
Improving Online Gaming Quality using Detour Paths

Cong Ly
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

cly@cs.sfu.ca

Cheng-Hsin Hsu
Deutsche Telekom R&D Lab

5050 El Camino Real 221
Los Altos, CA 94022

cheng-hsin.hsu@telekom.com

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

mhefeeda@cs.sfu.ca

ABSTRACT

We study the problem of improving the user perceived quality of
online games in which multiple players form a game session and
exchange game-state updates over an overlay network. We propose
an Indirect Relay System (IRS) to forward game-state updates over
detour paths in order to reduce the round-trip time (RTT) among
players. The IRS system efficiently identifies and ranks potential
detour paths between any two players, and dynamically selects the
most suitable one based on network and client conditions. To the
best of our knowledge, this is the first system that directly reduces
RTTs among players in online games, while previous works in the
literature mitigate the network latency issue by either hiding it from
players or preventing players with high RTTs from being in the
same game session. We implement the proposed IRS system and
deploy it on 500 PlanetLab nodes. The results from real experi-
ments show that the IRS system improves the online gaming qual-
ity from several aspects, while incurring negligible network and
processing overheads. We also deploy the IRS system on a number
of residential computers with DSL and cable modem access links,
and we successfully found several detour paths among them. To
evaluate the IRS system with wider ranges of system parameters,
we conduct extensive trace-driven simulations using a large num-
ber of real game client IPs. The experimental and simulation results
show that the proposed IRS system: (i) significantly reduces RTTs
among players, (ii) increases number of peers a player can connect
to and maintain good gaming quality, (iii) imposes negligible net-
work and processing overheads, and (iv) improves gaming quality
and player performance.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications

General Terms

Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

1. INTRODUCTION
Multiplayer online games have become increasingly popular in

the past few years, and several market studies predict that online
games will continue to grow in terms of market revenues, num-
ber of users, and generated Internet traffic volume [28]. Online
games require real-time interactions, which make high network la-
tency one of the main challenges to provide high-quality gaming
experience over the best-effort Internet. For example, in car racing
games, high network latency leads to slow responsiveness, which
increases the player’s average lap time and results in player frus-
tration. Hence, game developers must carefully handle network
latency to provide high-quality gaming experience to players.

In this paper, we propose to reduce the end-to-end RTT (round-
trip time) between any two players by sending the game-state up-
dates over detour paths through other players. The proposed system
is referred to as Indirect Relay System (IRS). For any two players,
the proposed IRS system provides three services: (i) it employs
network coordinate systems to efficiently identify potential detour
paths, (ii) it sends a few end-to-end probing messages to rank these
detour paths, and (iii) it monitors the lateness of game-state updates
on the active detour path and dynamically switches to other detour
paths to cope with network dynamics.

The IRS system directly reduces RTTs among players in on-
line games, while most earlier works mitigate the negative impacts
of latency by either applying latency compensation techniques [4,
Chap. 6], or matching players exclusively with nearby players in
terms of RTTs [1, 10, 11]. Through an actual implementation and
extensive trace-driven simulations, we show that, compared to di-
rect links used in current online games, the IRS system significantly
reduces RTTs among players, while imposing negligible network
and processing overheads. For example, in our real experiments,
the IRS system achieves more than 100 msec RTT reduction in
80% of game sessions, while each player on average sends only
one small control message every 16 sec which is negligible. While
a relay player carries game-state updates for other players, the ad-
ditional traffic amount is insignificant to broadband access links:
our experiments, reported in Sec. 3.1, show that each Counter

Strike: Source and Starcraft 2 player generates about
40 kbps game-state updates on average. In addition to RTT reduc-
tion, our simulation results show that the IRS system increases the
players’ matchability: 50% of the players can be matched with 20%
or more additional players while maintaining good gaming quality.
Last, the IRS system is designed to adapt to network dynamics,
and thus is robust to network congestion, dropped players, network
outage, and malicious players.

The rest of the paper is organized as follows. In Sec. 2, we sur-
vey the related work in the literature. We describe the considered
online gaming network model and give an overview of our solution

55

in Sec. 3. Then, we present the proposed system in Sec. 4. We
implement the proposed system and evaluate it on more than 500
PlanetLab nodes and on several home computers in Sec. 5. To ex-
ercise wider ranges of system parameters using a large number of
realistic game client IPs, we also evaluate the proposed system us-
ing trace-driven simulations in Sec. 6. Sec. 7 concludes the paper.

2. RELATED WORK
Coping with network latency is critical to the quality of user ex-

perience in online games [12]. Several latency compensation mech-
anisms have been proposed by the research community and used
by the gaming industry. These mechanisms are roughly catego-
rized into two groups: time manipulation and matchmaking. Time
manipulation mechanisms compensate for latency by adjusting the
timestamp of game-state updates. Time manipulation mechanisms
can further be classified into two approaches: time delay such as
lockstep and event-locking, and time wrap such as dead reckoning.

Lockstep and event-locking are two popular mechanisms adopted
by the gaming industry. The lockstep algorithm [5] controls con-
sistency among clients with varying latency. With this algorithm,
clients send out game-state updates at fixed time intervals, and a
client is blocked until receiving updates from all other clients. In
event-locking [9], clients send game-state updates to a server, and
the server relays them to all clients in the same session. While
lockstep and event-locking are suitable on local-area networks, they
perform poorly in the Internet [6].

In dead reckoning [7, 29], clients extrapolate the behavior and
state of gaming objects and thus can continue rendering frames
even if game-state updates are late. To maintain consistency, clients
agree on some thresholds of prediction errors for various types of
game-states. Game-state corrections are sent by the server if these
thresholds are exceeded. Under this principle, several improve-
ments have been proposed for the dead reckoning system, e.g., the
authors of [2] propose to augment it with synchronized clocks in
order to improve the consistency of gaming objects. While time
manipulation mechanisms attempt to hide network latency from
players, they may cause negative side effects. In particular, time
delay leads to poor responsiveness and time wrap results in game-
state inconsistency and irregular moves due to game-state correc-
tions. Therefore, time manipulation mechanisms may not work in
networks with long and varying latency.

Matchmaking based latency compensation [10, 1, 17] prevents a
new player from starting a game with other players that have high
expected network latency to that new player. Chambers et al. [10]
propose to use IP-to-geolocation databases to filter out far-away
players and redirect players to close-by ones. Htrae [1, 17] com-
bines IP-to-geolocation databases and network coordinate systems
to predict network latency, and prevents players with high network
latency from matching. Htrae favors players that are geographically
close in proximity, e.g., a player in Japan may never be matched
with another player in Canada. The matchmaking based mecha-
nism effectively reduces the number of players each player can play
with, and it may not support specific matches, which are the games
formed before-hand, e.g., among friends.

In summary, latency compensation mechanisms mitigate the net-
work latency issue by either hiding it from players or preventing
players with long latency from being matched. Whereas the pro-
posed IRS system directly reduces the network latency.

The IRS system is not the first work that utilizes detour paths for
shorter network latency. For example, Savage et al. [27] point out
that direct path between two IPs may lead to longer network latency
than a detour path through a third IP. More recently, detour paths
have been used in peer-to-peer (P2P) overlays [26, 19]. The authors

of [26] propose a system to use inferred AS (autonomous system)
maps and ping probes to find the detour paths. Their system uses
breadth-first search to find detour paths. The authors of [19] pro-
pose a symbiotic overlay network, which provides peering incen-
tive by associating a peer with other peers only when they can mu-
tually help each other to reduce network latency to some Internet
servers. Similar to [19], the IRS system is built on the distributed
detour path discovery method proposed in [21].

3. BACKGROUND AND OVERVIEW

3.1 Background
Online games are roughly classified into two types: avatar games

and omnipresent games [12]. In avatar games, a player controls
a single character that exists at a precise location in the virtual
space and can only interact with near-by objects. Avatar games in-
clude shooter games, role-playing games, action games, and sports
games. These games are further categorized into first-person avatar
games in which a player views through the character’s eyes, and
third-person avatar games in which a player sees the character from
a distance. In omnipresent games, a player concurrently controls a
group of characters, and can interact with objects that are close to
any of these characters. Omnipresent games include real-time strat-
egy games and simulation games.

We consider a fairly general model for online gaming networks,
where several players form a session and exchange game-state up-
dates. Players outside a session are not interested in the game-state
updates of that session. This model is general because it can be
readily mapped to different types of games. For example, in avatar
games, upon agreeing on the game settings such as the map and
rules, several players start a game and exchange game-state up-
dates. That is, they form a session in our model. In large-scale sim-
ulation games, thousands of players are playing in a virtual world.
While there is no equivalent concept as the game session in avatar
games, players that are far away from each other in the virtual world
do not interact with each other. Therefore, several previous works
propose to divide the virtual world into smaller segments through a
process known as segmentation [3]. Segments are smaller regions
of the virtual world. Players in the same segment exchange game-
state updates, and thus each segment is equivalent to a game session
in our model.

While our model is applicable to various online games, we will
only consider avatar games in the rest of this paper for concrete dis-
cussion. In avatar games, each player runs a copy of the game soft-
ware on his/her machine, and we refer to this machine as a client.
Once a player decides to play the game, he/she needs to find other
players through a centralized server called the lobby server, which
is also known as the master server. Lobby servers are usually pro-
vided and maintained by companies that develop online games, and
their locations are hardcoded in the game software. With the help of
the lobby server, several clients form a gaming session, which has
a common set of game settings including number of players, map,
and gaming rules. Clients in the same session frequently exchange
game-state updates. Such message exchanging is usually done over
an overlay network. To prevent inconsistency in the game state,
game-state updates must be validated before being trusted. In each
game session, one of the clients is chosen as the host, which is re-
sponsible to validate the game-state updates, and thus is also known
as the authoritative client in that session. The host runs the main
gaming logic, and forwards valid updates to all clients in the same
session. Fig. 1 illustrates two game sessions, where each session
has four players: a host and three clients.

Once connected to the host, clients in the same session start ex-

56

C2 C3

180 msec
2

:
G

et
 H

o
st

s

3. Get Session Info

1
:

C
o

n
n

ec
t

4. Join Session

C5 C6

C1

Lobby

Server

C4 Session 2

Session 1

40 m
sec

50
 m

se
c

H1

H2

Figure 1: Game sessions in online

game systems.

150 (−30) msec

C5

C1
80 (+40)

80
 (
+
30

)

H1

Figure 2: Locating

TIV using network

coordinate systems.

changing game-state updates via the host using Internet routing.
Sending updates directly from a client to its host may lead to longer
network latency than sending them over a detour path through a re-

lay client. This is illustrated in Fig. 1, where the direct path between
C1 and H1 (the solid line) has an RTT of 180 msec, while the de-
tour path from C1 to C5 to H1 (the dashed lines) has a total RTT
of 90 msec. Therefore, sending game-state updates over the detour
path via client C5 reduces the RTT by half. In this example, the
triangle of clients C1, C5, and H1 violates the triangle inequality.
That is, the length of the side (C1, H1) is longer than the sum of the
other two sides (C1, C5) and (C5, H1). Such triangles are called as
triangle inequality violations, or TIVs. We call side (C1, H1) as the
long side and sides (C1, C5) and (C5, H1) as the short sides. TIVs
exist in the Internet because inter-domain routing is based on busi-
ness policies rather than network latency [27], and a few groups
have proposed employing overlay routing in distributed systems to
reduce network latency [26, 21, 20]. In this paper, we apply similar
idea to online games, which are very sensitive to network latency.

Sending game-state updates through a relay game client leads
to additional latency and traffic overheads. To quantify actual re-
lay overhead, we chose two popular online games: Starcraft
2 and Counter Strike: Source, and use them to measure
overheads. Starcraft 2 is an omnipresent game and Counter
Strike: Source is a first-person shooter game; readers inter-
ested in more details about them are referred to [22]. We first play
a game on a commodity PC with 2.8 GHz Intel CPU for 30 min,
and we capture the game-state updates and structure them into a
trace file. We then use a traffic generator to replay the captured
game-state updates toward our PC, and at the same time we play a
new 30-min game session. We also run a relay utility that receives
game-state updates from and sends them back to the traffic gener-
ator. This utility measures the latency overhead as the difference
between the time an update arrives at our PC’s network adapter and
the time it goes onto the network adapter’s outgoing queue. Con-
currently running the online game and relay utility on the same PC
allows us to measure realistic overheads. We observe an average
latency overhead of 6.2 msec in Starcraft 2 and 6.5 msec in
Counter Strike: Source. This experiment reveals that,
even with modern online games, the latency overhead is insignif-
icant. Our experiments also indicate that game-state updates on
average incur 40 kbps traffic overhead in Counter Strike:

Source and 42 kbps in Starcraft 2, which are insignificant
to broadband access links. Our traffic overhead measurements are
inline with those reported in the literature [14].

3.2 System Overview
We propose the Indirect Relay System (IRS), which utilizes the

triangle inequality in the Internet to form detour paths for faster de-
livery of game-state updates. Consider a gaming network with a
lobby server and M clients. Let D(s, t) be the RTT measurement
between any two clients s and t, where 1 ≤ s, t ≤ M . Let O(r)
be the round-trip relay overhead of client r, where 1 ≤ r ≤ M .
We say that client r leads to a detour path from s to t if and only if
D(s, r)+O(r)+D(r, t) < D(s, t). The goal of our IRS system is
to efficiently find detour paths between two clients s and t, and uti-
lize the detour paths to reduce RTT between them. To achieve this,
the IRS system supports the following three operations between s

and t:

1. Identify up to K most promising relay clients using a net-
work coordinate system, where K is a system parameter.

2. Rank these potential relay clients based on end-to-end RTT
measurements, which allow client s to find the best detour
path to reach t.

3. Monitor the network and relay client conditions and dynami-
cally switch detour paths if the active one is congested or the
relay client fails.

The IRS system has two components: IRS Server and IRS Client.
The IRS Server is implemented as a module in the lobby server to
manage coordinates of clients and assist clients to utilize detour
paths in order to reduce the RTT between any two clients. The
IRS Client implements a network coordinate system and runs on
game clients. The IRS system can work with any network coordi-
nate system, such as Vivaldi [13]. Each game client c maintains a
neighbor set nc, and randomly probes clients in nc. The client then
adjusts its coordinates based on the RTT measurements and the co-
ordinates of its neighbors. The number of neighbors of each client
N is a system parameter. Client c periodically (every T sec) sends
updates of its coordinates (xc) and RTT measurements (D(c, n),
where n ∈ nc) to the IRS server. This enables the IRS server to
maintain a current view of the gaming network, and to determine
the likelihood of any two clients being part of a detour path. Then,
the IRS server uses an efficient algorithm to find the most promising
detour paths between two given clients, which is presented in the
next section. We control the overhead of the algorithm by heuristi-
cally setting thresholds on the changes in the coordinates (∆x) and
RTT measurements (∆d) below which the updates are not sent.

4. DESIGN OF THE INDIRECT RELAY

SYSTEM: IRS
We first show the steps to identify potential detour paths between

any two clients. We then explain the employed ranking procedure
and we present the dynamic management of detour paths. We also
discuss the handling of security concerns. Last, we give high-level
pseudocode, and analyze its complexity.

Identifying Potential Detour Paths. To identify potential de-
tour paths, we employ network coordinate systems, which enable
us to derive pairwise RTT measurements without imposing signifi-
cant probing overhead. A network coordinate system assigns each
client a point in a coordinate space such that computing the distance
between the coordinates of two points gives the RTT estimate be-
tween the clients associated with these two points. The coordinates
of each client are derived from a few RTT measurements between
that client and its neighbors, which are chosen by a bootstrap ser-
vice when the client joins the coordinate system or through gossip
protocols. At a first glance, we may think that finding detour paths
can be as simple as using network coordinates to find the relay
client with the smallest end-to-end RTT among all possible relay
clients. This approach, unfortunately, does not work, because most

57

coordinate spaces satisfy the triangle inequality [13], and thus RTT
estimations computed using network coordinate systems form no
TIVs.

We employ an indirect way to use network coordinate systems
in order to identify potential detour paths. This method is based
on the following observation, which is also used in [19]. Since
network coordinates cannot properly embed RTT measurements
with TIVs into the resulting coordinates, the RTT estimation of two
points of a TIV would suffer from a nontrivial estimation error. We
give an example to illustrate the above observation. Fig. 2 shows
a TIV between C1, C5, and H1, where the numbers next to the
links are RTT estimations and the numbers in parentheses are es-
timation errors. The same TIV is also shown in Fig. 1 with real
RTT measurements. We first consider the long side (C1, H1), its
RTT measurement is abnormally long from the perspective of the
network coordinate system, and thus the RTT estimation should be
shorter than the RTT measurement, or equivalently the estimation
error should be a nontrivial negative value. Otherwise, this TIV
is successfully embedded by the network coordinate system, which
is impossible because coordinate spaces satisfy triangle inequality.
Similarly, consider the short sides (C1, C5) and (C5, H1), their
RTT measurements are abnormally short from the perspective of
the network coordinate system, and thus the RTT estimates should
be longer than the RTT measurements, or equivalently the estima-
tion errors should be nontrivial positive values. This is shown in
Fig. 2, where the link between C1 and H1 has a negative estimation
error of −30, while the other two links have positive estimation
errors of +40 and +30.

The component that identifies detour paths using the above ob-
servation runs on the IRS server. It uses the RTT measurements
and network coordinates collected from the clients to find the most
promising relay clients. First, we define the relay candidates r as
the set of all clients whose RTT measurements from s or t were
previously reported to the IRS server. That is, a client r is in r if
and only if D(s, r) and/or D(r, t) are known to the IRS server. For
a given pair of s and t, the IRS server evaluates the likelihood of
each client r in r for being the best relay client of the detour path
between s and t using the likelihood function Ê(r) =














E(s, r) = D′(xs,xr)−D(s, r), if D(s, r) is known;

E(r, t) = D′(xr,xt)−D(r, t), if D(r, t) is known;

E(s,r)+E(r,t)
2

, if D(s, r) and D(r, t) are both known,

(1)

where D′(xs,xr) is the estimated RTT between s and r using their
network coordinates xs and xr . Based on the aforementioned ob-
servation on TIVs, relay clients with higher likelihood function val-
ues have higher chances to be on better detour paths. The IRS
server uses the likelihood function to find the K most promising
relay clients.

Ranking Detour Paths. While the IRS server maintains histori-
cal RTT measurements to identify potential detour paths, these RTT
measurements may be out-dated due to network dynamics. Fortu-
nately, this problem can be mitigated by conducting on-demand,
end-to-end, RTT measurements through the K most promising re-
lay clients from s to t. Other than more up-to-date measurements,
conducting actual end-to-end RTT measurements has an additional
benefit. These end-to-end measurements allow us to factor in the
round-trip relay overhead O(r), which is dynamic and depends on
the current load of the relay client r. This in turn allows us to avoid
overloading clients with limited resources as these clients have high
O(r) values, and thus high end-to-end RTT measurements. Upon
the end-to-end RTT measurements are done, the source client s
ranks the potential detour paths in ascending order of their RTTs.

It then uses the first detour path as the active detour path, and keeps
other detour paths as backups.

Managing Network Dynamics. The IRS system may be af-
fected by network dynamics, such as network congestion as well as
overloaded, and disconnected relay clients. Relay clients may also
be under denial-of-service (DoS) attacks from malicious clients.
The outcome of these events is excessive lateness of game-state up-
dates, which results in degraded gaming quality. To cope with net-
work dynamics, the IRS system provides an application program-
ming interface (API) for online games to report excessive lateness
of updates, or lags. When a lag occurs, the IRS system switches
over to the next backup detour path for fast recovery. Switching
over to backup detour paths leads to several benefits. First, it helps
the clients to recover from lags due to network congestion or client
failure and departure. Second, it reduces the load on relay clients
that cannot keep up with forwarding game-state updates, which
prevents the IRS system from overloading relay clients. Last, it
increases the complexity of launching DoS attacks on relay clients,
and thus demotivates malicious clients from attacking others.

Handling Security Concerns. The IRS system carefully han-
dles two types of attacks: denial-of-service (DoS) and man-in-the-
middle. DoS refers to the attack where an attacker client floods
many packets to his/her opponent in order to inflate the RTT be-
tween the victim client and its host. The victim client in turns suf-
fers from sluggish responsiveness and may even be dropped from
the game session [30], which gives the attacker client advantages.
In the IRS system, an attacker client may direct the packet flood
toward the victim client’s active relay client for a DoS attack. This
is because the game-state updates between the victim client and its
host pass through the relay client. The IRS system addresses such
DoS attacks as follows. First, the IRS system never discloses re-
lay candidates of a client to others. Therefore, an attacker client
cannot find the victim client’s relay client. Second, even if the
attacker client accidentally locates the victim client’s active relay
client, and starts a DoS attack by flooding packets to that active re-
lay client, the victim client would quickly notice a network lag and
switch to backup detour paths. Therefore, victim clients can re-
cover from such DoS attacks. Last, any clients that suffer from
packet floods would report high RTT measurements to the IRS
server. The IRS server, therefore, wouldn’t choose them as relay
candidates for newly joined clients. With these three mechanisms,
employing the IRS system does not increase the clients’ chance of
under DoS attacks.

Man-in-the-middle refers to the attack where an attacker makes
two connections to victims and modifies/delays game-state updates
between them in order to gain advantages. In the IRS system, a
client can maliciously report very low RTT measurements to attract
others using it as a relay client and conduct man-in-the-middle at-
tacks. To handle such attacks, the IRS client provides an API for
online games to selectively send sensitive data, such as shared keys,
over direct paths to avoid potential eavesdropping. This allows on-
line games to send encrypted game-state updates using methods
such as Monch et al. [23], and prevents attacker clients from mod-
ifying game-state updates. If an attacker client delays game-state
updates, the IRS client on the victim client would notice a network
lag and switch to backup detour paths. Hence, our IRS system effi-
ciently handles both types of man-in-the-middle attacks.

Pseudo Code. Fig. 3 gives the high-level pseudocode of the pro-
posed algorithm, which we call Shortest RTT (SRTT) algorithm.
The algorithm consists of two parts: server and client. The server
first finds all potential relay clients, and sorts them on their like-
lihood function values in lines 2–4. It eliminates the clients with
low likelihood function values from the set in line 5, and sends the

58

SRTT: Shortest RTT Algorithm

1. // Server, input: src s, dst t, RTT D(s, t), and K

2. let r be the set of all relay client candidates
3. compute Ê(r) for all r ∈ r

4. sort r on Ê(r) in descending order
5. keep the first K relay clients of r // best ones
6. send r to client s

1. // Client, input: dst t, r
2. foreach r ∈ r

3. conduct RTT measurements from s to t via r

4. endfor

5. conduct RTT measurement directly from s to t

6. sort r ∪ {∅} based on their RTT measurements
7. use the best relay client in r for detour path
8. fall back to the next detour path when lag happens

Figure 3: The proposed algorithm.

remaining potential relay clients to source s. Upon receiving the
potential relay clients, in lines 2–4, client s goes through the relay
clients and conducts end-to-end RTT measurements through each
of them. In line 5, the RTT of the direct path is measured. Client
s then sorts the detour and direct paths using the RTT measure-
ments in line 6 and picks the best one of them in line 7. The client
switches over to backup detour paths in line 8 if lags are reported.

Overhead Analysis. The proposed IRS system incurs low pro-
cessing and network overheads. The processing overhead on each
client is dominated by line 6, which takes O

(

(K+1) log(K+1)
)

operations as |r ∪ {∅}| = K + 1. Since K is a small system
parameter, the processing overhead on clients is negligible. The
processing overhead on the server is dominated by line 4, as line 3
computes Ê(r) using the closed-form formula in Eq. (1). There-
fore, the worst case processing time is O(M logM), where M is
the number of clients in the gaming network. The average number
of relay candidates is typically close to the number of neighbors
N , and the average processing time at the server is O(N logN),
where N is a small system parameter, e.g., Dabek et al. [13] state
that using N = 32 in Vivaldi leads to good performance. Since the
average and maximal processing overheads on the server are low,
and the SRTT algorithm only runs at session initialization time, a
reasonable lobby server can serve a large number of clients.

The network overhead between clients and the server is small as
each client updates the server at most once every T sec, and each
update consists of the coordinates of the reporting client and on av-
erage N RTT measurements to its neighbors. Since N is a small
system parameter, each update can be packed into a single packet.
Since T is in the order of seconds, the network overhead is negligi-
ble. The network overhead among clients is also small. First, a re-
lay client contributes a small bandwidth (about 40 kbps as reported
in Sec. 3.1) toward every client using it as the relay client. Second,
in typical network coordinate systems, a client sends control mes-
sages to its neighbors infrequently. For example, as presented in
Sec. 5, our experimental results using Pyxida [16] show that each
client sends a probing message every 16 secs on average. Hence,
the network overhead incurred by the IRS system is negligible.

5. IMPLEMENTATION AND EXPERI-

MENTAL RESULTS
This section first describes a real implementation of the IRS sys-

IRS Client

(CCM)

Neighbor Update Module

(NUM)

Coordinate

UpdatesCoordinate/RTT

Updates

Packet Forwarding Module

(PFM)

Coordinates

Server

RTT

Measurements
IRS

Other

(Neighbor)

IRS Client

Detour Path Detour Path

SRTT
Algorithm

Relay Candidates

Client Coordinate Module

Figure 4: IRS Client architecture.

Updates

(GSM)

Session

Game

(CM)

Module

Coordinate

Algorithm

SRTT

Detour Search

Module

(DSM)

Lookup

Detour

Candidates

Relay

Coordinates

Client

Sessions

Game

Emulate

IRS Server

Lobby Server

Coordinate/RTT

Module

Figure 5: IRS Server architecture.

tem. We then deploy the system on PlanetLab and present our ex-
perimental results from PlanetLab. We also deploy our system on
several home computers with DSL and cable modem access links.

5.1 Implementation
We implemented the IRS system in about 3,700 lines of Java

code. The IRS system consists of two parts: client and server. The
IRS client runs on game clients. The IRS server may run on the
lobby server or on a standalone machine. Running the IRS server
on a standalone machine allows multiple lobby servers to share the
same IRS server via remote procedure calls and enables load bal-
ancing. We present the IRS client and server below.

IRS Client. The IRS client consists of three modules: (i) neigh-
bor update module (NUM), (ii) client coordinate module (CCM),
and (iii) packet forwarding module (PFM). Fig. 4 illustrates the IRS
client architecture. The NUM is responsible for the control mes-
sages. It maintains communication channels with the IRS server
and the neighboring clients. When a new client joins the IRS sys-
tem, its NUM connects to the IRS server and requests a list of
neighbors. Upon getting the list of neighbors, the NUM connects to
the neighbors and schedules periodic RTT measurements to them.
The time intervals between RTT measurements are adaptive so that
neighbors that have stable network coordinates are assigned longer
measurement intervals. This is to reduce the number of RTT mea-
surements and network overhead of the IRS system. The NUM
is also responsible for sending the coordinates and RTT measure-
ments to the IRS server.

We notice that while NUM schedules the RTT measurements, it
does not implement the network coordinate system itself. Instead,
the network coordinate system is implemented in the CCM mod-
ule. The NUM gets the latest coordinates from the CCM whenever
the NUM decides to send a coordinate update to the IRS server,
or receives an RTT measurement request from a neighbor. We im-

59

100 500 1,000 1,500 2,000
0

10
20
30
40
50
60
70
80
90

100

RTT Reduction (msec)

C
D

F
(%

)

Figure 6: RTT reduction achieved by

the IRS system.

0 500 1000 1500 2000
0

10
20
30
40
50
60
70
80
90

100

No. Messages Sent per Client (in 9 hrs)

C
D

F
(%

)

(a)

0 100 200 300 400 500
0

100

200

300

400

Time (min)

N
o
.

U
p
d
a
te

s
p
er

M
in

u
te

(b)

Figure 7: Overhead incurred by the IRS system: (a) number of messages sent

by each client in a 9-hr experiment, and (b) updates per minute received by the

server.

plemented the CCM based on the open source Pyxida project [16],
which implements Vivaldi [13] algorithm. We modified the Pyxida
implementation to make it suitable for our IRS system.

While the NUM and CCM are in the control plane of the IRS
client, the PFM is in the data plane and maintains the detour paths.
That is, all game-state updates are sent to the PFM, and retrans-
mitted to the destination client. Following the results from Feng et
al. [14], we randomly set the packet size between 25 and 100 bytes
to emulate real life game traffic. We use these synthetic game-state
updates to measure end-to-end RTTs, which include the actual re-
lay overhead. That is, round-trip relay overhead O(r) is part of
RTTs reported in our experimental results. The PFM switches over
to backup detour paths whenever network lags occur.

IRS Server. The IRS server consists of three modules: (i) co-
ordinate module (CM), (ii) detour search module (DSM), and (iii)
game session module (GSM). Fig. 5 illustrates the IRS server archi-
tecture. The CM is essentially a database and manages the coordi-
nates and RTT measurements sent by clients. The CM provides the
coordinates and RTTs to the DSM. DSM implements the server-
side of the SRTT algorithm and provides detour path lookup ser-
vice to IRS clients. Upon receiving a detour lookup request from
an IRS client, the DSM invokes the SRTT algorithm to compute a
set of potential detour paths, which are sent back to that client.

While the CM and DSM are sufficient to provide detour path
lookup service, we implemented the GSM in our IRS server to em-
ulate players, who may join game sessions. To emulate typical
game matches, the GSM module periodically creates a new ran-
dom game session every 15-60 sec, and each game session lasts
between 3 to 10 minutes. To be conservative, we chose rather short
game sessions because they lead to more client dynamics, which
in turns impose more challenges to the proposed IRS system. We
programmed the GSM to generate random game sessions as fol-
lows. We first analyzed the game session information collected in
Sec. 6.1 and derived an empirical PMF (probability mass function)
for the number of players per session. We then followed this prob-
ability distribution to find a random number of players for a game
session. Let k be the resulting number of players. The GSM ran-
domly chooses k IRS clients from all active clients, and it selects a
random host from these k clients. Once the clients are determined,
the GSM emulates this game session by finding detour paths from
individual clients to the host. The GSM achieves this by sending
multiple lookup requests to the DSM. The GSM collects statistics
on the detour and direct paths, and saves them in a log file.

5.2 PlanetLab Deployment
We deployed the IRS client on more than 500 PlanetLab nodes.

We ran the IRS server on a workstation in our Lab. We let K = 32,
∆d = ∆x = 64 msec, T = 60 sec, and N = 32. To rule out time-
of-day variations on network conditions, we instructed the GSM
module to perform the same experiment five times, with each last-
ing more than nine hours. More than 3,000 game sessions with
length 3 to 10 mins were randomly created with the number of
players per session following an empirical driven probability dis-
tribution. The performance of the IRS is consistent across all ex-
periments. The results of the experiment were selected from an
experiment conducted between 1:05pm and 10:17pm on January
7th 2010 (PDT). For each game session, we collected real RTTs
(including relay overhead) of the detour paths computed by the
DSM and saved them in a log file, which was then post-processed
to quantify the performance of the IRS system. For comparison, we
also logged RTTs of the direct paths and compute the performance
of the current gaming networks. In the figures, we use IRS to de-
note results achieved by our implementation, and Current to denote
results without our implementation.

We consider the following performance metrics in our Planet-
Lab experiments. For each game session, we measure the end-to-
end RTT between each client and the host. We then define session

RTT as the highest RTT from any client to the session host. Given
that game-state updates must be validated by the host, session RTT
determines the gaming quality and we report session RTTs if not
otherwise specified. We also keep track of the number of probing
and update packets, which represent the amount of overhead im-
posed by the IRS system. Last, we consider player performance
as a performance metric, as longer RTT results in worse gaming
experience, and thus worse player performance. We consider two
first-person avatar games: a shooter game and a racing game. We
follow an empirical functions given in [12] to map the RTT of each
session to the player performance in hit fraction and average lap
time. We notice that due to the nature of the PlanetLab nodes and
the varying loads on them, the IRS clients running on some nodes
were disconnected from the Internet during the experiments. We
filtered out the results collected from these failed clients, and we
successfully collected statistics for about 3,000 game sessions.

5.3 Experimental Results from PlanetLab
RTT Reduction. We report the RTT reduction achieved by our

IRS implementation. We first sort the sessions on RTTs without
the IRS system in descending order, and plot the RTTs with and
without the IRS system (figure not shown due to the space limi-
tation). We found that the IRS system significantly reduces RTTs
for many sessions. RTTs of some sessions are reduced from more
than 3 sec to less than 0.3 sec, which is more than 10 fold improve-

60

0 3 6 9 12
0

10
20
30
40
50
60
70
80
90

100

Lap Time Improvement (sec)

C
D

F
(%

)

(a)

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Hit Fraction Improvement (%)

C
D

F
(%

)

(b)

Figure 8: Player performance: (a) lap time in a racing game, and (b) hit fraction

in a shooter game.

Figure 9: Number of detour paths

found by the IRS system.

ments. The IRS system resorts to the direct path if no better detour
path is found. Next, we compute the RTT reduction of all game ses-
sions, and plot the CDF (cumulative distribution function) in Fig. 6.
This figure shows that nearly all game sessions observe some RTT
reduction due to the IRS system, while more than 60% of them
achieve 100 msec or higher RTT reduction, which is significant.

Imposed Overhead. The IRS system incurs some overhead, in-
cluding probing messages among clients and update messages be-
tween clients and the server. We count the accumulated number of
probing messages sent by each IRS client throughout the 9-hr ex-
periment, and we plot the CDF in Fig. 7(a). This figure shows that
almost all clients imposed less than 2,000 messages in a 9-hr time
period, which is about one packet every 16 sec on average. We also
compute the number of update packets received by the IRS server.
The update packets carry either the latest coordinates or RTT mea-
surements. We compute the average number of update packets per
minute at the server, and we plot it in Fig. 7(b). This figure shows
that the number of update messages is fairly small: up to 300 per
minute are observed. Given that there are more than 500 PlanetLab
nodes in the experiment, each IRS client sends less than one update
message per minute to the server. This illustrates that the load on
the IRS server is low, and it can serve a large number of clients.
In addition, this figure shows a decreasing trend on the IRS server
load. This is because once the client coordinates are stabilized, they
send fewer number of update packets to the server.

Player Performance. We compute the expected player perfor-
mance improvement due to the RTT reduction achieved by the IRS
system. We present CDFs of two player performance metrics: lap

time, which is the average time a player finishes a lap in a racing
game, and hit fraction, which is the ratio of the hit shots over the
total fired shots using high-precision weapons such as rifles in a
shooter game. We plot the lap time improvement in Fig. 8(a) and
the hit fraction improvement in Fig. 8(b). Fig. 8 shows that 40% of
players can reduce their lap times by more than 1 sec and 30% of
players can increase their hit fractions by more than 15%. The im-
provements on player performance are because of more responsive
systems and smoother rendering, which are due to smaller RTTs
achieved by the IRS system. Fig. 8 indicates that employing the
IRS system leads to higher gaming quality, and thus better player
performance. This in turn will stimulate players to play more on-
line games, and thus increase the revenues of the online gaming
companies.

Existence of Backup Detour Paths. Last, we study the number
of detour paths between clients and their hosts. For each client, we

 180
o
W 120

o
W 60

o
W 0

o
 60

o
E 120

o
E 180

o
W

 60
o
S

 30
o
S

 0
o

 30
o
N

 60
o
N Vancouver (8)

Taipei (2)

Clarkburg (2)Los Altos (1) Hong Kong (2)

Linkoping (1)

Nice (1)

Current (199.37 ms)

IRS (101.27 ms)

Figure 10: Sites in the residential measurement experiments.

compute the number of detour paths from it to its host using the
end-to-end RTT measurements. We compute the number of detour
paths for individual clients, and we plot its PMF in Fig. 9. This
figure shows that 55% of the clients have at least one detour path,
and 24% of the clients have two or more. This illustrates that the
IRS system finds backup detour paths even in small scale networks
with only 500 clients and N neighbours restricted to 32.

Summary. Our experimental results clearly show that the IRS
system improves the online gaming performance from several as-
pects: (i) it significantly reduces RTTs in game sessions, (ii) it
imposes negligible network and processing overheads, (iii) it in-
creases the gaming quality and player performance, and (iv) it al-
lows many clients to have backup detour paths to cope with system
dynamics.

5.4 Residential Deployment
Although our PlanetLab experiments show that our IRS system

results in performance improvement, we acknowledge that Plan-
etLab nodes may have characteristics different from those of resi-
dential machines. To show that the IRS system also works in res-
idential environments, we deployed IRS clients on 17 home com-
puters with DSL and cable modem access links. We let K = 8,
∆d = ∆x = 64 msec, T = 60 sec, and N = 8. The geographic
locations of the 17 players are illustrated in Fig 10. We use the
GSM module to randomly initiate new game sessions between two
players, but users may launch and close their IRS clients at any
time.

Despite a small number of participants, we have identified more
than 8 detour paths among them. Fig. 10 shows a representative

61

Table 1: Results from BZFlag emulator and actual RTT traces of home computers.

Client 1 Client 2
Hit Fraction (%) Position Deviation (m)

Current IRS Current IRS

AS6678 (Cable, FR) AS3462 (DSL, TW) 4.9958 19.6524 7.1354 2.0132
AS6327 (Cable, CA) AS8473 (Cable, SE) 6.3249 28.5963 5.6272 1.2313
AS33657 (Cable, US) AS3462 (DSL, TW) 5.8718 14.1991 6.0996 3.9364

detour path found among residential computers. In the data col-
lected, an IRS client in Vancouver, Canada had an average direct
RTT of 199.37 msec to another client in Linköping, Sweden. The
IRS system found a shorter detour path using a node in Los Altos,
CA. The detour path resulted in an average RTT of only 101.27
msec. During the one week long experiment, we observed consis-
tency in relay node selections. For example, the Vancouver IRS
client consistently picked the relay node in Los Altos. The only
time it selected another node was when the Los Altos node is of-
fline. The backup detour path, using another node in Vancouver,
Canada resulted in an RTT of 162.61 msec. The residential deploy-
ment shows that our IRS implementation works even among home
computers with residential access links, which may have high last-
mile delay.

Next, we quantify the impact of our IRS system on gaming qual-
ity using an online game and actual RTT measurements collected
from residential computers. We achieve this by emulating an open
source first-person avatar game called BZFlag [8]. BZFlag is a mul-
tiplayer tank game, in which several players drive tanks in a battle-
field and shoot each other for as many kills as possible. BZFlag
is a representative online game because it implements modern la-
tency compensation techniques including dead reckoning [7, 29]
for movement predictions and smoothing algorithms [18] for cor-
recting inconsistency due to inaccurate predictions. We have de-
cided to only use computer players in our emulations in order to
eliminate any bias due to human factors. More specifically, we
constructed our emulator on top of the GLS (Game Latency Simu-
lator) system implemented in [24]. The GLS system closely emu-
lates several BZFlag’s computer players competing in a battlefield,
and stores detailed statistics such as tank position, number of shots,
and number of hits in log files for offline analysis. The GLS sys-
tem, however, does not emulate network latency: a fixed RTT is
used throughout each simulation for all players. We modified the
GLS system to take RTT trace files as input and faithfully emulate
real BZFlag clients running on home computers.

We consider several pairs of residential clients where the IRS
system results in RTT reduction. We first take the trace file of
RTT measurements on the direct path and use it to drive a one-
hour game between two computer players. We next take the trace
file of RTT measurements over the active detour path and repeat the
game. Then, we compare the gaming quality in these two games.
We consider two performance metrics: hit fraction and position de-
viation [24]. Hit fraction refers to the ratio of hit shots over the total
shots, while the position deviation refers to the distance between
the displayed tank position and the actual tank position. Low hit
fraction and long position deviation indicate that the latency com-
pensation algorithms implemented in BZFlag cannot accommodate
the excessive network latency, and result in degraded gaming qual-
ity. We report the average hit fraction and position deviation for
three sample gaming sessions in Table 1. This table clearly shows
that residential users with cable modem and DSL access links can
benefit from the IRS system with significant performance improve-
ment: average hit fraction is improved by up to 4.5 times and the
average position deviation can be reduced from about 5 meters to 1

meter. Our emulation results illustrate that the IRS system works:
(i) in residential networks and (ii) on modern online games that
have implemented latency compensation algorithms.

6. TRACE-DRIVEN SIMULATION
In this section, we conduct extensive trace-driven simulations to

quantify the potential of the IRS system using a number of game
client IPs.

6.1 Trace Collection
We need pairwise RTT trace of online games to conduct trace-

driven simulations. However, we are not aware of any publicly
available RTT traces among a large number of game clients. Ex-
isting RTT traces are either sparsely constructed without pairwise
measurements, such as the trace used in [11], or not publicly avail-
able due to business reasons, such as the Xbox trace used in [1].
Therefore, we had to collect our own RTT trace with pairwise RTT
measurements among game clients. We compile our trace files in
three steps, which are described in the following.

Collecting IPs of Game Clients. We use the Qstat utility [25]
to get game client IPs. Qstat is an open source command-line
utility that allows users to browse the information of individual
game sessions so that they can join interesting sessions. We have
run Qstat on many machines with various arguments, and we
made two observations. First, the lobby server h2master.stre
ampowered.com of Counter-Strike:Source returned the
largest number of IPs during our experiments. Therefore, we use
this lobby server throughout our experiments. Second, we found
that the lobby server returns different sets of IPs to Qstat running
on different machines. We suspect that the lobby server implements
a matchmaking algorithm that only returns close-by IPs. To collect
IPs of game clients around the globe, we run Qstat on more than
550 PlanetLab nodes, and for 60 times on each. After combining
all collected IPs together, we had 28,924 distinct game client IPs.

Measuring RTTs among Clients. Since we have no control
over the game clients, we measure the pairwise RTT using the
king utility. King supports measuring RTT between two arbitrary
IPs, and has been shown to be reasonably accurate [15]. King uses
DNS servers that support recursive queries for RTT estimation, and
it returns errors if abnormal measurement results are observed.

Measuring all pairwise RTTs among the considered 28,924 client
IPs would take prohibitively long time. To accelerate the measure-
ments without losing accuracy, we cluster client IPs into /24 sub-
nets, and we measure the RTT between each pair of subnets. We
then use the RTT between two subnets as the RTT between any two
client IPs in these two subnets. After the clustering, we have 8,063
subnets. For each subnet, we randomly pick a client IP in that
subnet as a representative. We then conduct pairwise RTT mea-
surements only among these 8,063 representative client IPs. Even
after the clustering, the number of required RTT measurements is
still large, and conducting these measurements from a single ma-
chine takes a long time. To overcome this, we developed scripts
to run king on the 550+ PlanetLab nodes mentioned above. Over

62

our two-week experiment, we collected 18,884,321 RTT measure-
ments, equivalent to about 230 GB of raw data.

Filtering Unreliable Measurements. The collected raw data
did not contain RTT measurements for some subnet pairs. Only
7,795 out of 8,063 subnets had RTT measurements. This is because
not all king measurements were successful, since king relies on
recursive DNS queries to estimate RTTs, and not all name servers
support recursive queries. We notice that, like other measurement
utilities, king may lead to biased measurement results. We fil-
tered out unreliable measurements as follows. First, we dropped
all measurements with RTTs < 1 msec, as they probably are due to
content-tracking firewalls/proxies [19]. We needed to drop them to
avoid over-estimating the potential of the IRS system. Second, we
sorted all RTT measurements, and for each subnet pair with more
than one RTT samples, we used its median value. Using median
RTT to filter out transient congestion and packet loss was suggested
by the authors of [13]. After filtering out unreliable measurements,
we got 12,930,645 distinct pairwise RTTs. We prepared two trace
files: (i) ping trace of timestamped ping results, and (ii) RTT matrix

of median RTTs for individual IP pairs.

6.2 Simulation Setup
We have implemented a trace-driven simulator in Java, which

uses Vivaldi [13] as the network coordinate system. We have de-
signed the simulator to be flexible in the sense that many system
parameters can be exercised. The simulator runs in two modes:
ping and matrix. In ping mode, the simulator takes the ping trace
as input, and replays the RTT measurements following their actual
timestamps. Each ping mode simulation is two-week long, and the
IRS simulator chooses a random pairs of IPs every minute to evalu-
ate the performance of the IRS system. While the ping mode faith-
fully recreates pings in real networks, it does not allow changing
some system parameters such as ping frequency, neighbor set size,
and candidate set size. Therefore, we make our simulator also sup-
port the matrix mode, in which the simulator takes the RTT matrix
as input and randomly generates pings following the specified sys-
tem parameters. The median RTTs in the RTT matrix are used as
the measurement results. More precisely, in the matrix mode, the
IRS simulator assigns each client N neighbors. It then generates
RTT measurements between each client and its random neighbors,
and stops once P pings have been generated for this client, where
P is a system parameter. Once all measurements and updates are
completed, the simulator randomly chooses 10,000 pairs of clients
for performance evaluation.

In both ping and matrix modes, for each pair of randomly chosen
client IPs, we run the SRTT algorithm to find the detour paths. In
addition to the performance metrics introduced in Sec. 5, we also
consider matchability in simulations. The matchability is the num-
ber of clients each client can connect to and maintain good gaming
quality. Different types of games have different thresholds on re-
quired RTTs for good gaming quality [12], and these thresholds
in turn define the matchability of every client IP. We consider the
matchability of three RTT thresholds: 50, 100, and 200 msec. In
our simulations, we compute the matchability of both source and
destination of the randomly chosen IP pairs. For each IP, we iden-
tify all other clients that have an RTT shorter than the threshold to
the IP. We call these clients matchable clients, and we count the
number of them. We define the matchability of each client as the
number of its matchable clients over the total number of clients ap-
pear in the trace file. We compute matchability with and without
the IRS system, and report the difference.

We let the overhead Or = 10 msec. We run the simulations sev-
eral times with wider ranges of system parameters, and we collect

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Matchability Impovement (%)

C
D

F
(%

)

50 msec
100 msec
200 msec

Figure 11: Improvement on matchability.

aforementioned performance metrics. In ping mode, we vary ∆d

and ∆x from 8 to 512 msec, and T from 0.5 to 64 min. In matrix
mode, we vary the size of candidate sets K from 2 to 256, the aver-
age pings per client P from 10 to 640, and the size of neighbor sets
N from 16 to 512. To be conservative, we assume each session has
two clients.

6.3 Simulation Results
Our simulation results confirm our findings in PlanetLab experi-

ments reported in Sec. 5.3: the IRS system results in high RTT re-
duction, low overhead, and improved player performance. Details
are not given due to the space limitations. We next report sample
simulation results that cannot be easily derived from experiments.

Matchability. We present matchability improvement achieved
by the IRS system. We run the IRS simulator in ping mode with
∆ = 8 msec and T = 30 sec, and we only consider the first 100
pair of client IPs in this simulation. We cannot include all 20,000 IP
pairs because computing matchability requires finding detour paths
to all client IPs in the trace, which takes a long time. For each IP,
we compute the matchability for RTT thresholds of 50, 100, and
200 msec, with and without the IRS system. We compute the CDF
for each threshold and plot the results in Fig. 11. This figure shows
that employing the IRS system allows players to be matched with
many more players, while maintaining good gaming quality. For
example, about 50% of the players can be matched with 20% or
more additional players when the threshold is 50 or 100 msec.

Impact of ∆d, ∆x and T . We run the IRS simulator in ping
mode to evaluate the impact of these system parameters. Figures
of the simulation results are not shown due to the space limita-
tions. We first fix the ∆d = ∆x = 8 and vary T from 0.5 to 64
min. We then compute the mean RTT reduction of game clients.
We observe a quite constant mean RTT reduction under different
T values, which indicates the IRS system is not sensitive to T val-
ues. Moreover, for any T value, we observe each game client sends
4.5 messages every minute on average, which is equivalent to one
packet every 13.33 sec and is insignificant. Next, we fix T = 30,
and change ∆d and ∆x from 8 to 512. The simulation results indi-
cate that smaller ∆d and ∆x values result in higher RTT reduction,
while smaller ∆d and ∆x values also incur more update messages.
In general, setting ∆d = ∆x = 64 msec achieves a good tradeoff
between the optimality and overhead.

7. CONCLUSIONS
We proposed the Indirect Relay System (IRS) that allows on-

line game clients to find and utilize detour paths in order to reduce
end-to-end RTTs. The IRS system supports three operations. First,
the server employs a network coordinate system and RTT measure-

63

ments to identify potential detour paths between any two clients.
Second, the source client conducts end-to-end RTT measurements
to destination via each relay client, and selects the detour path with
the smallest RTT as the active detour path. Third, the IRS sys-
tem monitors the lateness of game-state updates and switches to the
best backup detour path whenever network lags occur. We evalu-
ated the IRS system using real experiments and trace-driven simu-
lations. We implemented the IRS system and deployed it on more
than 500 PlanetLab nodes and on several home computers with res-
idential access links. To exercise wider ranges of system parame-
ters, we also implemented a trace-driven simulator, and conducted
extensive simulations. Our experimental and simulation results in-
dicate that the IRS system reduces RTTs among game clients, while
imposes negligible network and processing overheads. Smaller
RTTs result in better gaming quality and higher player matchabil-
ity, which are two major quality-of-service metrics in online games.
More precisely, we observed that more than 80% of game sessions
achieve 100 msec or more RTT reduction compared to the current
gaming networks, while the number of update and probing packets
is negligible. Furthermore, the IRS system increases the matcha-
bility: 50% of the clients can be matched with 20% or more clients
while achieving good gaming quality.

This work can be extended in several directions. First, more
complete RTT traces among game consoles, such as those from
Xbox 360 [1], can be employed for larger-scale simulations to bet-
ter quantify the potential of the proposed system in the wild. Sec-
ond, despite critical control messages are almost always encrypted,
players may come up with creative ways to cheat. We plan to study
possible cheating (and anti-cheating) techniques in the IRS system.

8. REFERENCES

[1] S. Agarwal and J. Lorch. Matchmaking for online games and other
latency-sensitive P2P systems. In Proc. of ACM SIGCOMM’09,
Barcelona, Spain, August 2009.

[2] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and
S. Rangarajan. Accuracy in dead-reckoning based distributed
multi-player games. In Proc. of ACM SIGCOMM Workshop on

Network and System Support for Games (NetGames’04), pages
161–165, Portland, OR, August 2004.

[3] G. Amir and R. Axelrod. Massively Multiplayer Game Development

2: Architecture and Techniques for an MMORTS. Charles River
Media, 1st edition, 2005.

[4] G. Armitage, M. Claypool, and P. Branch. Networking and Online

Games. John Wiley and Sons, 1st edition, 2006.

[5] N. Baughman and B. Levine. Cheat-proof playout for centralized
and distributed online games. In Proc. of IEEE INFOCOM’01, pages
22–26, Anchorage, AL, April 2001.

[6] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool. The effects of loss and latency on user performance in
unreal tournament 2003. In Proc. of ACM SIGCOMM Workshop on

Network and System Support for Games (NetGames’04), pages
144–151, Portland, OR, August 2004.

[7] Y. Bernierr. Latency compensating methods in client/server in-game
protocol design and optimization. In Proc. of Game Developers

Conference (GDC’01), San Jose, CA, March 2001.

[8] BZFlag web page, April 2010. http://bzflag.org/.

[9] F. Cecin, C. Geyer, S. Rabello, and J. Barbosa. A peer-to-peer
simulation technique for instanced massively multiplayer games. In
Proc. of IEEE Symposium on Distributed Simulation and Real-Time

Applications (DS-RT’06), pages 43–50, Washington, DC, October
2006.

[10] C. Chambers, W. Feng, W. Feng, and D. Saha. A geographic
redirection service for on-line games. In Proc. of ACM

Multimedia’03, pages 227–230, Berkeley, CA, November 2003.

[11] M. Claypool. Network characteristics for server selection in online
games. In Proc. of SPIE/ACM Multimedia Computing and

Networking (MMCN’08), San Jose, CA, January 2008.

[12] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, November
2006.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In Proc. of ACM

SIGCOMM’04, pages 15–26, Portland, OR, September 2004.

[14] W. Feng, F. Chang, W. Feng, and J. Walpole. A traffic
characterization of popular on-line games. IEEE/ACM Transactions

on Networking, 13(3):488–500, June 2005.

[15] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating latency
between arbitrary Internet end hosts. In Proc. of ACM SIGCOMM

Internet Measurement Workshop (IMW’02), pages 5–18, Marseille,
France, November 2002.

[16] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer. Network
coordinates in the wild. In Proc. of USENIX Symposium on

Networked Systems Design and Implementation (NSDI’07), pages
299–312, Cambridge, MA, April 2007.

[17] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye. Measurement and
estimation of network QoS among peer Xbox 360 game players. In
Proc. of Conference on Passive and Active Network Measurement

(PAM’08), pages 41–50, Cleveland, OH, April 2008.

[18] K. Lin, M. Wang, J. Wang, and D. Schab. The smoothing of dead
reckoning image in distributed interactive simulation. In Proc. of the

AIAA Flight Simulation Technologies Conference, pages 83–87,
Baltimore, MD, August 1995.

[19] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee.
Symbiotic relationships in Internet routing overlays. In Proc. of

USENIX Symposium on Networked Systems Design and

Implementation (NSDI’09), pages 469–480, Boston, MA, April
2009.

[20] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee. Triangle
inequality and routing policy violations in the Internet. In Proc. of

Conference on Passive and Active Network Measurement (PAM’09),
pages 45–54, Seoul, Korea, April 2009.

[21] C. Lumezanu, D. Levin, and N. Spring. PeerWise discovery and
negotiation of faster paths. In Proc. of ACM Workshop on Hot Topics

in Networks (HotNets’07), pages 1–6, Atlanta, GA, November 2007.

[22] C. Ly. Latency reduction in online multiplayer games using detour
routing. Master’s thesis, School of Computing Science, Simon
Fraser University, Canada, May 2010.

[23] C. Monch, G. Grimen, and R. Midstraum. Protecting online games
against cheating. In Proc. of ACM SIGCOMM Workshop on Network

and System Support for Games (NetGames’06), pages 1–11,
Singapore, October 2006.

[24] W. Palant, C. Griwodz, and P. Halvorsen. Evaluating dead reckoning
variations with a multi-player game simulator. In Proc. of ACM

Workshop on Network and Operating Systems Support for Digital

Audio and Video (NOSSDAV’06), pages 20–25, Newport, RI, May
2006.

[25] Qstat web page, July 2009. http://www.qstat.org.

[26] S. Ren, L. Guo, and X. Zhang. ASAP: an AS-aware peer-relay
protocol for high quality VoIP. In Proc. of IEEE Conference on

Distributed Computing Systems (ICDCS’06), pages 70–80, Lisboa,
Portugal, July 2006.

[27] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: Informed Internet routing and transport. IEEE

Micro, 19(1):50–59, January/February 1999.

[28] S. Shirmohammadi and M. Claypool. Guest editorial for special
issue on massively multiplayer online gaming systems and
applications. Multimedia Tools and Applications, pages 1–5, June
2009.

[29] J. Vogel and M. Mauve. Consistency control for distributed
interactive media. In Proc. of ACM Multimedia’01, pages 221–230,
Ottawa, Canada, September 2001.

[30] J. Yan and B. Randell. A systematic classification of cheating in
online games. In Proc. of ACM SIGCOMM Workshop on Network

and System Support for Games (NetGames’05), pages 1–9,
Hawthorne, NY, October 2005.

64

