
On Statistical Multiplexing of Variable-Bit-Rate Video
Streams in Mobile Systems

Cheng-Hsin Hsu
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Surrey, BC, Canada

ABSTRACT

We consider the problem of broadcasting multiple variable-bit-rate
(VBR) video streams from a base station to many mobile devices
over a wireless network, so that: (i) perceived quality on mobile
devices is maximized, (ii) bandwidth utilization is maximized, and
(iii) energy consumption of mobile devices is minimized. We show
that this problem is NP-Complete. We propose an approximation
algorithm for the base station to statistically multiplex and transmit
multiple VBR streams to achieve these objectives. We analytically
analyze the performance of our algorithm and prove that it achieves
optimal bandwidth utilization and near-optimal energy saving. Our
algorithm frees network operators from the manual and error-prone
bandwidth reservation process, which is usually used in practice for
broadcasting VBR streams. We implement the proposed algorithm
in a trace-driven simulator, and conduct extensive simulations. The
simulation results show that our algorithm outperforms the existing
algorithms in many aspects, including number of late frames, num-
ber of concurrently broadcast video streams, and energy saving of
mobile devices. We also implement the proposed algorithm in a
real testbed for video broadcasting as a proof of concept. The re-
sults from the testbed confirm that the proposed algorithm: (i) does
not result in playout glitches, (ii) achieves high energy saving, and
(iii) runs in real time.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communication

General Terms

Design

1. INTRODUCTION
Fueled by technology advances, video streaming has been get-

ting popular in the past decade, and will continue to thrive in the
future [12]. In addition, more users watch streaming videos over
wireless networks using mobile devices like laptops, PDAs (per-
sonal digital assistants), smart phones, and PMPs (portable me-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’09, October 19–24, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-608-3/09/10 ...$10.00.

dia players). Streaming videos over wireless networks, however,
is challenging for several reasons. First, streaming videos at high
quality is difficult, because video streams have diverse and varying
bit rates and impose stringent Quality-of-Service (QoS) require-
ments on underlying wireless networks, which are vulnerable to
fading, shadowing, and interference [23]. Second, mobiles devices
are sensitive to energy consumption, because they are battery pow-
ered. Since higher energy consumption leads to shorter watch time
on mobile devices, energy conservation is important for good user
experience. Third, and most important, the wireless spectrum is ex-
pensive, e.g., AT&T sold a WiMAX spectrum in the southeast US
to Clearwire for $300 million [2], and Inukshuk paid $46 million to
license a WiMAX spectrum in Canada [19]. Therefore, to be com-
mercially viable, network operators must achieve high bandwidth
utilization in terms of number of concurrent video streams in their
wireless networks.

In this paper, we study the problem of broadcasting multiple
VBR streams from a base station to a large number of mobile de-
vices within its coverage area over a metropolitan wireless net-
work. The wireless network can be a WiMAX, 3G cellular net-
work, or a dedicated broadcast network for mobile TV services
such as DVB-H (Digital Video Broadcast–Handheld) [10, 16] and
MediaFLO (Forward Link Only) [11] networks. The goals of the
proposed solutions are to: (i) maximize perceived quality on mo-
bile devices, (ii) maximize bandwidth utilization, and (iii) mini-
mize energy consumption of mobile devices. To save energy on
mobile devices, the base station sends each video stream in bursts
with a bit rate much higher than the instantaneous bit rates of that
video stream. The next burst time is computed by the base station
and included in the header fields of every burst, which enables mo-
bile devices to receive a burst of traffic, and then put their wireless
interfaces in sleep mode till the next burst to save energy. Fig. 1
shows a wireless broadcast network. As illustrated in this figure, a
base station time multiplexes the bursts of all video streams follow-
ing a burst schedule, which ensures that: (i) no two bursts overlap
with each other in time and (ii) no buffer overflow instances occur
on mobile devices. Creating optimal burst schedules is NP-hard,
and thus we propose an approximation, real time, algorithm for the
base station to statistically multiplex and transmit multiple VBR
streams to achieve most of the three goals mentioned above.

We analytically analyze the performance of our algorithm, and
prove that it achieves optimal bandwidth utilization, and produces
near-optimal energy saving on mobile devices. We also show that
the time complexity of our algorithm is low, and it can run in real
time. We develop a trace-driven simulator for wireless broadcast
networks, and we implement the proposed algorithm in it. We com-
pare the performance of the proposed algorithm against other exist-
ing algorithms. The simulation results show that our algorithm out-

411

Figure 1: Broadcasting videos to mobile devices.

performs the existing algorithms in many aspects, including num-
ber of late frames, number of concurrently broadcast video streams,
and energy saving of mobile devices. Finally, we implement the
proposed algorithm in a real testbed for video broadcast networks
that comply with the DVB-H standard in order to show its practi-
cability and efficiency. The results from the testbed confirm that
the proposed algorithm: (i) does not result in playout glitches, (ii)
achieves high energy saving, and (iii) runs in real time.

We note that, in mobile broadcast networks, a base station com-
poses burst schedules without considering wireless channel condi-
tions of individual mobile devices. This is because each mobile
broadcast network has numerous receivers, and thus maintaining
feedback channels from these receivers to the base station is not
practical. Therefore, a base station can not retransmit late or lost
packets to mobile devices in poor wireless conditions. Modern mo-
bile broadcast networks, e.g. [4,5,10,16], therefore employ forward
error correction (FEC) and strong channel coding to combat fluctu-
ating bandwidth and packet losses caused by diverse and changing
wireless conditions. FEC and channel coding allow network opera-
tors to provide reliable broadcast services for mobile devices within
the planned coverage map under a reasonable wireless condition.

To the best of our knowledge, optimally broadcasting multiple
VBR streams over wireless networks has not been fully addressed
in the literature. Most previous works, e.g., [9, 13, 15], only sup-
port constant-bit-rate (CBR) streams. In fact, recent papers [24,25]
emphasize that achieving statistical multiplexing of VBR streams
by burst scheduling is one of the most critical and challenging open

problems in wireless broadcast networks.
The rest of this paper is organized as follows. Sec. 2 presents

the related work in the literature and discusses limitations of cur-
rent base stations. In Sec. 3, we define and formulate the consid-
ered problem. We present and analyze our algorithm in Sec. 4. We
conduct extensive trace-driven simulations in Sec. 5, and we imple-
ment and evaluate the proposed solution in a real testbed in Sec. 6.
Sec. 7 concludes this paper.

2. RELATED WORK AND BACKGROUND

2.1 Broadcasting VBR streams in Literature
Streaming VBR videos imposes challenges on the best-effort In-

ternet, because insufficient network bandwidth leads to late frames,
thus playout glitches. Several smoothing algorithms have been pro-
posed in the literature, e.g., in [17, 18], which absorb bit rate vari-
ations of a VBR stream by adding buffers at both sender and re-
ceiver, and compute a constant-bit-rate (CBR) transmission sched-
ule that results in no buffer over/underflow instances. Most smooth-
ing algorithms are not designed for mobile networks that transmit
videos in bursts to save energy, and thus cannot solve the problem
considered in this paper. Camarda et al. [3] propose a smooth-
ing algorithm for mobile broadcast networks. Their work is quite
different from ours, because they consider the problem of assign-
ing frames of a VBR stream some predefined transmission bursts,
while we compute the optimal burst schedule. Furthermore, these
smoothing algorithms [3, 6, 17, 18, 26] only consider a single VBR

stream while our problem is to concurrently broadcast multiple
video streams.

The energy saving of mobile devices in wireless broadcast net-
works that send videos in bursts has been considered in several
works. For example, the authors of [29] and [9] study the energy
saving achieved by a given burst schedule, but they do not solve the
burst transmission problem. In [13, 15], we solve the burst trans-
mission problem for CBR video streams. Unlike these two works,
we solve the burst transmission problem for VBR video streams in
this paper, which allow higher flexibility and lead to higher band-
width utilization and energy saving for mobile devices.

Streaming multiple VBR streams over a wireless network using
statistical multiplexing can be done in one of two ways: (i) rate
control in video encoders, and (ii) burst scheduling on base sta-
tions. Rezael et al. [25] take the first approach and assume video
encoders are collocated with the base station. They study the joint
rate control problem among the encoders of multiple videos, and
aim at achieving low end-to-end delays and small quality variance
among videos. We take the second approach. The work in [25] is
different from ours for two reasons. First, their approach does not
take energy consumption into consideration, nor does it provide any
analytical bounds on the performance. Our solution produces burst
schedules that are optimal in terms of bandwidth utilization, and
near-optimal in terms of energy saving of mobile devices. Second,
and more importantly, we do not assume encoders are collocated
at the base station nor that we have control of the encoders. More
precisely, our algorithm constructs a burst schedule to broadcast a
set of videos that can be remotely encoded or pre-encoded. This
is more general as most videos, except live ones, are pre-encoded
well before their transmission time with little information on the
transportation medium that will carry them. Hence, our solution is
applicable for both pre-encoded and live videos.

2.2 Broadcasting VBR streams in Practice
Despite the importance of broadcasting VBR streams, current

base stations construct burst schedules in a fairly primitive way. For
example, in Nokia Mobile Broadcast Solution (MBS) [1, 20], net-
work operators specify a system-wide inter-burst time period ∆T
sec, and a burst size bs kb for each video stream s. The base station
then schedules a burst every ∆T sec for each video stream s, where
the burst size is bs kb long. In such a base station, network opera-
tors have to manually choose ∆T and bs to form a burst schedule
that results in no bursts overlapping in time and no buffer overflow
instances on mobile devices. This task is time consuming and error-
prone. Network operators may choose a ∆T value as follows. They
first relabel video streams such that r1 ≤ r2 ≤ · · · ≤ rS , where rs

is the streaming bit rate of video stream s (1 ≤ s ≤ S). They next
set ∆T = Q/rS for higher energy saving, where Q kb is the buffer
size of mobile devices. They then divide the air medium time ∆T
among all video streams in proportional to their streaming bit rates.
Finally, they choose rs in one of two ways:

1. VBR (variable-bit-rate). Network operators may heuristi-
cally pick an rs for each stream s and directly transmit VBR
streams. There is a tradeoff between bandwidth utilization
and video quality: choosing a high rs leads to wasted band-
width, but choosing a low rs results in buffer underflow in-
stances, and thus playout glitches. To better quantify this
tradeoff, we define Fs(r) as the CDF function of per-GoP
(Group of Picture) bit rate of stream s. We define a VBR
burst scheduling algorithm VBRα as streaming each video
stream s at the smallest bit rate rs so that Fs(rs) ≥ α.

2. RVBR (regulated-variable-bit-rate). Network operators may

412

0 0.5 1
0

50

100

Streaming Rate (Mbps)O
ve

rs
u
b
sc

ri
b
ed

B
/
W

(%
)

Silence
Starwars
Olympic

(a)

0 0.5 1
0

200

400

600

Streaming Rate (Mbps)

P
re

ro
ll

D
el

ay
(s

ec
)

Silence
Starwars
Olympic

(b)

Figure 2: RVBR may result in: (a) wasted bandwidth, and (b)

long preroll delay.

add smoothing buffers to regulate VBR streams for constant
rate channels using the leaky bucket algorithm [6]. Smooth-
ing buffers absorb VBR traffic burstiness at the expense of
higher memory requirement and longer preroll delay. Preroll

delay is the minimal buffering time before mobile devices
can start rendering video streams without risking for play-
out glitches. The preroll delay, unfortunately, could be pro-
hibitively long because of the smoothing buffer. To illustrate,
we analyze three video streams from [28], and we use the al-
gorithm in [26] to compute the minimum preroll delay and
the oversubscribed bandwidth at various rs. Oversubscribed
bandwidth refers to the fraction of the unused bandwidth. We
plot the results in Fig. 2. This figure shows that there exists a
tradeoff between bandwidth utilization and preroll delay. For
example, streaming Silence of the Lambs at a bit rate lower
than 280 kbps leads to no wasted bandwidth, but it results
in more than 6 minutes preroll delay, which is clearly not
acceptable to users. To better quantify this tradeoff, we de-
fine a burst scheduling algorithm RVBRβ as streaming each
video stream s using a smoothing buffer, so that the regu-
lated VBR stream has bit rate rs that is the smallest bit rate
with ds(rs) ≤ β sec, where ds(rs) represents the minimum
preroll delay under streaming rate rs.

VBRα and RVBRβ are parameterized algorithms that can be
used in current broadcast networks. In Sec. 5, we compare these
two algorithms against our proposed algorithm.

3. PROBLEM FORMULATION

3.1 Problem Statement and Hardness
We study wireless networks in which a base station transmits S

video streams to many mobile devices over a shared air medium
with bandwidth R kbps. We consider a broadcast time of T sec,
in which each video stream has I frames, and is coded at F fps
(frame-per-second). Therefore, we have T = I/F . We consider
very general VBR streams: each frame i (1 ≤ i ≤ I) of video
stream s has a size of lsi kb, which is flexible except that its instan-
taneous bit rate should be smaller than the air medium bandwidth,
i.e., we assume lsi F < R. To guarantee smooth playouts, every
frame i must arrive at mobile devices no later than its decoding
deadline i/F sec. The base station transmits every video stream
in bursts at bit rate R kbps. Therefore, once a burst of data is re-
ceived, mobile devices put the wireless interfaces into sleep till the
next burst in order to save energy.

We define two performance metrics for video streaming over
wireless networks: energy saving and bandwidth utilization, from
subscribers’ and network operators’ point of view, respectively. For
subscribers, we define energy saving as the ratio of time that mo-

bile devices can put their network interfaces into sleep to the total
time, and we write the energy saving of video stream s as γs. We
define the system-wide energy saving as γ =

`
PS

s=1 γs

´

/S. We
note that similar definition of energy saving has been used in wire-
less broadcast networks [9, 29]. For network operators, we define
the bandwidth utilization σ as the fraction of the on-time transmit-
ted data amount, which is the aggregate size of on-time bursts, over
the maximum data amount offered by the air medium, which is TR
kb. This definition only considers the video data transmitted before

their decoding deadlines, as late video data do not improve video
quality. For example, a naive schedule that saturates the maximum
data amount TR, but ignores the deadlines may result in many late
frames, which are essentially useless. With these definitions, we
state the problem of statistically multiplexing VBR video streams
over a wireless network to mobile devices as follows.

PROBLEM 1. Consider S VBR coded video streams to be con-

currently transmitted by a base station to multiple mobile devices.

Each video stream is sent as bursts of data to save energy on mo-

bile devices. Find the optimal burst schedule for all video streams

to maximize the bandwidth utilization σ and the energy saving γ.

In this problem, the bandwidth utilization is the primary objec-

tive. Wireless spectrum is precious and concurrently streaming
more video streams leads to higher revenues for network operators.
The energy consumption is the secondary objective. Mobile de-
vices are energy-limited and higher energy saving results in longer
watch time, thus higher subscriber satisfaction. The schedule spec-
ifies for each burst the start time and its size for all video streams.
The schedule cannot have burst collisions, which happen when two
bursts have nonempty intersection in time. Furthermore, the sched-
ule must ensure that there are no buffer overflow instances, which
happen when a receiver has no space to store data during a burst.

Problem 1 is a generalization of the burst scheduling problem ad-
dressed in our previous works [13, 15], which considered only one

objective function: maximizing energy saving for mobile devices.
Yet, this single-objective function problem has been proved to be
NP-Complete by reducing the task sequencing problem with arbi-
trary release times and deadlines to it [13]. Therefore, Problem 1 is
clearly NP-Complete as well.

We note that our optimization problem is quite different from
many other multi-objective scheduling problems, which are often
solved by defining an overall objective function as a weighted sum
of the given objective functions. Solving such multi-objective prob-
lems is tricky because the weights for objective functions are either
heuristically chosen or determined by analyzing the complex trade-
offs among objective functions [22, Sec. 4.3]. More importantly,
the resulting schedules are compromised, because they are unlikely
to be optimal in terms of either objective function. In contrast, our
problem consists of two objective functions that are independent of
each other, which does not require us to define a weighted overall
objective function. More specifically, our problem can be solved
in two steps. First, we choose all burst schedules that maximize
the bandwidth utilization. Then, we select the optimal burst sched-
ule in terms of energy saving among them. Note that, the second
step would not degrade the optimality achieved in the first step. In
Sec. 4, we develop an efficient algorithm to solve this problem, and
we prove the resulting schedule is optimal in terms of bandwidth
utilization, and near-optimal in terms of energy saving.

3.2 Mathematical Formulation
We let ns be the number of bursts scheduled for video stream s,

where 1 ≤ s ≤ S. We use fs
k sec and bs

k kb to denote the start time
and burst size of burst k of video stream s, where 1 ≤ k ≤ ns.

413

Since the air medium has bandwidth R kbps, it takes bs
k/R sec to

transfer burst k of stream s. Notice that wireless interfaces need to
be waken up earlier than the next burst time, because it takes some
time to lock to the radio frequency and synchronize to the symbols
before data can be demodulated. We denote the overhead duration
as To sec. The value of To could be high in wireless networks,
e.g., in mobile TV broadcast networks, To ranges from 50 to 250
msec [9, 10, 16]. As a specific example, the recent Philips mobile
TV chip has an overhead duration of 150 msec [21]. Since mobile
devices must turn on the wireless interfaces To sec earlier than the
burst, the wireless interfaces stay on between [fs

k−To, fs
k +bs

k/R)
in order to receive burst k of stream s. Last, we write the re-
ceiver buffer size as Q kb. Given these notations, we can de-
fine cs

k kb as the buffer level of mobile devices at the beginning
of burst k of video stream s. Mathematically, cs

k is written as:
cs
k = max

`

0,
Pk−1

j=1 bs
j −

Ph
i=1 lsi

´

, where h is the maximum

positive integer such that h/F ≤ fs
k . This equation computes the

volume difference between the received data (the first summation)
and the consumed data (the second summation), and returns 0 if
there is no received data in the buffer. Finally, we write a schedule
L as a set of bursts: {<fs

k , bs
k> | 1 ≤ s ≤ S and 1 ≤ k ≤ ns}

for all video streams.
The burst scheduling problem for VBR streams can be formu-

lated as:

Pri : max
L

σ =

PS
s=1

Pns

j=1 bs
j

‹

R

I/F
; (1a)

Sec : max
L

γ = 1 −

PS
s=1

Pns

k=1(To + bs
k/R)

I/F

‹

S; (1b)

s.t.
ˆ

fs
k , fs

k +
bs
k

R

´
T

ˆ

f s̄
k̄ , f s̄

k̄ +
bs̄
k̄

R

´

= ∅; (1c)

cs
k + bs

k −
P

fs
k
≤ j/F < fs

k
+bs

k
/R lsj ≤ Q; (1d)

∀ 1 ≤ s 6= s̄ ≤ S, 1 ≤ k ≤ ns, 1 ≤ k̄ ≤ ns̄.

In this formulation, the primary goal is to maximize the band-
width utilization σ, which is the fraction of the on-time transmit-
ted data amount,

PS
s=1

Pns

j=1 bs
j , over the maximum data amount,

RT = RI/F . The secondary goal is to maximize the energy sav-
ing γ, which is the fraction of time that mobile devices can put
their wireless interfaces into sleep over the total time. Consider
stream s, the aggregate interface on-time is

Pns

s=1(To + bs
k/R)

sec, and the video length is I/F sec. Therefore, the energy saving

of stream s can be computed by 1 −
Pns

s=1
(To+bs

k/R)

I/F
. Comput-

ing the average energy saving γ among all video streams gives the
system-wide energy saving. The constraints in Eqs. (1c) and (1d)
guarantee that the resulting burst schedule is feasible. In particular,
Eq. (1c) ensures that there are no burst intersections among all S
video streams. Eq. (1d) validates the buffer level for stream s at the
end time of every burst to prevent buffer overflow instances, where
the third term (summation) includes all frames that have deadlines
during that burst. It is sufficient to check the buffer level only at
the end time, because the buffer level of mobile devices increases
if and only if there is a burst at that moment.

4. PROBLEM SOLUTION
As described in Sec. 3, the problem of broadcasting VBR streams

to maximize both the bandwidth utilization and energy saving for
mobile devices is NP-Complete. Thus, solving it optimally along
both objective functions is computationally expensive and cannot
be done in real time, which is a requirement for video broadcasting
systems in which the broadcast content is continuously changing.

We propose, in Sec. 4.1, an approximation algorithm to solve this
problem. In Sec. 4.2, we show that our algorithm achieves optimal-
ity along one objective function (bandwidth utilization) and near-
optimality along the other objective function (energy saving). In
addition, the algorithm is computationally very efficient and runs
in real time (as verified by actual implementation in a real mobile
TV testbed, described in Sec. 6).

4.1 Algorithm for Broadcasting VBR Streams
The high-level idea of our algorithms is as follows. We math-

ematically transform our problem to another scheduling problem
for which we design an efficient approximation algorithm. We then
transform the solution found by the approximation algorithm to a
solution for the original problem. We analytically bound the ap-
proximation gap and prove the correctness of our algorithm.

Our transformation idea produces a simpler scheduling problem
with only one constraint: no burst collision, and it gets rid of the
other constraint: buffer overflow instances. This is achieved by
using two separate buffers, say B and B′, so that B can be drained
when B′ is filled up, and B′ can be drained when B is filled up.
More specifically, we propose to split the receiver buffer Q into two
equal-sized buffers, and divide the sending time of video stream s
into ps disjoint time windows. We design a scheduling algorithm
to properly send all the S video streams, so that mobile devices of
any video stream s in window p, where 2 ≤ p ≤ ps, render the
video data that have been received in window p − 1, and thus are
free from buffer overflow instances. That is, mobile devices use a
buffer for receiving (filling up) data and another buffer for decoding
(draining) data in every time window p, and they swap these two
buffers upon reaching a new time window p + 1. We notice that
windows of the same video stream have different lengths in time
due to the VBR nature of video streams, and window boundaries of
different video streams are not aligned either.

Following are some details on our algorithm. To perform the
transform, we first need to decide how many frames can be sent
in each window p without resulting in buffer overflow on mobile
devices. For any video streams s and any window p (1 ≤ p ≤ ps),
we let ms

p be the last frame (with the largest frame index) that gets
included in window p. Since the receiving buffer size is Q/2 kb in
all windows, for any stream s, we can write ms

p by induction as:

8

>

>

>

<

>

>

>

:

ms
p = 0, p = 0;

ms
p

X

j=ms
p−1

+1

lsj ≤ Q
2

<

ms
p+1

X

j=ms
p−1

+1

lsj , ∀ 1 ≤ p ≤ ps.
(2)

This induction stops once ms
p̂ = I for some integer p̂. Upon

ms
p is determined, we know that frames [ms

p−1 + 1, ms
p] are the

maximum number of frames that can be fit in the receiving buffer
of window p, for 1 ≤ s ≤ S and 1 ≤ p ≤ ps. Letting ys

p be the
aggregate data amount that must be received in window p, we can
write ys

p as:

ys
p =

ms
p

X

j=ms
p−1

+1

lsj . (3)

Furthermore, observe that mobile devices in window p always
render the data received in window p− 1. This means that the time
length of window p depends on the number of frames received in
window p−1, e.g., if 5 frames are received in the previous window,
the playout time of the current window is 5/F sec, where F is the
frame rate. Let xs

p and zs
p be the start and end times of window p

414

for video stream s. Then, we can write xs
p and zs

p as:

xs
p =

(

0, p = 1;

(ms
p−2 + 1)/F, 2 ≤ p ≤ ps;

(4)

zs
p =

(

PS
s=1 ys

1/R p = 1;

ms
p−1/F, 2 ≤ p ≤ ps.

(5)

We mention that the windows are defined in a very dynamic way:
video streams with higher instantaneous bit rates get shorter win-
dows, while others get longer windows. This allows our algorithm
to quickly adapt to the rate variations in VBR video streams. No-
tice that in the first window (p = 1) of all video streams, mobile
devices have no data to playout and only receive and buffer data.
Therefore, any window length could be assigned to the first win-
dow. To maximize the bandwidth utilization and minimize the pre-
roll delay, we let the first window size be

PS
s=1 ys

1/R, which is the
shortest possible window length to send data in the first window of
all video streams. Since ys

1 ≤ Q/2 (indicated by Eqs. (2) and (3)),
the preroll delay incurred by the SMS algorithm is bounded by

d = (SQ)/(2R). (6)

Using these notations, we can formally write the transformed
scheduling problem as:

Pri : max
L

PS
s=1

Pns

j=1 bs
j ; (7a)

Sec : min
L

PS
s=1 ns; (7b)

s.t. ys
p ≥

X

∀ xs
p≤fs

k
<zs

p

bs
k; (7c)

∀ 1 ≤ s ≤ S, 1 ≤ p ≤ ps.

This formulation has two objective functions. It first maximizes
the bandwidth utilization by maximizing the amount of on-time de-
livered video data in Eq. (7a). It then maximizes the energy saving
by minimizing the number of bursts in Eq. (7b), as each burst incurs
a constant overhead duration. The constraint in Eq. (7c) ensures
that the aggregate size of scheduled bursts in every window never
exceeds the aggregate size of frames associated with that window,
which avoids buffer overflow instances.

To solve the transformed problem, we first define decision points

as the time instances at which either: (i) a new window starts, i.e.,
at time xs

p, (ii) a window exceeds its decoding deadline, i.e., at time
zs

p, or (iii) bursts scheduled to a window have met the required ag-
gregate data amount ys

p. At each decision point t, we schedule a
burst for the window with the smallest end time zs

p among all out-
standing windows p′ with start time xs

p′ earlier than current time
t and end time zs

p′ later than current time t. We use outstanding
window to refer to a window that needs more bursts: its accu-
mulated data amount has not met the required amount ys

p. Note
that windows p′ with xs

p′ > t are not considered, because these
windows have not started and the video data may not be available
yet. Moreover, windows p′ with zs

p′ < t are not considered ei-
ther, because these windows are already late, and late frames are
essentially useless for streaming videos. The scheduling algorithm
builds a schedule with a moving current time t and stops if there
exist no outstanding windows, nor windows with start times in the
future. Last, we define the completion time of window p of stream
s as the time that window achieves the required data amount ys

p.
We call this algorithm Statistical Multiplexing Scheduling (SMS)

algorithm, and give its high-level pseudocode in Fig. 3. This algo-
rithm constructs the first window for each video stream in lines 2–4.

The SMS Algorithm

1. // Input: multiple VBR streams.
1. // Output: burst transmission schedule for all bursts.
2. // initial transform
3. for s = 1 to S
4. generate the first window for s and determine xs

1, ys
1,

4. and zs
1 using Eqs. (2)—(5)

5. // burst scheduling
6. foreach decision point of window p for stream s {
7. schedule a burst from times t to tn for s, where
7. the window p of s has the smallest zs

p among all
7. windows p′ with xs

p′ ≤ t and zs
p′ > t, and t is the

7. current time, tn is the time of the next decision point
8. if the window p of s completes or is late {
9. generate a new window p for s and determine xs

p,
9. ys

p, and zs
p using Eqs. (2)—(5)

10. }
11. }

Figure 3: An efficient burst scheduling algorithm.

It uses the for-loop between lines 6 and 11 to traverse through all
decision points in ascending order of time. It schedules a new burst
in line 7 to video stream s, and then checks whether the window of
s is complete or late in lines 8–10. New window is generated in line
9 if the current window either completes or is late. The algorithm
stops when no more decision points exist.

We note that the SMS algorithm considers a window p for each
stream s at any moment, and only advances to window p + 1 if
window p completes or is late (lines 8–10). Thus, it only requires a
small look-ahead window (in the order of a few seconds) for frame
size lsi , and is an online scheduling algorithm. In addition, the
SMS algorithm can handle the dynamic nature of video service.
For example, to transition from a video stream to a new one, the
SMS algorithm simply discards the current window and generates
a new window for the new video stream, and continues to schedule
bursts with no interruptions nor running-time penalty. Finally, the
SMS algorithm can work with any VBR streams, and imposes no
limitations on the video coders for rate control. Hence, it allows
video coders to encode video streams with the maximum coding
efficiency, and thus achieve the maximum perceived quality.

4.2 Analysis of the SMS Algorithm
We first prove that our algorithm produces feasible burst sched-

ules. We then prove that the resulting schedule is optimal in terms
of bandwidth utilization. We show that the resulting schedule is
near optimal in terms of energy saving, and we give its approxima-
tion gap. Last, we derive its time complexity.

THEOREM 1. The SMS algorithm gives a feasible burst sched-

ule for the original burst scheduling problem (Problem 1).

PROOF. The for-loop in lines 6–11 produces a schedule that has
no burst collisions. This is because we assign every time interval
[t, tn) to a single stream s in line 7, and we immediately advance t.
Moreover, line 8 guarantees that Eq. (7c) holds, because it stops as-
signing bursts to p if p is complete. Hence, the SMS algorithm finds
a feasible schedule for the transformed problem. Furthermore, we
divide the receiver’s buffer into two halves and we make sure that
the aggregate data received in each window never exceeds half of

415

Busy Time Slack Time Busy Time Slack Time

· · · · · ·

v1u1 w1 = u2 v2 w2 = u3

Figure 4: The resulting schedule of the SMS algorithm consists

of interleaved busy and slack time periods. Different shaded

blocks represent bursts for different video streams.

Deadline
z

s
p

L

Additional Burst

for Window p

Insert an

L
∗

late Window p

of Stream s

Last Burst for

Move a Burst for Window p
′

of Stream s
′

ut vt wt

Figure 5: Inserting a burst requires moving another burst, as

there is no gap between bursts in busy time periods.

the receiver’s buffer (see Eq. (2)). Thus, the resulting schedule
leads to no buffer overflow instances in the original problem.

THEOREM 2. The SMS algorithm returns optimal burst sched-

ules in terms of bandwidth utilization.

PROOF. Observe that the for-loop in lines 6–10 always sched-
ules a burst as long as there is at least one window that is outstand-
ing and is not late. Therefore, the resulting schedule L consists of
interleaved busy time periods and slack time periods, as illustrated
in Fig. 4. Let the t-th busy time period starts at time ut sec and ends
at time vt sec, and the t-th slack time period starts at time vt sec and
ends at time wt sec. During slack time periods, there is no video
data to be sent: all data has been sent earlier in the corresponding
busy time periods.

Next, any resulting schedule L falls into one of two cases. Case
I: all windows complete in line 8. Case II: there is at least one
window late in line 8. In case I, since all windows complete on
time, the SMS algorithm meets all demands on-time. Thus, SMS
is optimal in case I. For case II, we only need to show that there
is no schedule better than L. We use proof by contradiction and
illustrate the argument in Fig. 5. Consider an arbitrary window p of
stream s in L, where p is not completed in busy window [ut, vt).
Assume there exists a better schedule L

∗, which allocates an ad-

ditional d-sec burst to window p, where d > 0. By definition,
bandwidth utilization only considers video data that arrive on-time,
so this additional burst (darkened in the figure) must be inserted
before zs

p, otherwise L
∗ would not be a better schedule. Further-

more, as there is no gap among bursts in the busy time period, L
∗

must move another burst for window p′ of stream s′ (also dark-
ened in the figure) to a time later than zs

p in order to make room for
the additional burst. However, line 8 says that the SMS algorithm
always schedules the window with the smallest deadline, thus we

know zs′

p′ ≤ zs
p. This means that moving the burst for window p′

of stream s′ after time zs
p renders it becoming a late burst, which

cancels out the additional bandwidth utilization brought by the new
burst! Therefore, the amount of on-time delivered bursts in L and
L

∗ are the same, which contradicts the assumption.

THEOREM 3. The SMS algorithm produces near-optimal burst

schedules in terms of energy saving with an approximation gap:

∆γ = γ∗ − γ ≤ Tor/Q, where γ∗ and γ are the system-wide

energy savings achieved by the optimal scheduling algorithm and

by the SMS algorithm, respectively, and r represents the average

coding bit rate across all video streams.

PROOF. Let n∗
s be the optimal number of bursts scheduled for

video stream s. As each burst contains no more than Q kb data, we
have n∗

s ≥
PI

i=1 lsi /Q. Then, following the definition of energy
saving, we write the energy saving of stream s as:

γ∗
s = 1 −

Pn∗

s

k=1(To + bs
k/R)

I/F
= 1 −

n∗
sTo +

PI
i=1 lsi /R

I/F

≤ 1 −
To

PI
i=1 lsi /Q +

PI
i=1 lsi /R

I/F
= 1 − (

To

Q
+

1

R
)rs,

where rs =
PI

i=1 lsi /(I/F) is the average coding bit rate for
stream s. Following the definition of system-wide energy saving,
we have:

γ∗ ≤ 1 − (
To

Q
+

1

R
)

S
X

s=1

rs/S = 1 − (
To

Q
+

1

R
)r.

Next, we let ns be the number of bursts scheduled for s by the

SMS algorithm. Based on Eq. (2), we let δs
p = Q

2
−

Pms
p

j=ms
p−1

+1 lsj

to represent a small portion of Q that is not fully utilized in window
p. We notice that δs

p ≅ 0, because typical receiver buffers are
much larger than frame size, e.g., media players buffer for several
seconds of playout time, or hundreds of frames, before rendering
videos. Since δs

p is insignificant, we write ps =
PI

i=1 lsi
‹

(Q/2).
Then, we notice that the total number of bursts among all video
streams is bounded by the number of decision points, which are
defined as the time instances at which either a new window starts,
completes or becomes late. Observe that, except for the boundary
cases, a new window is only created when the previous window of
the same stream completes or becomes late. This means that the
number of decision points is

PS
s=1 ps + S ≅

PS
s=1 ps. Hence,

we write
PS

s=1 ns ≤
PS

s=1 ps. Then, we write the system-wide
energy saving:

γ = 1−
S

X

s=1

nsTo +
PI

i=1 isi /R

SI/F
= 1−

To

PS
s=1 ns

SI/F
−

PS
s=1 rs

RS
.

Since
PS

s=1 ns ≤
PS

s=1 ps = 2
Ps

s=1

PI
i=1 lsi /Q, we have:

γ ≥ 1− (2To

Q
+ 1

R
)r. Combining γ and γ∗ yields the theorem.

THEOREM 4. The SMS algorithm runs in time O(PS + S2),

where S is the number of video streams, and P is the maximum

number of windows among all video streams.

Proof: Since there are
PS

s=1 ps + S decision points, and we
check S windows at each decision point, the complexity of line
7 is O(PS + S2), where P =

PS
s=1 ps. Moreover, constructing

windows in lines 4 and 9 takes time O(
PS

s=1 I) in total, which can
be written as O(PS) as the receiver buffer size Q and number of
frames in each window are small constants. Thus, the SMS algo-
rithm runs in time O(PS + S2) + O(PS) = O(PS + S2).

The above theorems show that the SMS algorithm produces burst
schedules that are optimal in terms of bandwidth utilization, and
near-optimal in terms of energy saving. Moreover, the approxima-
tion gap of energy saving given in Theorem 3 has a few desirable
properties. First, the gap decreases when the overhead duration

416

0 1 2 3 4
0

1

2

3

Receiver Buffer Size Q (MB)

A
p
p
ro

x
.

G
a
p

∆
γ

(%
)

To = 50 msec
To = 100 msec
To = 200 msec

(a)

0 500 1000 1500
0

1

2

3

4

Streaming Bit Rate rs (kbps)

A
p
p
ro

x
.

G
a
p

∆
γ

(%
)

To = 50 msec
To = 100 msec
To = 200 msec

(b)

Figure 6: The proposed algorithm leads to small approxima-

tion gap with typical parameters: (a) average coding bit rate is

512 kbps, and (b) receiver buffer is 1 MB.

To decreases, which is expected as the hardware technology ad-
vances. Second, the gap decreases when the receiver buffer size Q
increases. The receiver buffer gets larger whenever the unit price
of memory chips reduces, which has been a trend for several years.
Last, the gap decreases when the average coding bit rate r reduces,
which is likely to happen as newer coding standards always achieve
higher coding efficiency, and thus lower coding bit rates. These
properties show that the SMS algorithm will even perform better as
the technology advances.

To illustrate the energy saving performance of the SMS algo-
rithm under current technology, we numerically analyze its approx-
imation gap using a range of practical parameters. We consider
overhead duration from 50 to 200 msec, receiver buffer size from
256 KB to 4 MB, and coding bit rate from 128 to 1536 kbps. We
plot the numerical results in Fig. 6. Fig. 6(a) shows that the gap be-
comes very small if the receiver has a reasonable buffer size, e.g.,
the gap is less than 1.5% if receiver buffer is larger than 1 MB.
Fig. 6(b) illustrates that the gap becomes smaller when coding bit
rate is smaller, e.g., the gap is less than 1.25% for coding bit rate is
512 kbps and below. Notice that 512 kbps is high enough for video
streaming to mobile devices, because these devices have small dis-
play resolutions. These two figures confirm that the SMS algorithm
achieves a very small approximation gap on energy saving with cur-
rent technology.

Last, we comment on the preroll delay incurred by the SMS al-
gorithm, which is bounded by (SQ)/(2R) as shown in Eq. (6). For
illustration, we employ common network parameters, where the air
medium bandwidth R = 10 Mbps, receiver buffer size Q = 2
Mb, and stream coding rate 512 kbps. We first consider a service
provider who broadcasts 5 video streams, its preroll delay is less
than 500 msec which is negligible. For a service provider who sat-

urates the bandwidth and broadcasts 20 video streams, the preroll
delay is no more than 2 sec.

5. EVALUATION USING SIMULATION

5.1 Simulation Setup
We have implemented a trace-driven simulator for broadcasting

video streams in wireless networks. The simulator takes trace files
of real VBR coded streams as inputs and considers practical net-
work parameters. We have designed a clean interface for the simu-
lator to facilitate various burst scheduling algorithms, and we have
implemented the proposed SMS algorithm in the simulator. We
have also implemented the current VBRα and RVBRβ algorithms
(which are described in Sec. 2) for comparison. As discussed in
Sec. 2, we are not aware of other burst scheduling algorithms in the
literature that broadcast VBR streams in bursts. This, however, is

not a major concern, as we analytically prove that our algorithm
achieves optimal bandwidth utilization and almost-optimal energy
saving. Furthermore, in some of our experiments, we compare our
algorithm against an upper bound on the energy saving that can be
achieved by any algorithm.

For the network parameters, we choose to use 16-QAM modu-
lation scheme, 5/6 channel coding rate, 1/8 guard interval, and 5
MHz channel bandwidth. This gives us a broadcast network with
bandwidth R = 17.2 Mbps [9]. We consider an overhead duration
To = 100 msec and receiver buffer size Q = 4 Mb (= 0.5 MB).
To saturate network bandwidth, we concurrently broadcast up to
20 VBR video streams, where each stream has different character-
istics. We downloaded 20 trace files from [28]. These trace files
are for CIF video streams coded by H.264/AVC coders at 30 fps.
We follow the recommendations given in [27] to generate a real-
istic video traffic workload from these traces in two steps. First,
we construct a 60-min trace by starting from a random time and
wrapping around if the end of the original coded stream is reached.
Second, we scale the frame sizes of each video stream so that it has
a random average bit rate between 100 to 1250 kbps. These two
steps generate a set of video trace files with diverse and varying
video characteristics to mimic the video streams broadcast in real
networks.

To cover all possible burst schedules that can be used in current
base stations, we vary the α value of the VBRα algorithm from
48% to 98% and we vary the β value of the RVBRβ algorithm
from 1 to 64 sec. If not otherwise specified, we concurrently broad-
cast 20 video streams for 60 minutes using each of the considered
burst scheduling algorithms, and we compute three performance
metrics: missed frames, bandwidth utilization, and energy saving.
The missed frames include video frames that cannot be broadcast
due to shortage of bandwidth reserved to video streams, and frames
that are late and cannot be decoded. We define the missed frame
ratio as the number of missed frames to the number of total frames,
which is an important QoS metric because higher missed frame ra-
tios result in more playout glitches that are annoying to users.

5.2 Simulation Results
Missed Frames: We compute the mean and maximal missed

frame ratios of all video streams for each considered algorithm. We
report the results in Fig. 7(a), which shows that the SMS algorithm
produces almost no missed frames, while VBR70% results in up to
33% missed frame ratio and RVBR1 leads to up to 12% missed
frame ratio. Clearly, the current scheduling algorithms lead to un-
acceptable QoS: a playout glitch every 1 and 3 secs for VBR70%

and RVBR1, respectively. This experiment shows that the SMS al-
gorithm results in much better perceived quality than the current
scheduling algorithms.

Next, we vary the α and β values and compute the missed frame
ratio for each of them. Our SMS algorithm is not shown in the fig-
ures as it does not depend on α and β, and as indicated by Fig. 7(a)
it produces almost no missed frames. We plot the results of VBRα

algorithm with different α values in Fig. 7(b). This figure reveals
that changing the α value does not solve the QoS issue at all: at
least 4% of missed frame ratio is observed no matter what α value is
used. This means that even if network operators exhaustively try all
possible α values with the current VBRα algorithm, no burst sched-
ule with acceptable QoS is possible. Then, we plot results of the
RVBRβ algorithm with various β values in Fig. 7(c). This figure
shows that the average missed frame ratio decreases when the pre-
roll delay of the RVBRβ algorithm increases. However, we observe
that a preroll delay of 48 sec is required for a zero average missed
frame ratio. Unfortunately, a 48-sec preroll delay significantly de-

417

0 20 40 60
0

10

20

30

40

Time (min)

M
ea

n
/
M

a
x

M
is

se
d

F
ra

m
e

(%
)

SMS
VBR70%

RVBR1

(a)

0 20 40 60
0

2

4

6

8

10

12

Time (min)

A
ve

ra
g
e

M
is

se
d

F
ra

m
e

(%
)

VBR98

VBR94

VBR86

VBR70

VBR48

(b)

0 20 40 60
0

2

4

6

Time (min)

A
ve

ra
g
e

M
is

se
d

F
ra

m
e

(%
)

RVBR1

RVBR4

RVBR16

RVBR32

RVBR48

(c)

Figure 7: Missed frame ratio produced by: (a) all considered algorithms, (b) the VBRα algorithm with various α values, and (c) the

RVBRβ algorithm with various β values.

grades user experience, and thus is not acceptable for mobile video
services. Therefore, the current RVBRβ algorithm can not achieve
acceptable QoS either. This experiment confirms that the current
scheduling algorithms can only achieve inferior perceived quality
than the proposed SMS algorithm.

Bandwidth Utilization: We next study how many video streams
can the current burst scheduling algorithms concurrently broadcast
for a given QoS target. More precisely, we set the target mean
missed frame ratio to be 0.5% in this experiment and we try to
achieve this target using different scheduling algorithms. We start
by broadcasting 20 video streams using the SMS, the VBR70% and
the RVBR1 algorithms for 60 minutes. For each algorithm, we
compute the average missed frame ratio over the whole broadcast
period. If the average missed frame ratio is more than 0.5%, we
reduce the number of concurrently broadcast video streams by one
and repeat the 60-min broadcast, until we achieve the target missed
frame ratio. We note that, at each iteration, we drop the video
stream with the smallest bit rate. The rationale is that video streams
with lower bit rates may be less important, and dropping them ear-
lier may allow us to achieve higher bandwidth utilization. We plot
the average missed frame ratio in Fig. 8(a). This figure shows
that while the SMS algorithm can concurrently broadcast 20 video
streams, the RVBR1 algorithm can only broadcast 14 video streams
and the VBR70% algorithm can only broadcast 2 video streams. In
Fig. 8(b), we plot the maximum number of video streams that can
be concurrently broadcast by each scheduling algorithm. This fig-
ure shows that no matter what α value is used in the VBRα algo-
rithm, it can only broadcast 2 video streams. Moreover, a β value
larger than 16 is required for the RVBRβ to achieve the same num-
ber of video streams as the SMS algorithm, which significantly de-
grades user experience due to its excessive preroll delay of 32 sec.
This experiment shows a great advantage of the SMS algorithm:
it allows network operators to broadcast many more video streams
under the same QoS requirements, which leads to higher revenues.

Near-optimality on Energy Saving: We next compare the en-
ergy saving achieved by the SMS algorithm against the current
burst scheduling algorithms. We also compare against a very con-
servative upper bound on the maximum achievable energy saving.
We use this upper bound because the burst scheduling problem is
NP-Complete, and computing the exact optimal solutions may take
long time. We compute the upper bound as follows. For each video
stream, we broadcast only this stream without any other streams
for 60 minutes. The resulting schedule achieves maximum energy
saving by allocating the largest possible bursts that can fit in re-
ceiver’s buffer. The network interfaces of mobile devices are put

into sleep after getting a burst until that burst is completely con-
sumed. Clearly, the schedule leads to a conservative upper bound
on the energy saving, and we denote this upper bound as UB in the
figure. We repeat this experiment for 20 times: once for every video
stream. Then, we run the SMS and the current burst scheduling al-
gorithms to compute the burst schedules for all 20 video streams
concurrently. Sample energy saving achieved by different burst
scheduling algorithms are reported in Fig. 9; results for other video
streams are similar. We draw two observations out of this figure.
First, the SMS algorithm achieves near-optimal energy saving: as
close as 2% lower than the conservative upper bound, and up to 7%.
Second, the SMS algorithm achieves higher energy saving than the
current VBR98% and RVBR16 with a margin as high as 12% and
5%, respectively. This experiment shows that the proposed SMS
algorithm achieves energy saving that is very close to the optimal,
and is better than that of the current scheduling algorithms.

6. EVALUATION IN REAL TESTBED

6.1 Testbed Setup
In this section, we evaluate the proposed algorithm in a real mo-

bile TV network that complies with the DVB-H standard [10, 16],
which is an open international standard for wireless broadcast net-
works.

We have implemented the proposed SMS algorithm in a com-
plete testbed for mobile TV networks as a proof of concept. We
have set up this testbed in our Lab, and it consists of two parts: a
base station and several receivers. We use a commodity Linux PC
as the base station, and install a PCI modulator card [7] in it. This
modulator implements the physical layer of the DVB-H standard
and is connected to an indoor antenna via a low-power amplifier.
In order to drive the modulator to transmit DVB-H compliant sig-
nals, we have designed and implemented a software package for
the base station. In addition, we have implemented the SMS al-
gorithm in the base station. We use Nokia N92 and N96 cellular
phones as receivers, which allow us to assess the visual quality of
video streams. To gather and analyze the low-level signals, we use
a DVB-H Analyzer [8]. More details on our testbed can be found
in [14].

For the experiments, we configured the modulator to use an 8
MHz radio channel with QPSK (Quadrature Phase-Shift Keying)
modulation scheme. According to the DVB-H standard documents,
this leads to 8.289 Mbps shared air medium bandwidth [9]. We
set the overhead duration To = 100 msec, and the receiver buffer
size Q = 4 Mb. To form a realistic set of video streams, we use

418

0 5 10 15 20
0

2

4

6

8

10

Number of Video Streams S

A
v
er

a
g
e

M
is

se
d

F
ra

m
e

(%
)

SMS
VBR70%

RVBR1

Target Missed
Frame Ratio (0.5%)

(a)

SMS 1 4 16 32 48% 98%
0

5

10

15

20

Scheduling Algorithm

N
u
m

b
er

o
f
V

id
eo

S
tr

ea
m

s
S

SMS
RVBRβ

VBRα

(b)

Figure 8: (a) Missed frame ratio achieved by various scheduling algorithms with different

number of video streams. (b) Maximum number of video streams that can be broadcast.

1 4 7 10 13 16 19
75

80

85

90

95

100

Video Stream s

E
n
er

g
y

S
av

in
g

γ
s

(%
)

UB
SMS
RVBR16

VBR98%

Figure 9: Energy saving achieved by con-

sidered burst scheduling algorithms and a

conservative upper bound.

five production-quality video sequences provided by the Canadian
Broadcasting Corporation, which is the largest content provider and
broadcaster in Canada. These video sequences include documen-
tary, talk show, soap opera, TV game show, and sports event. Thus,
the test sequences have quite diverse video characteristics. Each
sequence lasts for 5 minutes. We encode each video sequence into
two H.264/AVC coded VBR streams, with average bit rates of 250
and 768 kbps, respectively. That is, we get 10 coded streams in
total. We also encode the audio at 96 kbps using an MPEG-4 AAC
encoder. We then multiplex the video and audio tracks into mp4
files, which are supported by the streaming server implemented in
our testbed. We concurrently broadcast 20 video streams (each mp4
file is broadcast over two channels) using the SMS algorithm for
three minutes, and we collect detailed logs at the base station. The
logs contain the start and end times (in microsecond) of every burst
of data and its size. We developed several software utilities to an-
alyze the logs for three performance metrics: cumulative received
bits, time spacing between successive bursts, and energy saving.

6.2 Results from Mobile TV Testbed
Correctness of the SMS Algorithm: We first validate the cor-

rectness of the SMS algorithm, i.e., it produces burst schedules that
adapt to bit rate variation in VBR streams, and results in no burst
conflicts. To study the bit rate adaptation, we compute the cumu-
lative received bits (from the broadcasting base station) as the time
progresses. We observe that the SMS algorithm adapts to the bit
rate variations quite well, and it allocates dynamic inter-burst time
to each video stream. Dynamic inter-burst time allows the SMS al-
gorithm to send bursts as long as possible for higher energy saving.

Next, we compute the time spacing between all bursts to validate
the nonexistence of burst conflicts. We first sort bursts of all video
streams based on their start times. Then, we sequentially compute
the time spacing between the start time of a burst and the end time
of its immediate, previous, burst. The results confirm that there are
no conflicts among the resulting bursts.

Energy Saving of the SMS Algorithm: We report the energy
saving achieved by receivers of different video streams when the
SMS algorithm is used. Fig. 10 shows the energy saving of four
representative video streams; the energy saving of other streams are
not shown for the clarity of the figure. We observe that the energy
saving for low bit rate video streams (250 kbps) can be as high as
96%, while it is at least 80% for high bit rate video streams (768
kbps). This figure shows that the SMS algorithm achieves fairly
high energy saving in a real testbed.

0 50 100 150
50

60

70

80

90

100

Time (sec)
E

n
er

g
y

S
av

in
g

(%
)

Strm. 1 (250 kbps)
Strm. 3 (250 kbps)
Strm. 8 (768 kbps)
Strm. 9 (768 kbps)

Figure 10: Energy saving achieved by our algorithm for indi-

vidual video streams.

Running Time of the SMS Algorithm: In all of the above exper-
iments, the SMS algorithm was running in real time on a com-
modity PC. The running time of scheduling bursts for the whole
experiment (3 minute period) was in the order of tens of millisec-
onds. Note that, in our testbed, the same PC also runs several video
streaming servers and modulation software as background threads.
These threads impose realistic loads on the PC, and confirm that
the proposed algorithm is practicable and efficient.

7. CONCLUSIONS AND FUTURE WORK
We studied the problem of broadcasting multiple VBR streams

over a metropolitan wireless network to mobile devices. These
streams are broadcast in bursts to enable mobile devices to save
energy by frequently putting their network interfaces into sleep.
We defined and formulated a burst scheduling problem that adopts:
(i) bandwidth utilization as the primary objective function, and (ii)
energy saving as the secondary objective function. We showed that
this burst scheduling problem is NP-Complete. We then proposed
an efficient, approximation algorithm, called Statistical Multiplex-
ing Scheduling (SMS), to solve it. We proved that the SMS algo-
rithm achieves optimal bandwidth utilization and it provides near-
optimal energy saving. Our analysis indicates that a small energy
saving gap of 1.5% from the optimal is achieved under typical net-
work parameters. The SMS algorithm is an online scheduling al-
gorithm, and can handle the dynamic nature of the video broadcast
service. In addition, it imposes no rate constraints on the video
coders encoding the VBR streams. This leads to high coding effi-
ciency, and thus optimal visual quality.

419

We conducted extensive trace-driven simulations, in which we
concurrently broadcast 20 VBR video streams. The simulation re-
sults reveal that the SMS algorithm outperforms the current burst
scheduling algorithms, in terms of: (i) number of frames that miss
the deadlines, (ii) number of concurrently broadcast video streams,
and (iii) energy saving of mobile devices. In addition, our proposed
approach for efficiently broadcasting VBR video streams is general
and can be employed in different wireless networks. We achieve
this generality by abstracting away the peculiarities of different net-
works in the formulation of the problem and the proposed transmis-
sion scheduling algorithm. To demonstrate the practicality of our
approach, we have implemented it in a real testbed for mobile TV
(DVB-H) services. We encoded different types of videos into VBR
streams, where each stream consists of both video and audio tracks.
We concurrently broadcast 20 streams using the testbed to mobile
phones, and we collected detailed logs for performance analysis.
The results from the testbed confirm that the SMS algorithm: (i)
does not result in playout glitches, (ii) achieves high energy saving,
and (iii) runs in real time.

The work in this paper can be extended in multiple directions.
For example, in Sec. 4.1, the SMS algorithm always divides the re-
ceiver buffer by half. This is because the algorithm is designed as
an online algorithm with a small look-ahead window. If larger look-
ahead windows are possible, better performance could be achieved
by adaptively dividing the receiver buffer based on the bit rate vari-
ations. This is one of our future works.

8. REFERENCES

[1] Private communication with Nokia’s engineers managing
mobile TV base stations, December 2008.

[2] AT&T sells wireless spectrum in southeast to Clearwire
corporation, 2007.
http://www.att.com/gen/press-room?pid=

4800&cdvn=news&newsarticleid=23428.

[3] P. Camarda, G. Tommaso, and D. Striccoli. A smoothing
algorithm for time slicing DVB-H video transmission with
bandwidth constraints. In Proc. of ACM International Mobile

Multimedia Communications Conference (MobiMedia’06),
Alghero, Italy, September 2006.

[4] M. Chari, F. Ling, A. Mantravadi, R. Krishnamoorthi,
R. Vijayan, G. Walker, and R. Chandhok. FLO physical
layer: An overview. IEEE Transactions on Broadcasting,
53(1):145–160, March 2007.

[5] S. Cho, G. Lee, B. Bae, K. Yang, C. Ahn, S. Lee, and
C. Ahn. System and services of Terrestrial Digital
Multimedia Broadcasting (T-DMB). IEEE Transactions on

Broadcasting, 53(1):171–178, March 2007.

[6] P. Chou. Streaming media on demand and live broadcast. In
M. van der Schaar and P. Chou, editors, Multimedia Over IP

and Wireless Networks, chapter 14, pages 453–502.
Academic Press, March 2007.

[7] Dektec DTA-110T PCI modulator, 2008.
http://www.dektec.com/Products/DTA-110T/.

[8] Divi Catch RF-T/H transport stream analyzer, 2008.
http://www.enensys.com/.

[9] Digital Video Broadcasting (DVB); DVB-H implementation
guidelines. European Telecommunications Standards
Institute (ETSI) Standard EN 102 377 Ver. 1.3.1, May 2007.

[10] G. Faria, J. Henriksson, E. Stare, and P. Talmola. DVB-H:
Digital broadcast services to handheld devices. Proceedings

of the IEEE, 94(1):194–209, January 2006.

[11] FLO technology overview, 2009. http://www.
mediaflo.com/news/pdf/tech_overview.pdf.

[12] Global IPTV market analysis (2006–2010), 2006.
http://www.rncos.com/Report/IM063.htm.

[13] M. Hefeeda and C. Hsu. Energy optimization in mobile TV
broadcast networks. In Proc. of IEEE Innovations in

Information Technology (Innovations’08), pages 430–434,
Al Ain, United Arab Emirates, December 2008.

[14] M. Hefeeda, C. Hsu, and Y. Liu. Testbed and experiments for
mobile TV (DVB-H) networks. In Proc. of ACM

Multimedia’08 Demo Session, Vancouver, Canada, October
2008.

[15] C. Hsu and M. Hefeeda. Time slicing in mobile TV
broadcast networks with arbitrary channel bit rates. In Proc.

of IEEE INFOCOM’09, Rio de Janeiro, Brazil, April 2009.

[16] M. Kornfeld and G. May. DVB-H and IP Datacast –
broadcast to handheld devices. IEEE Transactions on

Broadcasting, 53(1):161–170, March 2007.

[17] H. Lai, J. Lee, and L. Chen. A monotonic-decreasing rate
scheduler for variable-bit-rate video streaming. IEEE

Transactions on Circuits and Systems for Video Technology,
15(2):221–231, February 2005.

[18] J. Lin, R. Chang, J. Ho, and F. Lai. FOS: A funnel-based
approach for optimal online traffic smoothing of live video.
IEEE Transactions on Multimedia, 8(5):996–1004, October
2006.

[19] WiMAX and wireless mesh worldwide market opportunities
for Canadian companies, 2008.
http://www.ic.gc.ca/eic/site/ict-tic.

nsf/vwapj/0107896e.pdf.

[20] Nokia mobile broadcast solution, February 2009. http:
//www.mobiletv.nokia.com/solutions/mbs/.

[21] Philips SDIO TV1000/TV1100 mobile/portable TV
solutions, 2006.
http://www.nxp.com/acrobat_download/

other/products/rf/SDIO_TV_final.pdf.

[22] M. Pinedo. Scheduling: Theory, Algorithms, and Systems.
Springer, 3rd edition, 2008.

[23] T. Rappaport. Wireless Communications: Principles &

Practice. Prentice Hall, 1st edition, January 1996.

[24] M. Rezaei. Video streaming over DVB-H. In F. Luo, editor,
Mobile Multimedia Broadcasting Standards, chapter 4, pages
109–131. Springer US, November 2009.

[25] M. Rezaei, I. Bouazizi, and M. Gabbouj. Joint video coding
and statistical multiplexing for broadcasting over DVB-H
channels. IEEE Transactions on Multimedia,
10(7):1455–1464, December 2008.

[26] J. Ribas-Corbera, P. Chou, and S. Regunathan. A generalized
hypothetical reference decoder for H.264/AVC. IEEE

Transactions on Circuits and Systems for Video Technology,
13(7):674–687, July 2003.

[27] P. Seeling and M. Reisslein. Evaluating multimedia
networking mechanisms using video traces. IEEE Potentials,
24(4):21–25, October/November 2005.

[28] Web Page of Video Traces Research Group, 2009.
http://trace.eas.asu.edu/h264avc/.

[29] X. Yang, Y. Song, T. Owens, J. Cosmas, and T. Itagaki.
Performance analysis of time slicing in DVB-H. In Proc. of

Joint IST Workshop on Mobile Future and Symposium on

Trends in Communications (SympoTIC’04), pages 183–186,
Bratislava, Slovakia, October 2004.

420

