
DeepGame: Efficient Video Encoding for Cloud Gaming
Omar Mossad

Simon Fraser University
Burnaby, BC, Canada

Khaled Diab
Simon Fraser University
Burnaby, BC, Canada

Ihab Amer
Advanced Micro Devices, Inc.1

Markham, ON, Canada

Mohamed Hefeeda
Simon Fraser University
Burnaby, BC, Canada

ABSTRACT
Cloud gaming enables users to play games on virtually any device.
This is achieved by offloading the game rendering and encoding to
cloud datacenters. As game resolutions and frame rates increase,
cloud gaming platforms face a major challenge to stream high qual-
ity games due to the high bandwidth and low latency requirements.
In this paper, we propose a new video encoding pipeline, called
DeepGame, for cloud gaming platforms to reduce the bandwidth
requirements with limited to no impact on the player quality of
experience. DeepGame learns the player’s contextual interest in the
game and the temporal correlation of that interest using a spatio-
temporal deep neural network. Then, it encodes various areas in
the video frames with different quality levels proportional to their
contextual importance. DeepGame does not change the source code
of the video encoder or the video game, and it does not require any
additional hardware or software at the client side. We implemented
DeepGame in an open-source cloud gaming platform and evaluated
its performance using multiple popular games. We also conducted
a subjective study with real players to demonstrate the potential
gains achieved by DeepGame and its practicality. Our results show
that DeepGame can reduce the bandwidth requirements by up to
36% compared to the baseline encoder, while maintaining the same
level of perceived quality for players and running in real time.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Interest point and salient region detections; • In-
formation systems→Multimedia streaming.

KEYWORDS
Cloud Gaming, Content-Based Video Encoding
ACM Reference Format:
Omar Mossad, Khaled Diab, Ihab Amer, and Mohamed Hefeeda. 2021.
DeepGame: Efficient Video Encoding for Cloud Gaming. In Proceedings
of the 29th ACM International Conference on Multimedia (MM ’21), Octo-
ber 20–24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3474085.3475594

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475594

1 INTRODUCTION
Cloud gaming (CG) refers to delivering the game as a video by
offloading game tasks to cloud datacenters. At a high level, a thin
client, running virtually on any device, captures the player’s actions
and sends them to a deployed game server. The server runs the
game logic, renders scenes, encodes frames using a video encoder,
and streams them to the client. The client decodes and plays the
received frames using any of the widely available video decoders.

Cloud gaming has become a fast-growing industry in the last few
years, and it is expected to gain a larger market share in the near fu-
ture [6]. Major IT companies already provide cloud gaming services
such as Sony PlayStation Now [34], AMD-enabled Google Stadia
[4, 14], Microsoft Xbox Cloud Gaming [30], Nvidia GeForce Now
[32], and Amazon Tempo [1]. Large-scale cloud gaming platforms
(e.g., Stadia), deliver game streams in real time to millions of play-
ers [28]. And unlike common videos, video games contain detailed
large-sized objects, various visual effects (e.g., such as light and
smoke effects), and complex animations. Thus, video games require
higher bandwidth channels to deliver them, compared to regular
videos. For example, while Netflix requires 5–6 Mbps to watch HD
videos, Stadia requires at least 28 Mbps to play HD games [15].
Furthermore, recent video games are more bandwidth demanding.
For example, Battlefield 4 and Counter-Strike have a resolution of
up to 4K and a frame rate up to 144 fps. At this large scale, even
a small reduction in the bandwidth needed for each game session
can yield millions of dollars of savings for cloud gaming providers
[7] as well as enable more players to participate in cloud gaming.

Optimizing video encoding in cloud gaming to reduce band-
width requirements is, however a complex research challenge. This
is because video encoders face a fundamental trade-off between
the stream quality, needed bitrate, and response delay. Specifically,
video games require high bitrates, which increases the network
transmission and processing delays. This may negatively impact
the player’s experience. In addition, video encoders need to con-
sider both the spatial and temporal qualities within each frame
and across successive frames since players are highly sensitive to
visual distortions, while not producing game streams with highly
variable bitrates as such streams could result in buffer overflows
and unpredictable playout delays at the player side.

In this paper, we propose a new video encoding pipeline, called
DeepGame, for cloud gaming to deliver high-quality game streams
without codec or game modifications. The main idea of DeepGame

1©2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may
be trademarks of their respective companies.

https://doi.org/10.1145/3474085.3475594
https://doi.org/10.1145/3474085.3475594

is that not all regions within a frame are of equal interest to players.
However, identifying the relative importance of different regions
is complex, and goes well beyond traditional object detection al-
gorithms from the computer vision literature. This is because the
importance of objects depends on the game context. For example,
in shooter games, a target object such as an enemy character is
more important than background objects such as buildings and
trees, even if the target is small and has less complex texture.

DeepGame takes a learning-based approach to understand the
player contextual interest within the game, predict the regions of
interest (ROIs) across frames, and allocate bits to different regions
based on their importance. Unlike prior works (e.g., [17, 20, 23]),
DeepGame does not need additional feedback from players nor
does it modify the existing encoders. Thus, DeepGame is easier to
deploy in practice.

This paper makes the following contributions:
• Wepropose a new video encoding pipeline, calledDeepGame,
for game servers to reduce the bandwidth requirements of
cloud games while maintaining the perceived quality.

• We design DeepGame to learn how players interact with
the game and accurately predict ROIs in real time with low
processing overheads on servers.

• We collect a new dataset to study how players interact with
multiple popular video games by tracking their eye fixations,
which is available at [2].

• We implement DeepGame and integrate it in a cloud gaming
platform to demonstrate its real-time performance.

• We perform a subjective study to analyze the performance
of DeepGame. Our results show that participants consis-
tently rate the quality of the gaming sessions encoded using
DeepGame higher than those encoded using the base en-
coder.

• We evaluate DeepGame and compare its performance against
the state-of-the-art video encoder. Our results show that
DeepGame reduces the bandwidth requirements by up to
36% without imposing noticeable quality degradation.

2 CHALLENGES AND RELATEDWORK
2.1 Challenges of Video Encoding in CG
Players often develop a wide range of skills while playing game
levels, including selective and acute attention to details, improved
sensor-motor skills, and strategic planning. Therefore, skilled play-
ers can quickly observe visual artifacts, which often lead to player
dissatisfaction. The video encoder is responsible of producing high-
quality streams in real time, and its performance is critical for the
success of cloud gaming platforms. In the following, we describe
the challenges of video encoding in cloud gaming.
Response Delay. The response delay is the elapsed time between
when a player takes an action and when the decoded frames are
played on their device. Prior studies showed that the tolerable
response delay ranges from 100 ms (for action games) to 150 ms
(for slow-paced games) [10, 11]. This is unlike live video streaming
which can tolerate delays up to 500 ms [13, 40] and on-demand
streaming that can tolerate several seconds of buffering [46]. The
response delay has three components: client playout, network delay,
and server processing delay. The network delay alone usually takes

up to 80% of the tolerable response delay [10], which leaves the
game server with an extremely short time to execute and optimize
all of its tasks. Thus, video encoders need to strike a balance between
producing high-quality streams and incurring additional delays.
Perceived Quality. The video encoder takes a bitrate budget as in-
put, and it hierarchically allocates bits to groups of pictures, frames
and macro-blocks. This bit allocation depends mainly on the com-
plexity of the rendered frames. The difficulty here is that the encoder
cannot know the complexity of future game frames, since it can-
not wait for these frames to be rendered. Also, the video encoder
needs to consider the spatial and temporal qualities of the rendered
frames, such as eliminating blocking and flickering artifacts. Thus,
video encoders need to carefully allocate bits to different areas of the
frames while producing high-quality streams.
Player Heterogeneity. Players play the same game differently
based on their skills and experience. For example, in a first-person
shooting game, an experienced player may pre-fire their weapon
without looking at the target. The same player may interact with
the same object within a game differently based on the game state.
For example, the ball in a soccer game may be important while the
player is on the offense, while it becomes less important when the
player is shooting a penalty. Thus, video encoders need to account
for different game contexts and player behaviors.
Modularity and Deployment Costs. The common practice in
cloud gaming is to deploy unmodified games to these platforms
to be within the margins of planned deployment cost and time to
market while allowing for portability across different providers. In
addition, cloud gaming typically uses common video codecs that
already have hardware support in many processor architectures
[3, 21, 33]. Therefore, changing the internals of video codecs is
not practical, and it may add substantial deployment costs. Thus,
off-the-shelf video encoders should not be modified, and they should
not expect additional inputs or game-specific APIs from the game
process to query its state or objects.

2.2 Related Work
Video Encoding for CG. The recent AV1 encoder [9] offers high
coding efficiency and video quality. However, its high computa-
tional requirements and the limited number of devices that support
it stifle its adoption in cloud gaming. Some major cloud providers
are using their own proprietary codecs. For example, Google Stadia
uses its proprietary VP9 encoder [31] alongside the widely used
H.264 encoder to support a large variety of client devices. The
successor of H.264, H.265, is the current state-of-the-art standard
codec. H.265 provides up to 50% improvement in bandwidth effi-
ciency compared to H.264 [38, 39]. H.265 still has not seen wide
adoption in cloud gaming mostly due to licensing issues. In this pa-
per, we conduct our experiments using the H.264 and H.265 codecs
to show the current and potential bandwidth savings that can be
achieved by DeepGame on top of them.
ROI-based Video Encoding. Hegazy et al. [17] showed that ROI
encoding can reduce the bandwidth requirements in cloud gaming.
However, their approach requires specifying the ROIs manually,
which requires collaboration from the game developers to provide
such information. This is unlike DeepGame, which does not require
any manual inputs or collaboration from the game developers. Illahi

et al. [20] presented an encoding method based on eye-tracking
devices at clients to identify the ROIs. Using eye-tracking devices,
however, introduces an additional processing delay to the system
and can only work with compatible client devices.

Kaplanyan et al. [23] proposed a neural network-based codec for
3D and AR contents. This work also assumes the availability of an
eye gaze tracker at client. In addition, cloud gaming providers often
prefer using standard encoders like H.264 and H.265 to support a
wide range of edge devices with limited computational power. In
contrast, DeepGame optimizes standard video encoders, does not
change the video decoders at the client side, and it does not require
eye gaze trackers or any additional hardware at the clients. Thus,
DeepGame can easily be deployed in practice.

3 DeepGame
In this section, we start by discussing the design principles of
DeepGame and how it operates at a high level. Then, we present the
details of various components of DeepGame. Finally, we describe
the overheads and limitations of DeepGame.

3.1 Design Principles and Overview
Principles of Designing DeepGame. Our objective is to design
a video encoding pipeline that produces high-quality game streams
while satisfying the stringent latency requirements and a given
bandwidth budget. To achieve this objective, we take a principled
approach that leverages the following game-specific insights on
player interactions with video games and howmodern video codecs
are designed.

• Player Contextual Interest. Not all game frames and ob-
jects within these frames are equally important. Specifically,
as players interact with games in various ways, our first
insight is to capture the interest of players in various game
objects based on their context within the frames. Traditional
visual saliency algorithms do not capture this context [18],
because they usually assign the same importance values to
similar objects in the frame. In DeepGame, we model the
latent relationship between the player’s interest and game
objects based on the context.

• Temporal Correlation of Interest. We leverage several
properties of the human visual system (HVS) and the na-
ture of player interaction with video games in designing
DeepGame. First, human eyes often fixate on a single area
for tens to hundreds of milliseconds [12, 41], which is called
the fixation period. Second, the visual acuity of humans de-
creases exponentially as we move away from the fixation
point. This is modeled as an exponential function of the
so-called eccentricity angle [43]. Finally, the relationship
between players’ interests and game objects tends to persist
over several frames, because objects do not suddenly change
locations in sub-millisecond scales. Therefore, we build a
model that predicts the fixation points and considers how a
player interacts with a game over successive frames.

• Modern Encoders are Controllable. Although existing
codec implementations are complex, they provide a rela-
tively straightforward set of APIs to control the encoding
parameters and bitrates without modifying the underlying

Game
Process

To

Client

DeepGame

Scene Analysis ROI Prediction Encoding Params.

Rate Control

Object
Detection Temporal Pred.

ROIs

Weights

QPs

Eccentricity

Acuity
HVS

Frame

Bit Budget

Encoder

Figure 1: High-level overview of DeepGame.

video coding algorithms. For example, the libavcodec li-
brary, which supports major video codecs such as H.264 [45]
and H.265 [38], allows scaling, transcoding, and modifying
the picture format and encoding bitrate. In this paper, we con-
trol the quantization parameter (QP) of every macro-block
in the frame, which is easily doable through APIs and it does
not require changing the source code of the video codec.

DeepGame Overview. At high level, DeepGame is a process run-
ning between the game process and video encoder process, as
shown in Figure 1. The input to DeepGame is the raw game frames
generated by the game process, and the output is the encoding
parameters (QPs), which are used by the video encoder to pro-
duce encoded frames to be transmitted to the client. Notice that
both the game and encoder processes are left intact, which enables
DeepGame to be deployed in real systems.

During a game session, DeepGame understands the game context
and optimizes the encoding parameters in real-time. DeepGame
consists of three stages: (i) Scene Analysis, (ii) ROI Prediction, and
(iii) Encoding Parameters Calculation. These stages operate in par-
allel while forwarding the outputs from one stage to the next. The
pipelining of the three stages is a crucial design decision that en-
ables DeepGame to meet the low latency requirements of CG.

The Scene Analysis and ROI Prediction stages, described in Sec-
tion 3.2, form a spatio-temporal model to identify the locations
of ROIs and how they change over time. The last stage, described
in Section 3.3, uses the predicted ROIs and characteristics of the
human visual system to compute weights for different areas in
each frame. These relative weights are intentionally made abstract
and independent of the internal design of the video encoder and
its rate control mechanism. Thus, DeepGame is general and can
support different video encoders. To be concrete, we describe how
the weights produced by DeepGame can be used with the current
state-of-the-art encoder, H.265 [39], and its 𝜆 rate controller [24, 44].

3.2 Spatio-Temporal Prediction of ROIs
The proposed spatio-temporal model for predicting ROIs is summa-
rized in Figure 2. It starts with a Scene Analysis stage, where the
objects in individual game frames are identified. Objects of multiple
successive frames are then fed into the second stage, which models
the context and relationship among these objects and uses this
information to predict areas in the frames that players will likely

Horizontal

Vertical

Contextual InterestInput Frame

x1

Confidence

p
1

p
M

Temporal Correlation of Interest

Predicted ROIs
w1

y h

Horizontal Network

Vertical Network

Block Prob.

Block Prob.

#1

#N

#1

#N

0
1

0
1

0
1

0
1

x, y, w, h

Visual Features

Obj. #1

Over ∆ frames

x wMM

y h

1 1

MM

Obj. #2

Player

Cursor

Information

Ball

Radar

Figure 2: The proposed spatio-temporal ROI prediction neural network.

focus on in the following short period of time. The details of each
stage are presented in the following.
Scene Analysis. This stage analyzes the visual features in a given
game frame to obtain knowledge about its contents. Although sev-
eral object detection neural network models have been proposed
in the literature (e.g., [25, 27, 37]), most of them are fairly complex
and their inference speeds are slow, and thus they cannot satisfy
the low latency requirement in CG.

We propose a light-weight object detection model based on Yolo
[36]. Our model produces sufficient accuracy for CG and runs in
real time. The model is composed of 13 convolutional layers with
maxpooling and skip connections. The backbone of the network is
Darknet [35] that we train using the COCO dataset [26] and fine
tune to identify the most important game objects. The input to our
Scene Analysis model is a single frame. The model outputs each
identified object in the frame, along with its coordinates, width
and height, as well as the class/type of that object, as shown in the
second image from the bottom left of Figure 2.

In video gaming, players occasionally glimpse at certain areas in
the frames, such as the game map/radar and current score, which
we refer to as auxiliary areas. This is in addition to the main ROIs
which players focus on most of the time. Despite being looked at
for short periods of time and thus would unlikely be included in
the main ROIs, auxiliary areas are important for the actual playing
of the game. Therefore, the visual quality of auxiliary areas should
be preserved. In our Scene Analysis model, we define and output
special classes for the auxiliary areas, which are later recognized
by the last stage where we assign weights to different areas.
ROI Prediction. To consider the temporal changes in the game
context, we design a recurrent neural network model. Specifically,
we design a Long-Short-Term-Memory (LSTM) network that cap-
tures the dynamics of the game context over Δ frames, where Δ
is in the order of 5–10 frames sampled within a short period of
time. The hidden state in the LSTM network models the effect of
the player’s actions on the relative importance of different areas
across successive frames. For example, moving the cursor from a

x0 h0A

x1 h1A

x2 h2A

xΔ hΔA

Input
Layer

LSTM layer
hidden = 128

FC layer
in = 128
out = 64

B
at

ch
 N

or
m

al
iz

at
io

n

FC layer
in = 64
out = 32

D
ro

po
ut

FC layer
in = 32
out = 8

Figure 3: The structure of the LSTM network.

location to another may mean that the ROI has shifted. In addition,
the output evolves over time based on the past memory, and the
hidden state will be formed based on a short-range memory of the
player’s past behaviour.

To identify and later encode ROIs with higher quality, we divide
each frame into 𝑁 × 𝑀 blocks, where each block can be further
divided into the smallest encoding unit for the video encoder, which
is usually set to 8 × 8 pixels. Objects in video games can move with
different patterns and speeds along the horizontal and vertical
directions across successive frames. Thus, as shown in Figure 2, we
divide the LSTM network into two branches; one for the horizontal
direction and another for the vertical direction. The horizontal
(vertical) branch considers the object presence in blocks along the
horizontal (vertical) direction, and it predicts the ROIs within the
𝑁 (𝑀) blocks. The positive entries in both orientations are then
combined to produce the final output in the form of an 𝑁 × 𝑀
array of blocks. This division allows a flexible and fast training
since we restrict the output space for each branch to 𝑁 or𝑀 binary
elements. We note that ROI blocks are contiguous and adjacent
within successive frames as the user visual attention cannot move
between disjoint areas in a small amount of time.

The structure of the proposed LSTM network is depicted in
Figure 3. It has 128 hidden units with an input size depending on
𝑁 or 𝑀 and the number of objects in the game. We use two fully
connected layers with ReLU activation functions with sizes of 64
and 32, respectively, batch normalization, and a dropout layer. The
outputs at every time step are used to predict the importance of
each block. The output layer has 𝑁 or 𝑀 outputs, one for each
block, and it uses a sigmoid function to create a probability value
indicating whether a block is an ROI.

To accurately predict the ROI blocks, the network establishes a
correspondence between frame contents and the ROI as determined
by the player fixation. Therefore, we need to define a suitable loss
function that rewards the network when it covers the correct ROI
blocks and adds a penalty when the network unnecessarily includes
additional blocks and increases the prediction area. We design a
variant of the binary cross entropy [29] to be the loss function of
the network. The binary cross entropy is widely used for classifi-
cation tasks because it quantifies the amount of information that
the network learns at each step. Traditional binary cross entropy,
however, would penalize overly predicted blocks the same way it
penalizes the missed ROIs.

In cloud gaming, especially with skilled players, it is better to
be more conservative and cover all locations where the player
may focus on, even if the network includes some additional blocks
in the ROIs. Designating many blocks as ROIs would, however,
substantially impact the encoding performance. To address this
trade-off, the loss function uses an additional parameter, 𝑃 , to reduce
false negatives, i.e., avoid missing any ROI blocks. The loss function
for each orientation is given by:

𝐿𝑡𝑜𝑡 = {𝑙1, 𝑙2, .., 𝑙𝑁 }, (1)

𝑙𝑖 = −[𝑃 × 𝑦𝑖 × log𝜎 (𝑥𝑖) + (1 − 𝑦𝑖) × log(1 − 𝜎 (𝑥𝑖))], (2)
where 𝑥𝑖 and 𝑦𝑖 are the predicted probability and exact label for
block 𝑖 , respectively. We set the 𝑃 to the number of blocks needed
to cover the ROIs for all users, which can be estimated by analyzing
a few historical game sessions before training the model.

3.3 Calculating Encoding Parameters
The weight calculation module takes as inputs the ROI predictions,
and calculates the weights to be used by the rate controller shown in
Figure 1. The weight assignment function is based on the behaviour
of the human visual system, and is given by:

𝑤 [𝑥,𝑦] =

𝑒

−1
𝐹𝑖𝑄 if 𝑏 [𝑥,𝑦] is ROI or auxiliary,
1
𝑅

∑𝑅
𝑖=1 𝑒

−𝑄𝑑𝑖
𝐹𝑖𝐷 Otherwise,

(3)

where 𝑏 [𝑥,𝑦] is the encoding block with coordinates of 𝑥 and 𝑦, 𝑄
is a constant scaling factor controlling the desired discrepancy in
bit allocation and quality between ROI and non-ROI areas, 𝑅 is the
total number of ROIs and auxiliary information per frame, 𝐷 is the
diagonal of the frame in pixels, 𝐹𝑖 is an importance factor ∈ (0, 1]
that is assigned for ROIs and auxiliary information, and 𝑑𝑖 is the
distance between the block and the nearest center block of the ROI.
We set 𝐹𝑖 = 1 for ROIs, and 𝐹𝑖 = 0.5 for auxiliary areas.

The rate controller uses the calculated weights, the bandwidth
budget, and the used bits to calculate theQP for each block. DeepGame
does not dictate a specific rate control algorithm. Thus, DeepGame

relies on prior works (e.g., [17]), to calculate the number of bits
allocated per frame. Then, it normalizes the weights in Equation (3)
to make sure they sum up to 1, and calculates the number of bits per
block proportional to its relative weight. As an example, the rate
controller in H.265 would calculate its internal parameter, referred
to as 𝜆, using the calculated bits per block. Then, it uses the value
of 𝜆 to estimate the QPs as 𝐾1 × ln(𝜆) + 𝐾2, where 𝐾1 and 𝐾2 are
rate controller constants [24].

3.4 Overheads and Limitations of DeepGame
DeepGame achieves substantial bandwidth savings and improves
the visual quality, as shown in section 4 and Section 5.3. DeepGame,
however, requires training the proposed deep learning model and
running it on servers in real time to achieve these gains. Training
the deep learning model is done offline and once per each game type
(not individual game sessions). For example, we train the model on
a soccer video game (e.g., FIFA 20), once and whenever there is a
major release for that game which may contain different graphics,
resolutions, or visual effects. A separate training is needed for other
game types (e.g., CS:GO andNBA).Major games are usually released
yearly or on even longer time scales. Training the machine learning
model also requires collecting datasets. We note that the spatio-
temporal nature of the proposed deep learning model allows it to
capture the behavior of players with different skill levels and encode
this information in the neural (LSTM) network. Thus, our model
supports different players and does not need to be customized for
individual players.

While training the machine learning models may take hours,
running the inference on these models is much faster and it should
be done for each gaming session. In Section 4, we show that the
inference models of DeepGame can run in real time on a common,
low-end, GPU. In addition, we used theONNX runtime environment
[5] to optimize the inference models of DeepGame and run them
on CPUs, and our results indicate the DeepGame can also run in
real time on CPUs. More code and model optimizations are possible
to reduce the processing requirements and are left for future work.

In addition to running the inference of the trained machine
learning models, DeepGame needs to calculate the weights for
blocks in the frames and maps them QPs as well as run the rate
controller of the encoder. These, however, are simple operations
that each take take around 1 ms per frame, as reported in Section 4.

Despite its flexibility to support various games without modifi-
cations, DeepGame may produce inaccurate ROI predictions in few
cases. When a game has almost no identifiable objects, DeepGame
may not be able to identify which part of the screen is the exact ROI.
For instance, a game like Minecraft, which has pixelated graphics,
proves to be hard to identify objects of interest within its frames.

4 IMPLEMENTATION AND SUBJECTIVE
EVALUATION

Implementation.We implemented DeepGame and integrated it
in GamingAnywhere [19], which is an open-source cloud gaming
system. The training of DeepGame is described in Section 5; we use
the inference models of DeepGame to conduct the experiments in
this section. GamingAnywhere is composed of a multiple modules
running in parallel threads and interact with one another through

data exchange over pipes. One of the modules is an RTSP server
that streams the encoded video to the client. To encode frames,
they are transferred from the GPU buffer to the encoder through
a filter module that converts the frame into YUV format. Finally,
the controller module is responsible for transferring the client’s
keyboard and mouse inputs to the server.

GamingAnywhere supports different video encoders. We first
tried using the open-source implementation of the recent H.265
encoder (x265). However, because the open-source version is not
yet optimized, the decoding speed was slow at the client side and
did not result in smooth playback of the games, even before using
DeepGame. Thus, we resorted to using the open-source implemen-
tation of H.264 (x264), which is still the most common video encoder
in practice.
Subjective Study. We conducted a subjective study to analyze
the end-to-end performance of DeepGame, especially how players
perceive the visual quality and smoothness of the game frames and
whether DeepGame injects any noticeable delays that may impact
their gaming experience. This subjective study was approved by
our University Research Ethics Board. We used the PC versions of
two popular games of different nature: FIFA 20 and CS:GO. Both ran
on at 1920x1080 and 30 fps. We setup a GamingAnywhere server
to serve these two games to clients over the network, where we
can control the encoding rate of the produced videos. To avoid
overloading the server, we allowed only one client to connect to it
and there is only one gaming session at any time.

We invited five participants to play the two games multiple
times. The participants had different experience with each of the
two games, ranging from novice to expert. Each participant played
eight sessions of each game, four of these sessions were encoded
using the standard H.264 base encoder and the other four were also
encoded using H.264 but with its encoding parameters optimized
using DeepGame in real time. The length of each gaming session
was about two minutes. The participants were not informed which
video encoding method was used in each gaming session. Also,
the order of choosing the encoding method was randomized. In
addition, we varied the encoding rate from low bandwidth values
of 1 and 2 Mbps to medium and high values of 4 and 10 Mbps.

In total, we collected information from 80 gaming sessions from
five participants playing two different games under four bitrate
values. After each gaming session, the participant was asked to
report the Mean Opinion Score (MOS). MOS is a rating from 1
to 5 following the Absolute Category Rating (ACR) [22], where
1 indicates an extremely bad gaming experience with substantial
lags, distortions, and artifacts across the frames. Whereas a score
of 5 indicates an excellent quality without any noticeable lags or
distortions in the video quality.

Table 1 summarizes the results of our experiments. The results
show that DeepGame significantly improves the quality perceived
by the participants in all scenarios. For example, for the CS:GO
game when the bandwidth is 4 Mbps, DeepGame increases the
MOS from 3.6 (average–good quality) to 4.8 (very good–excellent
quality). That is, in this case, DeepGame achieved an improvement
of about 33% in the MOS over the base encoder under the same
bitrate. The improvement in the MOS achieved by DeepGame is

Game FIFA20 CS:GO
Bitrate/Setup Base DeepGame Base DeepGame

1 Mbps 1.6 2.4 1.4 2.6
2 Mbps 2.6 3.2 2.4 3.4
4 Mbps 3.8 4.2 3.6 4.8
10 Mbps 4.0 4.4 3.8 4.4

Table 1: Results of the subjective study: DeepGame improves
the Mean Opinion Score by up to 33% over the base encoder.

especially useful in relatively low bandwidth scenarios. For exam-
ple, DeepGame improved the MOS from 2.4 (poor quality) to 3.4
(average–good quality) for CS:Go with 4 Mbps.

DeepGame is expected to achieve even higher gains for recent
games that have resolutions of 2K/4K, run at 60/120 fps, and have
very rich graphics and illumination effects. These games require
very high bandwidth that most current players do not have. Be-
cause of its substantial quality improvements when the available
bandwidth is smaller than the needed bandwidth for the base video
encoder, DeepGame could enable cloud gaming providers to offer
recent video games to a larger number of players.
Processing Time of DeepGame. We measure the processing
times of different components of DeepGame. Notice that in all
of the above experiments, DeepGame was running in real time dur-
ing the gaming sessions, and the MOS results reported in Table 1
did not indicate any lags perceived by the players. Also, recall that
the DeepGame’s components are pipelined and run in parallel with
the encoding operations, and thus they do not impose additional
delays to the encoding pipeline. During the experiments, all games
were running at 30 fps, i.e., the allowed time for each frame is 33.33
ms. The spatio-temporal network of DeepGame uses Δ frames as
input, however these frames are sampled over a short period of
time. Specifically, we sample Δ = 10 frames during the last sec-
ond of gameplay. According to [16], the gameplay context can be
accurately predicted using the data from the last second. Using
this sampled approach, DeepGame does not need to run the object
detection network on each frame and in our experiments it runs
every 3 frames. As result, the ROI prediction time will not add any
processing delays to the pipeline as long as it is lower than 100
ms per frame and DeepGame runs every third frame, where the
frame rate is 30 fps. We measured the total time for DeepGame
to process each frame. The average processing time was 82 ms,
with a standard deviation of 1.5 ms. For video games with higher
frame rates, a larger sampling period can be employed to ensure
DeepGame meet the real time constraint.

The predicted ROIs obtained from the spatio-temporal network
are then used to encode the future frames that will occur during a
short period of time equivalent to the minimum duration for eye
fixations [42]. Thus, all frames that occur during the next 0.2 sec,
i.e., 6 frames will have the same encoding weights and the encoder
doesn’t incur any delays as the weights are readily available from
the previous ROI prediction stage.

We further analyze the processing times of the other components
of the entire video encoding pipeline, which are weight calculation,
rate control, and actual encoding of the video frames. The last two
components are common, whether DeepGame is used or not. The

average processing time per frame for the rate control component
was 1.158 ms and for the encoding component was 4 ms. Whereas,
the average processing time per frame for the additional weight
calculation component of DeepGame was only 0.31 ms.

5 OBJECTIVE EVALUATION AND ANALYSIS
In this section, we evaluate the accuracy of the proposed ROI pre-
diction model, relative to the ground truth ROIs that we have col-
lected from four popular games. We then compare the encoding
performance of DeepGame against the base encoder using multiple
objective metrics.

5.1 Dataset and Model Training
GamingROIDataset.We conduct experiments to collect a dataset
showing where players look at while playing different games. Our
setup consists of a Gazepoint GP3 eye gaze tracking device, a PC,
and a PlayStation 4 (PS4) console. The PC has a CPU with 8 cores
running at 4 GHz, 32 GB of RAM, and a GPU with 2,048 cores and
4 GB of memory. We used a 27-inch HD LCD monitor at 60 Hz.

We first ran the calibration software of the eye gaze tracker.
Then, during a gaming session, we recorded the game frames and
collected the eye fixations of the players using the eye gaze tracking
device. We used two PC games and two PS4 games in our study.
For the PC games, we recorded the games at full HD resolution. For
PS4 games, we mirrored the games to the PC where the eye gaze
tracker is installed. The PS4 processor down-scales the frames to
720p as it becomes busy with mirroring and running the game.

The considered four games represent different categories and
camera perspectives as follows:1 (i) FIFA 20: is a soccer game where
the user controls and switches between players of a single team, (ii)
CS:GO: is a first person shooter game where the user controls the
movements and aim of their character to eliminate enemies, (iii)
NBA Live 19: is a basketball game where the user controls the five
players in their team, and (iv) NHL 19 is an ice hockey game where
the player controls a team of players as if the player is sitting at the
goalkeeper side.

We invited eight participants with different skill levels to play
each of the four games multiple times. Each participant played
each game for an average duration of seven minutes. In total, we
recorded information from 98 gaming sessions, for a total playing
time of 3 hours and 44 minutes. The games were played at their
normal frame rate of 30 fps, but the eye gaze tracker could only
capture at 10 fps, that is, the tracker recorded the gaze location
every third frame. This is not a major concern as the human visual
system cannot switch its fixation in a period shorter than 0.2 sec
[42], which is double the duration between the frames captured by
the tracker.

The final dataset has 138,426 game frames from four popular
games, along with the gaze location in each frame. The dataset will
be made public at [2].
Training of DeepGame’s Neural Network Models. The train-
ing was performed in two steps. First, we fine-tuned the object
1Three of the four games, FIFA 20, NHL 19, and NBA Live 19, and all screenshots
taken from them are licensed property of Electronic Arts, Inc. The fourth game, CS:GO,
and all screenshots taken from it are licensed property of Valve Corporation. We
obtained permissions to conduct experiments with these games and include some of
their screenshots in this paper.

detection network to extract the game objects and auxiliary in-
formation in our dataset frames. Next, we post-processed these
detections and used them to train the LSTM neural network. Each
object was mapped to the blocks it occupies in an 𝑁 ×𝑀 array of
blocks. The training and testing are done using the leave-one-out
approach. For each game, we trained using the data of all play-
ers except one and tested on the left-out player. Then, we choose
another player to leave out, and we calculate the average results
across all cases. The learning rate is set to 0.001 and we train the
network for 30 epochs. Since the data was collected at 10 fps, a
single data sample consists of Δ = 10 consecutive raw frames in
.jpg format and the Ground Truth is the ROI blocks in the next
2 frames similar to what we mentioned in Section 4. We mapped
these fixation points to the 𝑁 ×𝑀 ROI blocks where 𝑁 = 𝑀 = 8.
The mapping process is straightforward: we draw a circular region
around the fixation point and designate the blocks that cover this
region as ROIs. The radius of the circle is set to 70 pixels as this
value represents the 2◦ of visual angle that covers the foveal region
on the screen [23].

In the following, we compare DeepGame versus a baseline en-
coder. This is because the state-of-art ROI encoding system, CAVE
[17], requires manual specifications of ROIs.

5.2 ROI Prediction Accuracy
In this section, we assess the performance of the proposed ROI
prediction model. We report two important metrics: the prediction
accuracy and prediction area. We define the prediction accuracy as
the percentage of frames where the model accurately predicted the
ROI blocks. This metric determines how well we are able to cover
the ROI blocks. The second metric, the prediction area, indicates
the additional predicted blocks. The smaller the prediction area,
the better the encoding efficiency. The additional predicted blocks,
however, are necessary to cover all possible fixations.

Table 2 shows the prediction accuracy and area for each game.
The proposed model yields a high accuracy of 85.95% for FIFA
20 while using an ROI area of around 12% of the entire frame.
This game has the majority of scenes with distinct objects located
across the frame. In addition, the soccer field does not have a lot
of details. This increases the model ability to accurately learn the
game context and predict the exact ROIs. In CS:GO, a first-person
shooter game, the prediction accuracy and area are 82.85% and
9.65%, respectively. Although this is a complex game with faster
motion and interactions compared to the other games, the model
learns the game context as many eye fixations are located near
the center. The model accuracy for NBA19 and NHL19 is 78.17%
and 73.96%, respectively. This is because of the wide range of eye
fixations in these games. In addition, most of the scenes have a large
number of insignificant objects distributed across the frame such as
spectators and floor paintings. Therefore, the model predicts more
blocks to cover the majority of the ROIs.

5.3 Comparison of DeepGame vs. Base Encoder
We analyze the encoding performance of DeepGame and compare
it against the state-of-the-art H.265 video encoder, which is referred
to as Base in the figures.

0 1 2 3 4 5 6 7 8
35

40

45

(a) PSNR

0 10 20 30 40 50 60
0.80

0.85

0.90

0.95

1.00

(b) SSIM

0 10 20 30 40 50 60
40

60

80

100

(c) VMAF

Figure 4: The encoding performance of DeepGame versus the base H.265 video encoder for CS:GO.

Metric/Game FIFA 20 CS:GO NBA
Live 19 NHL19

Prediction Acc. 85.95% 82.85% 78.17% 73.96%
Prediction Area 11.91% 9.65% 21.80% 20.99%
Table 2: Accuracy of the proposed ROI prediction model.

Segment BD-Rate: SSIM BD-Rate: PSNR
FIFA 20 (2K@60) -33.01% -35.06%
CS:GO (2K@60) -23.34% -19.11%
NBA Live 19 (720@30) -31.94% -36.40%
NHL 19 (720p@30) -20.80% -22.42%

Table 3: Potential bitrate savings by DeepGame compared to
the base encoder computed using the B–D rate metric.

We report the following four metrics as they represent the per-
ceived quality. (1) The Bjontegaard (B–D rate) [8]: It computes the
average bitrate savings between two encoding methods by calculat-
ing the average area between their Rate–Distortion (R–D) curves.
A negative value indicates a bitrate saving achieved by the first
method compared to the second one. (2) Peak Signal-to-Noise Ratio
(PSNR): It represents the visual fidelity of the frames. (3) Structural
similarity index measure (SSIM): It measures the similarity between
two images. (4) Video Multimethod Assessment Fusion (VMAF) [7]:
It estimates the subjective video quality based on a reference and
distorted video sequence.

We measure the PSNR and SSIM metrics in the ROIs, since they
are the main areas where players focus on. The VMAF metric com-
plements the PSNR and SSIM metrics as it evaluates the quality
across the whole video sequence.

First, we analyze the bandwidth savings of DeepGame over the
entire frame by reporting the B–D rate metric using the SSIM and
PSNR R–D curves calculated over the ROIs for all four video games.
Table 3 shows the bandwidth savings achieved by DeepGame com-
pared to the base H.265 encoder. Recall that DeepGame needs to
predict additional ROI blocks to cover the different user behaviours.
Despite these additional blocks, DeepGame outperforms the base
encoder across all games and qualities. Specifically, the table shows
that DeepGame reduces the bandwidth usage by up to 35% and

19.11% for FIFA 20 and CS:GO, respectively. In addition, DeepGame
yields bandwidth savings up to 36% and 22% for NBA Live 19 and
NHL 19, respectively.

We next present sample results for the PSNR, SSIM, and VMAF
metrics for the CS:GO game in Figure 4. The results for the three
other games are similar and omitted due to space limitations. The
figure shows that DeepGame achieves higher PSNR and SSIM values
compared to the base encoder for all bitrates for both games. The
figures also show that both DeepGame and base encoder yield
almost the same VMAF values, which are measured across the
entire sequence, not just ROIs. This indicates that DeepGame does
not introduce distortions despite the bandwidth savings.

6 CONCLUSIONS
Delivery of high-quality games to large-scale players represents a
major challenge to cloud gaming platforms due to its high band-
width requirements. We designed and implemented DeepGame, a
new pipeline to efficiently encode video streams for cloud gaming.
DeepGame learns the context of the game and predicts the regions
of interest (ROIs) in the video frames using a spatio-temporal deep
neural network model. DeepGame then encodes the ROIs with a
relatively higher quality than other regions, while maintaining a
smooth quality within each frame and across successive frames.
We have collected a new dataset containing detailed information
about 98 gaming sessions from several participants of different skill
levels playing four popular video games: FIFA 20, NBA Live 19,
NHL 19, and CS:GO. The dataset has about 140K frames with their
associated ROIs. The dataset and the code of DeepGame are pub-
licly available for other researchers. We implemented DeepGame
in an open-source cloud gaming platform and conducted a subject
study to show its practicality and performance. The results show
that DeepGame can improve the quality of the gaming experience,
measured the Mean Opinion Score (MOS), by up to 33%. In addition,
we demonstrated the potential bandwidth savings of DeepGame
compared to the state-the-art H.265 (HEVC) video encoder using
multiple objective metrics: BD-rate, SSIM, PSNR, and VMAF. The
results show that DeepGame can achieve bandwidth savings of up
to 36%, while maintaining the same perceived quality for players.

REFERENCES
[1] [n.d.]. Amazon Pushes into Making Video Games, Not Just Streaming Their Play.

https://nyti.ms/2RwJMD5. [Online; accessed April 2021].
[2] 2021. DeepGame dataset: Network and Systems Lab, Simon Fraser University.

https://nmsl.cs.sfu.ca/index.php/Resources#Datasets
[3] AMD. [n.d.]. Advanced Media Framework SDK. https://bit.ly/3tiASXK. [Online;

accessed April 2021].
[4] AMD. [n.d.]. Google Partners with AMD for Custom Stadia GPU. https://bit.ly/

3g4RheL. [Online; accessed April 2021].
[5] Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: OpenNeural Network Exchange.

https://github.com/onnx/onnx.
[6] Ankita Bhutani and Preeti Wadhwani. 2019. Cloud Gaming Market Size By

Type, By Device, By Business Model, Industry Analysis Report, Regional Outlook,
Growth Potential, Competitive Market Share and Forecast, 2019– 2025. https:
//www.gminsights.com/industry-analysis/cloud-gaming-market

[7] K. Bilal and A. Erbad. 2017. Impact of Multiple Video Representations in Live
Streaming: A Cost, Bandwidth, and QoE Analysis. In 2017 IEEE International
Conference on Cloud Engineering (IC2E). 88–94. https://doi.org/10.1109/IC2E.
2017.20

[8] G. Bjontegaard. 2001. Calculation of Average PSNR Differences between RD-
curves.

[9] Yue Chen, DebarghaMurherjee, JingningHan, AdrianGrange, YaowuXu, Zoe Liu,
Sarah Parker, Cheng Chen, Hui Su, Urvang Joshi, Ching-Han Chiang, Yunqing
Wang, Paul Wilkins, Jim Bankoski, Luc Trudeau, Nathan Egge, Jean-Marc Valin,
Thomas Davies, Steinar Midtskogen, Andrey Norkin, and Peter de Rivaz. 2018.
An Overview of Core Coding Tools in the AV1 Video Codec. In 2018 Picture
Coding Symposium (PCS). IEEE. https://doi.org/10.1109/pcs.2018.8456249

[10] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2012.
The Brewing Storm in Cloud Gaming: A Measurement Study on Cloud to End-
User Latency. In Proc. of NetGames’12. Venice, Italy, Article 2, 6 pages.

[11] Mark Claypool and Kajal Claypool. 2010. Latency Can Kill: Precision andDeadline
in Online Games. In Proc of ACM MMSys’10. Phoenix, AZ, 215–222.

[12] Michael Dorr, Thomas Martinetz, Karl R. Gegenfurtner, and Erhardt Barth. 2010.
Variability of eye movements when viewing dynamic natural scenes. Journal of
Vision 10, 10 (Aug. 2010), 28–28.

[13] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter
Integration between a Video Codec and a Transport Protocol. In Proc. of USENIX
NSDI’18). Renton, WA, 267–282.

[14] Google. [n.d.]. Google Stadia. https://stadia.google.com/. [Online; accessed April
2021].

[15] Google. [n.d.]. Stadia Help: Bandwidth, data usage, and stream quality. https:
//bit.ly/37sfw13. [Online; accessed February 2021].

[16] Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020.
Robust motion in-betweening. ACM Transactions on Graphics 39, 4 (jul 2020).
https://doi.org/10.1145/3386569.3392480

[17] Mohamed Hegazy, Khaled Diab, Mehdi Saeedi, Boris Ivanovic, Ihab Amer, Yang
Liu, Gabor Sines, and Mohamed Hefeeda. 2019. Content-aware video encoding
for cloud gaming. In Proceedings of the 10th ACM Multimedia Systems Conference.
ACM. https://doi.org/10.1145/3304109.3306222

[18] John M. Henderson, James R. Brockmole, Monica S. Castelhano, and Michael
Mack. 2007. Chapter 25 - Visual saliency does not account for eye movements
during visual search in real-world scenes. In Eye Movements. Elsevier, 537–III.

[19] Chun-Ying Huang, Kuan-Ta Chen, De-Yu Chen, Hwai-Jung Hsu, and Cheng-Hsin
Hsu. 2014. GamingAnywhere: The First Open Source Cloud Gaming System.
ACM Trans. Multimedia Comput. Commun. Appl. 10, 1s, Article 10 (Jan. 2014),
25 pages. https://doi.org/10.1145/2537855

[20] Gazi Karam Illahi, Thomas Van Gemert, Matti Siekkinen, Enrico Masala, Antti
Oulasvirta, and Antti Ylä-Jääski. 2020. Cloud Gaming with Foveated Video
Encoding. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1, Article 7 (Feb.
2020), 24 pages. https://doi.org/10.1145/3369110

[21] Intel. [n.d.]. Intel Quick Sync Video. https://intel.ly/2NMlFys. [Online; accessed
February 2021].

[22] ITU-T. 2008. P.910 : Subjective video quality assessment methods for multimedia
applications. https://www.itu.int/rec/T-REC-P.910-200804-I

[23] Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev,
Todd Goodall, and Gizem Rufo. 2019. DeepFovea. ACM Transactions on Graphics

38, 6 (nov 2019), 1–13. https://doi.org/10.1145/3355089.3356557
[24] B. Li, H. Li, L. Li, and J. Zhang. 2014. 𝜆 Domain Rate Control Algorithm for

High Efficiency Video Coding. IEEE Transactions on Image Processing 23, 9 (2014),
3841–3854. https://doi.org/10.1109/TIP.2014.2336550

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2018.
Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs.CV]

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision – ECCV 2014. Springer International
Publishing, 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
Lecture Notes in Computer Science (2016), 21–37. https://doi.org/10.1007/978-3-
319-46448-0_2

[28] Comics Gaming Magazine. [n.d.]. google stadia hits 1 millionusers. https://
www.cgmagonline.com/2020/04/23/google-stadia-hits-1-million-users/. [Online;
accessed April 2021].

[29] Shie Mannor, Dori Peleg, and Reuven Rubinstein. 2005. The Cross Entropy
Method for Classification. In Proceedings of the 22nd International Conference on
Machine Learning (Bonn, Germany) (ICML ’05). Association for Computing Ma-
chinery, New York, NY, USA, 561–568. https://doi.org/10.1145/1102351.1102422

[30] Microsoft. [n.d.]. Microsoft Xbox Cloud Gaming. https://bit.ly/3wLW7U9. [On-
line; accessed April 2021].

[31] Debargha Mukherjee, Jingning Han, Jim Bankoski, Ronald Bultje, Adrian Grange,
John Koleszar, Paul Wilkins, and Yaowu Xu. 2013. A Technical Overview of
VP9 – The Latest Open-Source Video Codec. In SMPTE 2013 Annual Technical
Conference & Exhibition. IEEE. https://doi.org/10.5594/m001518

[32] Nvidia. [n.d.]. Nvidia GeForce Now. https://bit.ly/32cIOhn. [Online; accessed
April 2021].

[33] Nvidia. [n.d.]. NVIDIA Video Codec SDK. https://bit.ly/2ZxNo8I. [Online;
accessed April 2021].

[34] Playstation. [n.d.]. PlayStation Now. https://bit.ly/2QmCtgp. [Online; accessed
April 2021].

[35] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[36] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv (2018).

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 6 (jun 2017), 1137–
1149. https://doi.org/10.1109/tpami.2016.2577031

[38] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. 2012. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and
Systems for Video Technology 22, 12 (2012), 1649–1668.

[39] Gary J. Sullivan and Jens-Rainer Ohm. 2010. Recent developments in standardiza-
tion of high efficiency video coding (HEVC). In Applications of Digital Image Pro-
cessing XXXIII, Andrew G. Tescher (Ed.). SPIE. https://doi.org/10.1117/12.863486

[40] Wowza Media Systems. [n.d.]. What Is Low Latency and Who Needs It? https:
//bit.ly/2NkTNkP. [Online; accessed February 2021].

[41] Tobii. [n.d.]. Types of eye movement. https://bit.ly/3pANiaW. [Online; accessed
February 2021].

[42] Tom Tullis and Bill Albert. 2013. Chapter 7 - Behavioral and Physiological
Metrics. In Measuring the User Experience (Second Edition) (second edition ed.),
Tom Tullis and Bill Albert (Eds.). Morgan Kaufmann, Boston, 163–186. https:
//doi.org/10.1016/B978-0-12-415781-1.00007-8

[43] Zhou Wang and A.C. Bovik. 2001. Embedded foveation image coding. IEEE
Transactions on Image Processing 10, 10 (2001), 1397–1410. https://doi.org/10.
1109/83.951527

[44] Jiangtao Wen, Meiyuan Fang, Minhao Tang, and Kuang Wu. 2015. R-(lambda)
Model Based Improved Rate Control for HEVC with Pre-Encoding. In 2015 Data
Compression Conference. IEEE. https://doi.org/10.1109/dcc.2015.35

[45] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. 2003. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology 13, 7 (2003), 560–576.

[46] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proc.
of ACM SIGCOMM’15. London, United Kingdom, 325–338.

https://nyti.ms/2RwJMD5
https://nmsl.cs.sfu.ca/index.php/Resources#Datasets
https://bit.ly/3tiASXK
https://bit.ly/3g4RheL
https://bit.ly/3g4RheL
https://github.com/onnx/onnx
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://www.gminsights.com/industry-analysis/cloud-gaming-market
https://doi.org/10.1109/IC2E.2017.20
https://doi.org/10.1109/IC2E.2017.20
https://doi.org/10.1109/pcs.2018.8456249
https://stadia.google.com/
https://bit.ly/37sfw13
https://bit.ly/37sfw13
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/3304109.3306222
https://doi.org/10.1145/2537855
https://doi.org/10.1145/3369110
https://intel.ly/2NMlFys
https://www.itu.int/rec/T-REC-P.910-200804-I
https://doi.org/10.1145/3355089.3356557
https://doi.org/10.1109/TIP.2014.2336550
https://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://www.cgmagonline.com/2020/04/23/google-stadia-hits-1-million-users/
https://www.cgmagonline.com/2020/04/23/google-stadia-hits-1-million-users/
https://doi.org/10.1145/1102351.1102422
https://bit.ly/3wLW7U9
https://doi.org/10.5594/m001518
https://bit.ly/32cIOhn
https://bit.ly/2ZxNo8I
https://bit.ly/2QmCtgp
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1117/12.863486
https://bit.ly/2NkTNkP
https://bit.ly/2NkTNkP
https://bit.ly/3pANiaW
https://doi.org/10.1016/B978-0-12-415781-1.00007-8
https://doi.org/10.1016/B978-0-12-415781-1.00007-8
https://doi.org/10.1109/83.951527
https://doi.org/10.1109/83.951527
https://doi.org/10.1109/dcc.2015.35

	Abstract
	1 Introduction
	2 Challenges and Related Work
	2.1 Challenges of Video Encoding in CG
	2.2 Related Work

	3 DeepGame
	3.1 Design Principles and Overview
	3.2 Spatio-Temporal Prediction of ROIs
	3.3 Calculating Encoding Parameters
	3.4 Overheads and Limitations of DeepGame

	4 Implementation and Subjective Evaluation
	5 Objective Evaluation and Analysis
	5.1 Dataset and Model Training
	5.2 ROI Prediction Accuracy
	5.3 Comparison of DeepGame vs. Base Encoder

	6 Conclusions
	References

