterogeneous receivers, highly
utilizes upload bandwidth of peers, and quickly adapts to
network and peer dynamics. Our design is simple and mod-
ular. Therefore, other P2P streaming systems could also
benefit from various components of our design to improve
their performance. We conduct an extensive quantitative
analysis to demonstrate the expected performance gain from
the proposed design. Our analysis uses actual scalable video
traces and realistic P2P streaming environments with high
churn rates, heterogeneous peers, and flash crowd scenar-
ios. Our results show that the proposed system can achieve:
(i) significant improvement in the visual quality perceived
by peers (several dBs are observed), (ii) smoother and more
sustained streaming rates, (iii) higher streaming capacity by
serving more requests from peers, and (iv) more robustness
against high churn rates and flash crowd arrivals of peers.
This paper shows that the integration of network coding and
scalable video coding in P2P live streaming systems yields
better performance than current systems that use single-
layer streams and proposed systems that use either network
coding alone or scalable video coding alone.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communi-
cations Applications; C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms

Design

Keywords

Peer-to-peer streaming, scalable video coding, network cod-
ing, live streaming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02 ...$10.00.

1. INTRODUCTION
Peer-to-peer (P2P) live video streaming systems have seen

wide deployment around the globe. P2P streaming systems
such as CoolStreaming [41], PPLive [29], UUSee [34], Sop-
Cast [32], and TVAnts [33] attract numerous users every day.
As more users get used to viewing multimedia content on-
line, they will demand higher and better video quality than
available on many of the current P2P streaming systems. As
an indication of this demand and the response from indus-
try, Huang et al. [14] show that the average bit rate of videos
offered by the MSN Video Services has increased by more
than 50% over a nine-month period, and it is the likely that
the bit rate will continue to increase in the future. Provid-
ing high-quality streaming over P2P systems, however, faces
multiple challenges, including: (i) limited upload capacity of
peers, (ii) high heterogeneity of receivers in terms of down-
load bandwidth, screen resolutions, and CPU capacity, and
(iii) high churn rate as the peer population is constantly
changing. Addressing these challenges requires not only in-
creasing the capacity of peers and deploying additional seed-
ing servers to make up the shortage in resources, but also
employing novel methods for encoding and distributing mul-
timedia content and developing algorithms and protocols to
optimally utilize the available resources.

In this paper, we propose a new design for P2P live stream-
ing systems that, we believe, will significantly improve their
performance. The new design strives to address many of the
challenges impeding current systems by efficiently utilizing
peers’ resources, easily customizing multimedia content to
support receivers with diverse resources and requirements,
and quickly adapting to network and peer dynamics. Our
design is simple and practical; we actually have implemented
it. Our design employs scalable video coding to support het-
erogeneous receivers as well as networking coding to maxi-
mize the streaming throughput and handle network dynam-
ics. Although scalable video coding and network coding have
been individually proposed for various systems in the liter-
ature, e.g., [10, 11, 13, 18, 24, 28], their integrated use in P2P
live streaming systems has not been fully explored in the
literature, to the best of our knowledge. The integration of
these two technologies provides many performance benefits
beyond those offered by each of them individually, as will be
shown in this paper.

We present the design of a P2P streaming system that em-
ploys both scalable video coding and network coding. Our
design is modular and can be used as an improvement plug-
in in other P2P streaming systems. That is, we focus on
the new components needed to handle multimedia content

123

compressed in scalable manner and encoded using network
coding. Thus, our work and software components are readily
useful for other systems. In addition, we quantitatively show
the expected performance gain from the proposed design us-
ing actual scalable video traces in realistic P2P streaming
environments with high churn rates, heterogeneous peers,
and flash crowd scenarios. In particular, our results show
that the proposed system can achieve (i) significant improve-
ment in the visual quality perceived by peers (several dBs
are observed), (ii) smoother and more sustained streaming
rates (up to 100% increase in the average streaming rate is
obtained), (iii) higher streaming capacity by serving more
requests from peers, and (iv) more robustness against high
churn rates and flash crowd arrivals of peers.

The rest of this paper is organized as follows. In Section 2,
we provide a brief background on network coding and scal-
able video coding, and we summarize the previous work in
the literature. In Section 3, we describe the proposed sys-
tem. In Section 4, we evaluate the proposed system using
actual video traces, and we conclude the paper in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Brief Background
We present a brief overview of network coding and scal-

able video coding, which are employed in the proposed P2P
streaming systems. More details about network coding can
be found in [1,5,8] and the references therein, and more in-
formation about scalable video coding can be found in [31]
which describes the recent H.264/SVC standard.

Network Coding. In traditional packet forwarding meth-
ods, each node simply repeats data packets destined to other
nodes in the network. In contrast, the network coding con-
cept enables source and intermediate nodes to perform sim-
ple operations on packets before forwarding them. These op-
erations allow nodes to send partial information to the des-
tination. After receiving all the necessary partial informa-
tion, the receiver will be able to recover the original packet.
Packing information at intermediate or source nodes is called
encoding and extracting real data from encoded ones is re-
ferred to as decoding. Encoding and decoding are linear
operations over a Galois Field of size 2l, which is denoted
by GF(2l). A GF(2l) is a finite field in which operations are
done on l bits of data.

Encoding is a linear combination of blocks, which is for-
mulated as: x =

∑n

i=1
ci · bi, where n is the total number

of blocks, cis are coefficients of size l taken from GF (2l)
and bis are data blocks of size k bytes. The symbol x rep-
resents one encoded block of size k. Each encoded block
is a linear combination of the original blocks. Thus, it is
uniquely identified by the set of coefficients included in the
linear combination. Multiplications and additions are done
over GF (2l).

Assuming a node receives set of (C1, x1), (C2, x2), . . . ,
(Cm, xm), where Ci is the vector of coefficients (ci

1, c
i
2, . . . ,

ci
m) for block xi. The decoding process is performed by solv-

ing: xj =
∑n

i=1
cj

i · M i, where M is are unknowns. This
is a system of linear equations with n unknowns and m
equations, which can be solved by the Gaussian elimination
method if m ≥ n. However, it is not necessary to receive all
equations in order to decode all blocks. Usually some blocks
can be recovered before receiving all encoded blocks.

Scalable Video Coding. The recently H.264/SVC video

coding standard [31] adds scalability to the widely used
H.264/AVC video coding technique [38]. The H.264/SVC
standard supports temporal, spatial, and quality scalabil-
ity at the same time. Temporal scalability is achieved by
employing a hierarchical prediction structure among video
frames belonging to the same Group-of-Pictures (GoP), in
which frames of higher temporal layers can only be predicted
from lower temporal layers. In the spatial scalability, a spa-
tial layer s of a frame can be predicted from the s-th spatial
layer of some other frames (in lower temporal layers), as well
as lower spatial layers in its own frame. For providing qual-
ity scalability, there are two possibilities. The first one fol-
lows the spatial scalability structure, but assigns the same
resolution and different quantization parameters to layers.
This produces a Coarse-Grained Scalable (CGS) video with
limited number of quality layers. A finer granularity can
be provided by the second possibility, which uses Medium-
Grained Scalability (MGS) coding to divide a single CGS
quality layer into multiple sub-layers, which are referred to
as MGS layers. This is done by partitioning the residual
DCT coefficients of a CGS layer into multiple MGS layers.
A stream can be truncated at any CGS or MGS layer. In ad-
dition, some packets of an MGS layer can be discarded, while
the remaining ones can still be decoded to improve quality.
Packet discarding can be done in arbitrary ways, depending
on the bitstream extraction process [2]. H.264/SVC allows
Up to 7 temporal, 8 spatial, and 16 quality layers [31]. Using
scalable video coding, users with high link capacities expe-
rience better video quality by receiving more layers, while
others with lower bandwidth get quality proportional to the
number of layers they can receive.

2.2 Related Work
P2P streaming systems are often divided into two ma-

jor categories: tree-based and mesh-based (also known as
swarm-based and data driven). In tree-based systems, peers
organize themselves into one or more multicast trees and
data will be pushed along the tree structure [3, 16]. Tree-
based systems incur high costs for the management and
maintenance the tree structure, especially with high peer
churn rates. Mesh-based systems allow peers to self-organize
in mesh-shaped graphs [21, 40, 41]. These systems usually
yield better performance in practice as they are more ro-
bust against high-level of peer and network dynamics [22].
Our work focuses on mesh-based P2P streaming systems.

Most of the currently deployed P2P streaming systems,
e.g., [29, 32–34, 41], use nonscalable video streams. Thus,
they serve a single-version of the video stream to all peers,
and they have limited support for heterogeneous peers. To
address these issues, number of works have proposed P2P
streaming systems with scalable video streams, e.g. [6, 12,
17, 24, 30]. Cui and Nahrstedt [6] present an algorithm to
decide for each peer how to request video layers from a given
set of senders. They assume layers have equal bitrate and
provide equal video quality. Hefeeda and Hsu [12] study this
problem for Fine-Grained Scalable (FGS) videos, taking into
account the rate-distortion model of the video for maximiz-
ing the perceived quality. Rejaie and Ortega [30] present
a framework for layered P2P streaming, where a receiver
coordinates the transmission of video packets from multiple
senders using a TCP-friendly congestion control mechanism.
Lan et al. [17] propose a scheduling algorithm for peers to
request data from senders. The allocation of seed server re-

124

sources in P2P streaming systems with scalable videos has
also been considered in [24]. While these works enable serv-
ing streams with different qualities to peers with diverse
resources, none of them employs network coding to further
enhance the utilization of peer resources.

Network coding has been shown to maximize the through-
put and bring various performance benefits in different en-
vironments [1, 15, 19]. For example, in wireless networks,
network coding improves the message delivery probability
for ad-hoc multicast protocols [27], and overcomes broad-
cast storm problems [25]. Network coding has also been
proposed for P2P file-sharing systems. For example, in the
Avalanche system [9, 10], the authors use randomized net-
work coding to efficiently distribute files and to decrease the
download time. The authors provide a method to ensure
that any piece uploaded by a peer can be useful to other
peers. However, these techniques are not applicable to P2P
streaming systems, which have strict timing constraints and
packet sequence requirements.

Several works have proposed using network coding for P2P
streaming applications, including [36,37], where the authors
address practical aspects of using network coding in such
systems. Feng and Li [7] develop analytical models to show
the benefits of using network coding in live P2P streaming
systems. All of these works confirm the viability of network
coding in different applications. However, none of them has
considered integrating network coding with scalable video
coding to support wider ranges of clients. They basically
improve the performance of single-layer P2P streaming sys-
tems.

Recently, a few works have considered both network cod-
ing and scalable video streams [4,42]. For example, Zhao et
al. [42] try to provide each end user in a multicast session
with the maximum number of layers through solving an op-
timization problem using a greedy algorithm. While in [4],
Chenguang et al. formulate an integer linear programming
(ILP) problem to solve the same problem. Unlike our work,
the above works target tree-based P2P streaming systems,
and they assume that peers know the global tree structure
and this structure is fairly static. These assumptions typ-
ically do not hold in practice. In contrast, we target the
highly dynamic mesh-based P2P streaming systems with no
assumptions/constraints on the topology.

Finally, Nguyen et al. [26] propose hierarchical network
coding (HNC) to be used with scalable video coding. HNC
performs network coding across all layers of the same video
stream to provide higher error protection to lower video lay-
ers. HNC is designed to reduce the impact of packet losses.
However, it assumes that most users are capable of or will-
ing to receive all video layers. For example, a limited band-
width receiver that is interested in only 2-layer version of the
stream may end up receiving data blocks from higher layers,
although the data cannot be used. Thus, the bandwidth
of peers can be wasted. This implies that HNC will not
efficiently support heterogeneous clients. In addition, per-
forming network coding on all layers will increase the size of
the coefficient matrix needed for network coding operations.
Since the time and space complexities of the encoding and
decoding processes depend on the size of the coefficient ma-
trix, HNC will impose a significant overhead on peers, which
have limited-resources in the first place. Furthermore, the
work in [26] did not provide a rigorous quantitative evalua-
tion of HNC in real dynamic P2P environments, as we do.

Figure 1: Peer Software Architecture. Dashed ar-
rows denote video data, and solid arrows denote con-
trol messages.

Our proposed system performs intra-layer network coding
and is fairly efficient.

3. PROPOSED P2P STREAMING SYSTEM
In this section, we describe the proposed P2P live stream-

ing system that employs network coding and scalable video
coding. We start with a high-level overview, followed by
more details.

3.1 Overview
We target mesh-based P2P streaming systems which have

been widely used in practice [21, 40, 41]. In our system
model, there are three entities: tracker, source, and peer.
The tracker matches peers who are viewing the same video
stream. This matching results in multiple dynamic swarms
in the system. There is at least one source node in the sys-
tem to introduce the original streams to peers. The source
node (sometimes called seed server) also provides additional
capacity in case that peers do not have enough resources
and in the beginning of the sessions where very few peers
exist. Source nodes perform network coding operations on
the scalable video streams in order to prepare them for dis-
tribution in the system. Peers act as receiving clients as
well as share some of their upload bandwidth to serve other
peers. As receivers, peers decode network-coded data re-
ceived from others and process this data to create proper
scalable video streams and to ensure smooth video quality.
As senders, peers encode video data using network coding

125

with parameters based on their own upload capacity as well
as the characteristics of the receiving peers.

A simplified model for the software architecture of a peer
in our system is shown in Fig. 1. A similar model is used for
source nodes, but with some differences as elaborated later.
We do not address the design or optimization of trackers; the
function of the tracker is orthogonal to the work presented
in this paper. We also do not address other problems in
mesh-based P2P streaming systems, including neighbor se-
lection, gossip protocols (for exchanging data availability),
incentive schemes, and overlay optimization—which all have
been heavily researched in the literature. All of the above
issues are abstracted in the Connection Manager component
in Fig. 1, while our work is focused on the components in
the shaded box in that figure. The separation and abstrac-
tion of functions enable us to support different P2P stream-
ing systems with minimal changes in our design and code.
Therefore, our work is fairly general.

3.2 Details
Peer Software Architecture and Functions. The

main functions of a peer in our system are summarized in
Fig. 1. We first describe the receiving part of the peer model.

At the receiver side, a peer interested in receiving a specific
part of the video stream, determines and requests a proper
number of encoded blocks through the Download Scheduler.
The Download Scheduler computes the number of required
encoded blocks based on the current available bandwidth
and the number of video layers that the receiver is interested.
It then assigns each of the active senders in the session blocks
to send proportional to its upload bandwidth.

Immediately after receiving any encoded block through
the network, the block is forwarded to the Progressive NC
Decoder component. The Progressive NC Decoder rear-
ranges the coefficients and encoded block matrices. This
is done through one round of the Gauss-Jordan elimination
method [37]. The Gauss-Jordan elimination method is a ver-
sion of the Gaussian elimination method which inserts zeros
above and below the pivot elements in the matrix as it goes
from the top row to the bottom one. In other words, the
Gauss-Jordan elimination method converts a matrix to its
reduced row echelon form (RREF) where every leading coef-
ficient is 1 and it is the only nonzero element in its column.

Using the Gauss-Jordan elimination method allows the
process of decoding to start before receiving all encoded
blocks [37]. It also enables the Progressive NC Decoder to
immediately remove any dependent linear equations, as it
converts all the coefficients of a received dependent linear
row in the coefficient matrix into zeros. This signals the
Progressive NC Decoder to eliminate this row from the co-
efficient matrix immediately after it is received. The Pro-
gressive NC Decoder will then investigate the coefficients
matrix. If it is reduced to an identity matrix, the resulted
encoded blocks are equal to the original blocks without any
further decoding process. If the original data is obtained, it
will passed to the SVC Layer Manager, which prepares the
video data for the video player. After a block is successfully
decoded, it will be stored in the Sharing Buffer for potential
upload to other peers.

Next, we describe the uploading part of the peer model in
Fig. 1. Network coding enables senders to provide receivers
with partial information without needing a huge buffermap
to keep availability of each partial data. The mechanism for

Table 1: Characteristics of Videos used in the Ex-
periments.

Video Trace Sony
Demo

Tokyo
Olympics

NBC
News

Average
PSNR (dB)

47.6 42.7 35.5

Average Bit
Rate (kbps)

850 500 325

producing such kind of partial data is as follow. Upon re-
ceiving a request at the sender side, random network coding
is performed on the blocks of the requested layer. Ran-
dom network coding is used because it provides robustness
against frequent network topology changes, and it eliminates
the need for having a centralized knowledge about the net-
work topology [5]. In random network coding, the encoding
process is done through randomly and uniformly selecting
coefficients from the Galois Field. It has been proved that
by using random network coding even with a small Galois
Field size, such as 8, the probability of selecting linearly de-
pendent combinations is negligible [39]. In order to reduce
the network coding complexity, we need to reduce the num-
ber of blocks [23]. For this purpose, in our network coding
scheme, we apply network coding operations on blocks of
each video layer separately. Furthermore, we use a Galois
Field of size 8, as larger sizes increase the complexity while
improving the results only marginally.

Source Node Software Architecture and Functions.
A source node prepares video streams before introducing
them into the system. A video stream is encoded into multi-
ple layers in a scalable manner. The video stream is divided
into equal-length segments. Each segment contains a fixed
number of video frames, e.g., 30 frames. Since we consider
scalable streams, each video frame is composed of multiple
layers. We apply network coding operations on the data
contained in individual segments as follows. The video data
of each layer in a segment is divided into fixed-size blocks.
Then these blocks are encoded. Notice that different layers
may contain different number of blocks, depending on the
visual complexity of the video frame.

The encoding process is applied at the source nodes by
using random network coding. On intermediate nodes, i.e.,
uploading peers, the blocks are re-encoded with different
coefficients. In both cases, the coefficients of each block are
attached to the block itself during transmission.

Overhead Analysis. There are two kinds of overhead
imposed by the proposed streaming system: communication
and computation. The communication overhead is due to at-
taching the encoding coefficients to the encoded data blocks.
In practical applications, the size of the coefficients is small
compared to the block size. The computation overhead
is imposed by the encoding and decoding processes of the
network coding scheme. These processes require quadratic
number of operations in terms of the number of blocks in a
segment. These operations are on finite fields and thus are
performed as xor operations, which can be done efficiently
by the processor. Therefore, most of the current commodity
PCs can easily handle the encoding and decoding operations.

126

Table 2: Upload Bandwidths Distribution of peer.
Fraction of Peers (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 16.3

Total Bandwidth (kbps) 256 320 384 448 512 640 768 1024 > 1500
Contributed Bandwidth (kbps) 150 250 300 350 400 500 600 800 1000

4. EVALUATION

4.1 Experimental Setup
We have implemented the proposed P2P streaming sys-

tem in Java. Our implementation performs all functions
described in Section 3 and summarized in Fig. 1. Our im-
plementation was validated by using actual video streams.

To conduct rigorous quantitative analysis of the proposed
system under wide range of working conditions, we imple-
mented a testing application to emulate the characteristics
of realistic P2P streaming systems. This testing applica-
tion enables us to conduct controllable and repeatable ex-
periments with different parameters and large number of
peers. We considered deploying our system on the Planet-
Lab testbed and on our own local area testbed. However,
these testbeds would not allow us to control important pa-
rameters such as peer upload/download bandwidth, neither
would they enable us to test under high churn rates, flash
crowd scenarios, and large number of heterogeneous peers.

The setup of our experiments is as follows. We use mul-
tiple scalable video traces obtained from the Arizona State
University video library [35]. In particular, the results in
this paper are based on three video streams: a demonstra-
tion from Sony, a clip from the Tokyo Olympics and a clip
from NBC News. These videos are chosen because they have
diverse characteristics in their quality and bit rates. This di-
versity is important to assess the performance of our system
in real settings. Each video is encoded in 5 scalable lay-
ers and has a frame rate of 30 fps. The frame size is CIF
(352x288) and each group-of pictures (GoP) has 16 frames.
We use 10 minutes of each clip in our experiments. Table 1
summarizes the characteristics of these video streams.

We divided each video stream into segments, where the
segment size is varied. Each layer of a segment is then en-
coded using network coding in a number of blocks. We use
different block sizes for evaluating the performance of net-
work coding. But in any given experiment, the block size
is fixed for all layers in a segment and all segments in the
video. This is done to reduce the computation complexity
of the network coding process, as network coding with vari-
able block sizes is expensive. Since the video visual content
changes with time, the number of blocks in a segment varies
with the size of the video frames in that segment.

We create a highly-dynamic P2P streaming system with
more than 1,000 heterogeneous peers that are continually
changing. The upload bandwidth values of peers are chosen
according to the distribution given in Table 2. This distribu-
tion is recommended based on actual measurement studies
performed in [20]. Peers in our system can randomly fail,
and they join/leave the system following different probabil-
ity distributions, where each probability distribution is cho-
sen to create a specific testing scenario such as flash crowd
arrivals and high peer churn rates. More details will be given
in the corresponding experiments later.

We compare the proposed system (denoted by SVC+NC

in the figures) against three different systems: (i) a system
that uses scalable video coding only (denoted by SVC), (ii)
a system that uses single layer video streams with network
coding (denoted by SL+NC), and (iii) current systems that
use single layer, nonscalable, streams (denoted by SL). We
consider several performance metrics, including: (i) average
streaming rate, (ii) average streaming quality, (iii) number
of streaming requests served, and (iv) fraction of late frames.
These performance metrics are computed across all peers in
the system, for diverse video streams, under various network
conditions, and different probabilistic distributions for peer
behavior. Moreover, most of these metrics are computed
on a frame by frame basis and consider each layer in every
frame. Therefore, we believe that our experiments are com-
prehensive and the results are representative of real systems.

4.2 Results
We present the results of our extensive evaluation in the

following. We first present the results for the performance
metrics mentioned above. Then, we analyze the impact of
several system parameters on the performance and robust-
ness of the proposed system, specially in presence of high
peer churn rates, flash crowd arrivals, and when different
segment and block sizes are used.

Average Streaming Rate. We measure the average stream-
ing rate during live streaming sessions. We define the stream-
ing rate as the total amount of received video data per sec-
ond. The average streaming rate is computed across all ac-
tive peers and represents a basic performance metric.

We schedule 1,000 peers to uniformly at random join the
P2P streaming system during the 10-min simulation time.
We also schedule a faction of the peers to fail or depart the
system uniformly at random during the simulation time. On
overage, 10% of the peers leave the system at random times.
For each streaming session, a receiver is randomly chosen.
Then, a group of five senders that already have the requested
stream are randomly chosen to serve the receiver.

We plot the results for three different video clips in Fig. 2
as a CDF (cumulative distribution function). The figure
clearly shows that the proposed SVC+NC system outper-
forms the other three systems by a wide margin. For exam-
ple, in the Sony Demo video, less than 18% of the peers in
our SVC+NC system obtain a streaming rate of 200 kbps or
less, while more than 40% of the peers in the current single
layer streaming systems receive at that low rate. On the
other hand, almost 50% of the peers in our SVC+NC sys-
tem receive a high streaming rate of at least 600 kbps, while
this percentage is only about 30% in SVC and SL+NC, and
22% in SL systems.

Average Streaming Quality. Next, we consider the video
quality for each active peer. Unlike the average streaming
rate, which is a raw performance metric, the video quality
depends on the characteristics of the video streams being
served in the system and it is closer to the actual quality
perceived by users. There are several methods for computing

127

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbit/sec)

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbps)

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbps)

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 2: Average streaming rate achieved using different systems.

100 200 300 400 500
10

15

20

25

30

35

40

45

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
al

it
y

(d
B

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

100 200 300 400 500
20

25

30

35

40

45

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
al

it
y

(d
B

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

100 200 300 400 500
15

20

25

30

35

40

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
al

it
y

(d
B

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 3: Average streaming quality achieved using different systems.

the video quality. We choose the Y-PSNR (peak signal to
noise ratio of the intensity component of the video) as our
video quality metric, because it is simpler to compute and
interpret by readers. We acknowledge that the Y-PSNR may
not always be the most accurate quality metric for all videos,
but it is sufficient for comparative study in this paper.

We compute the quality as the Y-PSNR of the frames
received on time divided by the total number of frames.
Then we take the average among all peers and plot the re-
sults in Fig. 3. The figure shows that the average quality in
the SVC+NC system is consistently higher than that in the
SVC, SL+NC, and SL systems. For example, for the NBC
News video in Fig. 3(c), the SVC+NC system yields up to 10
dB improvement in quality compared to the current single
layer streaming systems. This is a substantial gain that will
definitely be felt by users and will increase their satisfaction
from the P2P streaming system. Fig. 3(c) also shows that
the proposed SVC+NC outperforms the SVC and SL+NC
systems by up to 5 dB, which is also a significant gain. The
results for other videos indicate similar gains. In addition,
the results in Fig. 3 indicate that the video quality achieved
by the SVC+NC system is more stable and smooth over
time. For example, in Fig. 3(b), there is a dramatic drop in
quality for the SL system around 200 sec of the video be-
cause of the increased visual complexity of the video in this
period. In contrast, the SVC+NC system did not suffer a
large drop in quality.

In addition to the average video quality, we measure the
fluctuations in the video quality. We quantify the fluctua-
tions by measuring the standard deviation of the observed
quality with time. We then compute error bars defined by

three points: average quality minus one standard deviation,
average quality, and average quality plus one standard devi-
ation for each peer. We do not plot these error bars in Fig. 3
because they clutter the figure. Our results show that the
proposed system provides much smoother quality for peers
than other systems. In particular, the quality fluctuations
in the proposed SVC+NC system are about 100% less than
the fluctuations observed in the current single layer stream-
ing systems, and about 50% less than the fluctuations in the
other SL+NC and SVC systems.

In summary, the results for the above two metrics (aver-
age streaming rate and quality) demonstrate that the pro-
posed SVC+NC system outperforms the other systems in
both raw as well as user-perceived performance dimensions.
The reasons for this better performance can be summarized
as follows. Single layer streaming systems are not flexible
in terms of adapting the quality to the current network and
peer conditions. They also do not provide optimal through-
put. Therefore, they yield the worst performance. Stream-
ing systems that use network coding with single layer videos
increase the system throughput, but do not improve the flex-
ibility of the single layer video streams. Thus, SL+NC sys-
tems improve the performance beyond what is achievable
by SL systems. On the other hand, P2P streaming sys-
tems that use scalable video streams adapt well to network
and peer dynamics, but they may not fully utilize peer re-
sources. Therefore, SVC systems also improve the perfor-
mance compared to SL systems. Combining scalable video
streams with network coding achieves both flexibility and in-
creased throughput. Thus, SVC+NC systems consistently
provide superior performance compared to other systems.

128

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

n
of

S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

n
of

S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

f
of

S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4: Number of served requests for different systems.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 5: Fraction of late frames for different systems.

Number of Streaming Requests Served. In Fig. 4, we plot
the fraction of served requests in different streaming sys-
tems. We refer to a request as served when it is responded
by neighbors and received on time by the requesting peer.
We obtain fraction of served requests by computing the num-
ber of served requests made by active peers divided by the
total number of requests. We compute this fraction every
20 seconds. The results in Fig. 4 show that the proposed
SVC+NC system serves more requests than the other sys-
tems. For example, for the NBC News video in Fig. 4(c),
up to 30% more requests can be served using the SVC+NC
system than the SL system. Therefore, the proposed system
not only provides better video quality, but also serves more
requests from peers.

Fraction of Late Frames. Next, we analyze the fraction of
late frames for all considered streaming systems. The frac-
tion of late frames is obtained by dividing the number of
late frames to the total number of requested frames. When
a peer first joins the network, it waits for a few segments
of the video according to its initial buffering delay. The
initial buffering delay helps peers to maintain synchronized
playback and cooperate with each other effectively [7]. In
all experiments, we let peers wait for two segments when
they join the system as recommended by [7]. We plot the
CDF of the late frames in Fig. 5. The figure shows that in
the SVC+NC system, more frames meeting their deadlines
than in the other systems. For example, in Fig. 5(a), in
the single layer streaming system, about 16% of the peers
received more than 80% of the frames after their deadlines.
While in the proposed SVC+NC system, almost no peer ob-
served that high fraction of late frames. As another example,

Fig. 5(b) shows that the SVC+NC system achieves nearly
100% improvements over other systems in terms of the frac-
tion of peers that observed no late frames: from about 20%
of the peers in the SL, SL+NC, and SVC systems to about
40% in the SVC+NC system. Finally, Fig. 5(c) shows that
there is no peer with more than 30% of late frames, while
this fraction is almost 18%, 25% and 35% in SVC, SL+NC
and SL systems respectively.

Impact of Churn Rate on Video Quality. We next study
the impact of the churn rate on the streaming quality. In this
scenario, we consider a highly dynamic peer-to-peer network
with frequent arrivals and departures of peers. Maintaining
a reasonable video quality in dynamic systems shows their
robustness to frequent changes in network topology. In this
experiment we will show that SVC+NC is more resilient and
provides a more reliable peer-to-peer streaming system than
the other systems.

In highly dynamic peer-to-peer systems, some peers join
the system, start streaming and also contribute their re-
sources to others. At the same time, other peers may be
leaving the system, which will result in loss of upload re-
sources and perhaps disruption of some on-going streaming
sessions. We refer to the ratio of the total number of peers
that join the streaming system during the simulation time to
the total number of peers that leave the system as the churn
rate. All arrivals and departures are scheduled according to
a Poisson distribution during the simulation time. We vary
the churn rate between 1 and 8. For each value of the churn
rate. For example, a churn rate of 2 means that if x number
of peers leave the system during the simulation time, 2x new
peers will arrive during that period. A robust P2P stream-

129

1 2 4 8
10

15

20

25

30

35

40

Churn Rate (No. arrivals/ No. departures)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

1 2 4 8
20

22

24

26

28

30

32

34

Churn Rate (No. of arrivals/ No. of departures)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

1 2 4 8
20

25

30

35

Churn rate (No. arrivals/ No. departures)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 6: Impact of churn rate on the average video streaming quality.

10 20 30 40 50 60
10

15

20

25

30

35

40

Peer Arrival Rate (per min)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

10 20 30 40 50 60
15

20

25

30

35

40

Peer arrival rate (per min)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

10 20 30 40 50 60
10

15

20

25

30

35

Peers arrival rate (per min)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 7: Impact of flash crowd on video streaming quality.

ing system should utilize the resources brought by the new
peers as well as provide them with good quality. We run the
experiments for the three video streams in Table 1 and for
each streaming system: SL, SL+NC, SVC, and SVC+NC.
We measure the average quality perceived across all peers
for each churn rate. We plot the results in Fig. 6. The
results confirm the superior and stable performance of the
proposed SVC+NC streaming system as several dBs in qual-
ity gain are observed in all cases. The figure also shows that
as more peers join the quality for all peers improve, which is
shown for high churn rates. This is because: the proposed
SVC+NC system can: (i) increase the average throughput
in the system since it uses network coding to harvest the
resources of the new peers, and (ii) improve the quality by
providing more video layers, which is enabled by the scal-
ability nature of the video streams. We note that single
layer streaming systems may actually suffer in presence of
high churn rates, as shown in Fig. 6. This is because these
systems take time to start effectively utilizing the resources
of the new peers and they only provide a single version of
the video streams. As the figure also shows, adding network
coding to single layer streaming systems mitigates the first
problem, but not the second: the average quality provided
by SL+NC systems slightly improves as more peers join the
system.

Impact of Flash Crowd Arrivals. In flash crowd arrivals,
peers join the network in a short period of time. In this case,
the demand for receiving the video data may become more
than the available resources. Flash crowds scenarios put a
substantial stress on the P2P streaming systems that strive
to provide a reasonable and sustained video quality to peers.

Addressing flash crowd arrivals is important for practical
systems as they often happen after the release of popular
video clips. We change the average number of peer arrivals
per minute from 10 to 60 with an increment of 10. Peers
arrive uniformly at random during the simulation period.
We allow up to 10% of the active peers to leave during the
streaming sessions, which also happen at uniform random
times. We measure the average quality in dB for all consid-
ered systems for each peer arrival rate. The results, shown in
Fig. 7, demonstrate that while under very high peer arrival
rates the quality rendered by all systems decreases because
of the limited upload capacity, the SVC+NC system pro-
vides relatively better quality in flash crowd scenarios than
other systems. The figure shows that there is at least 2 dB
quality difference by the SVC+NC and SL systems (right
lower corner of Fig. 7(b)) and up to 7 dB (left top corner of
Fig. 7(c)).

Impact of Segment and Block Sizes. Finally, we investi-
gate the effect of the segment and block sizes on the stream-
ing quality of the proposed SVC+NC system. We vary the
segment size from 0.5 to 5 sec. For each segment size, we
vary the block size from 128 bytes to 4 kilobytes and we run
the experiments for each considered streaming system. We
measure the average streaming quality and plot the results
in Fig. 8. A few observations can be drawn from this fig-
ure. First, decreasing the block size for network coding (up
to 512 bytes) generally yields better video quality. This is
because when blocks are small, a single segment will have
many blocks. This allows multiple sending peers to cooper-
ate and send different (non-redundant) encoded blocks. On
the other hand, decreasing the block size below 512 bytes

130

0 1 2 3 4 5
34

36

38

40

42

Segment Size (sec)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(a) Sony Demo

0 1 2 3 4 5
28

30

32

34

36

Segment Size (sec)

S
tr

ea
m

in
g

Q
u
al

it
y

(d
B

)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(b) Tokyo Olympics

0 1 2 4 5
24

25

26

27

28

29

30

31

Segment Size (sec)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(c) NBC News

Figure 8: Impact of Segment and Block Sizes on video streaming quality.

yields marginal or no additional benefits. The second ob-
servation is that, the ideal segment size (in sec) varies for
different video streams. This is because the videos used in
the experiments have diverse average bit rates of: 850, 500,
325 Kbps for the Sony Demo, Tokyo Olympics, and NBC
News videos, respectively. From our experiments and the
results shown in Fig. 8, we have found that a segment should
contain about 100 to 200 KB of video data. Thus, the ac-
tual segment size (in sec) will depend on the bit rate of the
video stream distributed to peers. For example, a segment
size of 1 sec yields the best performance for the Sony Demo
video according to Fig. 8(a). Given that the Sony Demo has
an average bit rate 850 Kbps, the amount of video data in
a segment is about 106 KB. Whereas a segment size of 4
sec provides the best performance for the NBC News video
according to Fig. 8(c), which means that the segment will
contain about 4 × 325/8 = 162 KB.

5. CONCLUSIONS AND FUTURE WORK
Most of the current P2P streaming systems use nonscal-

able video streams and thus they provide a single version for
all receivers despite their diverse resources. These systems
may also suffer from suboptimal utilization of peer upload
bandwidth. In this paper, we showed that designing P2P
streaming systems with scalable video coding and network
coding can solve both of the above problems. We showed
that the integration of the network coding and scalable video
coding techniques improves the system performance beyond
what is possible if each technique is used separately. We
implemented the proposed system and conducted extensive
evaluation study in realistic settings and with actual scalable
video traces. The evaluation study confirms the significant
potential performance gain, in terms of visual quality per-
ceived by peers, average streaming rates, streaming capacity,
and adaptation to high peer dynamics.

The work in this paper can be extended in multiple direc-
tions. For example, we are currently developing analytical
models to analyze the performance of the proposed P2P live
streaming system. We are also implementing the proposed
system as a plug-in library that can be used in other stream-
ing systems in order to enable them to benefit from scalable
video streams and network coding methods.

6. REFERENCES
[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network

information flow. IEEE Transactions on Information
Theory, 46(4):1204–1216, July 2000.

[2] I. Amonou, N. Cammas, S. Kervadec, and S. Pateux.
Optimized rate-distortion extraction with quality
layers in the scalable extension of H.264/AVC. IEEE
Transactions on Circuits and Systems for Video
Technology, 17(9):1186–1193, September 2007.

[3] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream:
high-bandwidth multicast in cooperative
environments. In Proc. of ACM Symposium on
Operating Systems Principles (SOSP’03), pages
298–313, Bolton Landing, NY, October 2003.

[4] X. Chenguang, X. Yinlong, Z. Cheng, W. Ruizhe, and
W. Qingshan. On network coding based multirate
video streaming in directed networks. In Proc. of
IEEE International Conference on Performance,
Computing and Communications (IPCCC’07), pages
332–339, New Orleans, LA, April 2007.

[5] P. Chou, Y. Wu, and K. Jain. Practical network
coding. In Proc. of Allerton Conference on
Communication, Control, and Computing
(Allerton’03), Monticello, IL, October 2003.

[6] Y. Cui and K. Nahrstedt. Layered peer-to-peer
streaming. In Proc. of ACM Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV’03), pages 162–171, Monterey, CA,
June 2003.

[7] C. Feng and B. Li. On large-scale peer-to-peer
streaming systems with network coding. In Proc. of
ACM Multimedia’08, pages 269–278, Vancouver,
Canada, October 2008.

[8] C. Fragouli, J. L. Boudec, and J. Widmer. Network
coding: an instant primer. ACM SIGCOMM
Computer Communication Review, 36(1):63–68,
January 2006.

[9] C. Gkantsidis, J. Miller, and P. Rodriguez. Anatomy
of a p2p content distribution system with network
coding. In Proc. of International Workshop on
Peer-to-Peer Systems (IPTPS’06), Santa Barbara,
CA, February 2006.

[10] C. Gkantsidis and P. Rodriguez. Network coding for
large scale content distribution. In Proc. of IEEE
INFOCOM’05, pages 2235–2245, Miami, FL, March
2005.

[11] C. Gkantsidis and P. Rodriguez. Cooperative security
for network coding file distribution. In Proc. of IEEE
INFOCOM’06, Barcelona, Spain, April 2006.

131

[12] M. Hefeeda and C. Hsu. Rate-distortion optimized
streaming of fine-grained scalable video sequences.
ACM Transactions on Multimedia Computing,
Communications and Applications, 4(1):1–28, January
2008.

[13] O. Hillestad, A. Perkis, V. Genc, S. Murphy, and
J. Murphy. Adaptive H.264/MPEG-4 SVC video over
IEEE 802.16 broadband wireless networks. In Proc. of
IEEE Packet Video Workshop (PV’07), pages 26–35,
Lausanne, Switzerland, November 2007.

[14] C. Huang, J. Li, and K. Ross. Can Internet
video-on-demand be profitable? In Proc. of ACM
SIGCOMM’07, pages 133–144, Kyoto, Japan, August
2007.

[15] R. Koetter and M. Medard. An algebraic approach to
network coding. IEEE Transactions on Information
Theory, 11(5):782–795, October 2003.

[16] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: high bandwidth data dissemination using an
overlay mesh. In Proc. of ACM Symposium on
Operating Systems Principles (SOSP’03), pages
282–297, Bolton Landing, NY, October 2003.

[17] X. Lan, N. Zheng, J. Xue, X. Wu, and B. Gao. A
peer-to-peer architecture for efficient live scalable
media streaming on Internet. In Proc. of ACM
Multimedia’07, pages 783–786, Augsburg, Germany,
September 2007.

[18] P. Larsson. Multicast multi-user ARQ. In Proc. of
IEEE Wireless Communications and Networking
Conference (WCNC’08), pages 1985–1990, Las Vegas,
NV, April 2008.

[19] S. Li, R. Yeung, and N. Cai. Linear network coding.
IEEE Transactions on Information Theory, 49(2):371,
2003.

[20] Z. Liu, Y. Shen, K. Ross, J. Panwar, , and Y. Wang.
Substream trading: Towards an open P2P live
streaming system. In Proc. of IEEE Conference on
Network Protocols (ICNP’08), pages 94–103, Orlando,
FL, October 2008.

[21] N. Magharei and R. Rejaie. Prime: peer-to-peer
receiver driven mesh-based streaming. In Proc. of
IEEE INFOCOM’07, pages 1415–1423, Anchorage,
AK, May 2007.

[22] N. Magharei, R. Rejaie, and Y. Guo. Mesh or
multiple-tree: a comparative study of live P2P
streaming approaches. In Proc. of IEEE
INFOCOM’07, pages 1424–1432, Anchorage, AK, May
2007.

[23] P. Maymounkov, N. Harvey, and D. Lun. Methods for
efficient network coding. In Proc. of Allerton
Conference on Communication, Control, and
Computing (Allerton’06), Urbana, IL, September 2006.

[24] K. Mokhtarian and M. Hefeeda. Efficient allocation of
seed servers in peer-to-peer streaming systems with
scalable videos. In Proc. of IEEE International
Workshop on Quality of Service (IWQoS’09), pages
1–9, Charleston, SC, July 2009.

[25] D. Nguyen, T. Nguyen, and B. Bose. Wireless
broadcasting using network coding. In Proc. of
Workshop on Network Coding, Theory, and
Applications (NetCod’07), pages 914–925, San Diego,
CA, January 2007.

[26] K. Nguyen, T. Nguyen, and S. Cheung. Peer-to-peer
streaming with hierarchical network coding. In Proc.
of IEEE International Conference on Multimedia and
Expo (ICME’07), pages 396–399, Beijing, China, July
2007.

[27] J. Park, M. Gerla, D. Lun, Y. Yi, and M. Medard.
Codecast: A network-coding-based ad hoc multicast
protocol. IEEE Wireless Communications,
13(5):76–81, October 2006.

[28] D. Petrovic, K. Ramchandran, and J. Rabaey.
Overcoming untuned radios in wireless networks with
network coding. IEEE Transactions on Information
Theory, 52(6):2649–2657, June 2006.

[29] PPLive. http://www.pplive.com/.

[30] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive
layered streaming. In Proc. of ACM International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV’03), pages
153–161, Monterey, CA, June 2003.

[31] H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the scalable video coding extension of the H.264/AVC
standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1120, September
2007.

[32] SopCast. http://www.sopcast.com/.

[33] TVAnts. http://www.tvants.com/.

[34] UUSee. http://www.uusee.com/.

[35] Video Traces Research Group, 2009.
http://trace.eas.asu.edu/h264svc/.

[36] M. Wang and B. Li. Lava: A reality check of network
coding in peer-to-peer live streaming. In Proc. of
IEEE INFOCOM’07, pages 1082–1090, Anchorage,
AK, May 2007.

[37] M. Wang and B. Li. R2: Random push with random
network coding in live peer-to-peer streaming. IEEE
Journal on Selected Areas in Communications,
25(9):1655–1666, December 2007.

[38] T. Wiegand, G. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the h.264/avc video coding
standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576, July 2003.

[39] Y. Wu, P. A. Chou, and K. Jain. A comparison of
network coding and tree packing. In Proc. of IEEE
International Symposium on Information Theory
(ISIT’04), Chicago, IL, July 2004.

[40] M. Zhang, L. Zhao, J. Tang, and S. Yang. A peer-to
peer network for streaming multicast through the
Internet. In Proc. of ACM Multimedia’05, Singapore,
November 2005.

[41] X. Zhang, J. Liu, B. Li, and T. Yum.
DONet/CoolStreaming: a data-driven overlay network
for live media streaming. In Proc. of IEEE
INFOCOM’05, pages 2102–2111, Miami, FL, March
2005.

[42] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang.
Lion: Layered overlay multicast with network coding.
IEEE Transactions on Multimedia, 8(5):1021–1032,
October 2006.

132

