
Streaming Scalable Video over WiMAX Networks

Somsubhra Sharangi

School of Computing Science

Simon Fraser University

Surrey, BC, Canada

Ramesh Krishnamurti

School of Computing Science

Simon Fraser University

Burnaby, BC, Canada

Mohamed Hefeeda

School of Computing Science

Simon Fraser University

Surrey, BC, Canada

Abstract—Broadcasting multiple scalable video streams over
wireless broadband access networks in real time is a challenging
problem, because of the limited channel capacity and variable
bit rate of the videos. The difficulty is further increased in the
presence of receiver buffer size limitations which may introduce
buffer overflow possibilities. The Multicast/Broadcast Service
feature of mobile WiMAX network is a promising technology
for providing wireless video broadcast services. In this article,
we describe a substream selection problem which arises when
multiple scalable video streams are broadcast based on the
Multicast/Broadcast Service feature to a number of buffer size
constrained receivers. We first show that the problem is NP-
Complete and design a polynomial time approximation algo-
rithm based on convex optimization and dynamic programming
techniques. We mathematically prove that the solution obtained
through our algorithm is always within a constant factor of the
optimal solution. Through simulation we show that under real
time requirements our algorithm provides solutions which are
within 1dB of the optimal solutions.

I. INTRODUCTION

Video multicasting to mobile devices has emerged as one of

the popular services over upcoming next generation wireless

networks. Several promising applications like mobile TV, mo-

bile video-conferencing and mobile multiplayer gaming make

use of these services. Technologies from traditional cellular

wireless telecommunication networks, terrestrial TV broadcast

networks, last mile Internet access networks and other such

domains are being proposed for realizing these applications.

The IEEE standard 802.16 [1] or WiMAX is a technology

which was originally designed for providing last mile wireless

broadband access and it is now being considered for providing

mobile TV services. For example, Yota Telecom [2] has

recently started a TV service with 25 channels over its 10Mbps

mobile WiMAX network, and UDCast [3] has announced

plans for developing broadcast TV service supporting around

50 channels over mobile WiMAX. Observing this trend we

expect to see more deployments of WiMAX based mobile

TV services in the near future. Maintaining high quality of

service in video delivery is one of the main challenges for

these applications. Even though a considerable amount of work

has been done to make these deployments a reality, several

issues still remain unattended.

In the WiMAX physical layer, data is transmitted over

multiple carriers in Time Division Duplex (TDD) frames. As

illustrated in Figure 1, each frame contains header information

and upload/download maps followed by bursts of user data.

Since video dissemination is expected to be a prevalent traffic

pattern in future networks, the WiMAX standard defines a

service called Multicast and Broadcast Service (MBS) in the

MAC layer to facilitate broadcast and multicast. Although

streaming video can be transmitted as a unicast service,

broadcast and multicast are more resource efficient. Using

MBS, a certain area in each TDD frame can be set aside for

multicast-only or broadcast-only data, as shown in Figure 1.

The entire frame can also be designated as a download-only

broadcast frame. A major task of the MBS module is to

allocate video data to the multicast/broadcast data area in each

frame, such that, the real time nature of the video stream

is maintained. This results in stringent QoS and efficiency

demands on the allocation algorithm.

In this paper, we propose an efficient multimedia broadcast

framework over mobile WiMAX networks utilizing the MBS

features. In particular, our paper considers broadcasting multi-

ple scalable video streams to mobile receivers. We mathemat-

ically formulate the problem of selecting the best set of sub-

streams from the scalable video streams in order to maximize

the quality for mobile receivers. We show that this problem is

NP-Complete. We propose an approximation algorithm based

on dynamic programming techniques, which produces near

optimal solutions. Using simulation and mathematical analysis

we show that the algorithm is efficient in terms of execution

time and achieves high radio resource utilization.

The rest of this paper is organized as follows. In Section II,

we summarize the previous works related to scalable video

broadcast over WiMAX. We state our problem and present

the analytical formulation for it in Section III. In Section IV,

we present an approximation algorithm to efficiently solve our

problem. Section V describes our simulation setup and results.

Finally, we summarize our findings and conclude the paper in

Section VI.

II. RELATED WORK

In this section, we first describe previous work with respect

to video transmission over WiMAX network, and then de-

scribe earlier approaches related to scalable video broadcast in

WiMAX networks. Hosein [4] describes the frame allocation

problem for broadcasting variable bit rate video over WiMAX,

but does not consider scalable video content. Wang et al. [5]

discuss an architecture for video broadcasting in a multi-base-

station WiMAX system. Their work focuses on coverage and

spectral efficiency issues and considers only temporal video

scalability. Cohen et al. [6] combine a group of TDD frames



together into a super-frame. They describe a cost based scheme

where a cost function is associated with each user-channel

pair. Three user interaction models are considered: (i) user can

either be statically hooked to a channel, (ii) user can choose

to listen to a channel, or (iii) the user channel association can

keep changing based on the transmission medium conditions.

The work in [6] does not consider the delay requirements

which are central to video streaming.

Jiang et al. [7] propose a scheme to transmit scalable video

streams in which two layers of each video are transmitted

separately. The base layer is transmitted as one stream over a

reliable channel while the enhancement layer is transmitted as

a different stream over a less reliable channel. Conceptually,

this work implements a rate adaptive multiple description

coding. However, it describes only one stream and it does

not address the resource management problem arising in multi

stream transmission scenarios. Reguant et al. [8] consider

splitting a video stream into two streams and transmitting

them over two different broadcast networks. The first stream

is transmitted over a DVB-H network at all times while the

second stream is transmitted over WiMAX network most of

the time. If the user wants to use some other non-video

application in parallel, the stream going through WiMAX is

degraded to accommodate that application. This ensures a

minimum video quality at all times while maintaining the

flexibility of using other applications. While this approach

has its benefits, it is not very attractive from a deployment

point of view since the service provider has to install and

manage the infrastructure for two different kinds of networks.

Also the solutions described in both [7] and [8] evaluate

the performance of video streaming as an application along

with other WiMAX applications and do not utilize MBS.

In contrast, our approach considers a multimedia-intensive

system with extensive use of MBS.

III. PROBLEM STATEMENT AND HARDNESS

Our work focuses on optimally utilizing the Multi-

cast/Broadcast Service (MBS) to stream multiple scalable

videos to mobile receivers. In this section we state the problem

and show that it is NP-Complete. We also present the math-

ematical formulation of the problem. For quick reference, we

list all symbols used in the formulation in Table I.

A. Problem Statement

We consider a scenario where a number of scalable video

streams are available at a WiMAX base station. Each stream is

to be broadcast using MBS to a group of mobile subscribers.

At the WiMAX base station, the MBS module allocates a

fixed-size data area in the download section of each TDD

frame. All video streams are to be allocated only within this

MBS data area. As per the mobile WiMAX standard, each

MBS data area can transmit a different amount of data depend-

ing on the modulation scheme chosen, which is in turn selected

based on the wireless channel conditions. For a broadcast

application, the modulation scheme is to be selected for a

group of subscribers. Since subscribers receiving a broadcast

Fig. 1. WiMAX OFDMA TDD Frame structure.

service may have different channel conditions, selecting a

modulation scheme which is beneficial to all the subscribers in

the group is computationally expensive. Therefore, we assume

that the modulation scheme for the broadcast service is a

pre-calculated parameter and does not change throughout the

transmission. Thus, each MBS area transmits a fixed amount

of data, in effect, creating a fixed bandwidth broadcast channel.

We consider a scheduling window composed of a number

of MBS data areas. Data from the video streams are to be

allocated to the MBS areas in the scheduling window. Due

to the variable bit rate (VBR) nature of the video streams,

the aggregate data rates may exceed the broadcast channel

capacity. Hence, in each scheduling window, we need to decide

which layers to send for each stream. We assume that the

base station has enough buffer space to hold the VBR traffic

for one scheduling window. This way, the data rates can be

assumed to be constant during a scheduling window, but they

vary across scheduling windows. Since the bit rates and the

receiver buffer states change in each scheduling window, the

allocation has to be computed for every scheduling window.

We also assume that all subscribers served by the base station

have a fixed amount of buffer which is used to temporarily

store the incoming video data before playing out. Thus the

optimal substream selection problem we need to solve can be

stated as follows.

Problem 1 (Optimal Substream Selection Problem:):

Select the optimal subset of layers from each scalable stream

to broadcast over a WiMAX network such that: (1) the total

data transmitted in a scheduling window does not exceed

the window capacity, (2) the average quality of all selected

substreams is maximized, and (3) the subscriber playout

buffer does not overflow or underflow.

B. Problem Hardness

Let us assume that for a given radio modulation scheme, the

MBS data area in each frame can accommodate F amount of

data and the TDD Frame takes τ time to be transmitted. Let

the scheduling window consist of P such frames. Then, the

maximum amount of data that can be transmitted within the

scheduling window is given as C = PF . We have S scalable

video streams. Each scalable stream s, 1 ≤ s ≤ S, has at most

L layers. The value of L can be different for each stream.



Therefore, for each stream we have L substreams to choose

from, where a substream l includes layer l and all layers below

it. Let the data rates and quality values for selecting substream

l of stream s be rsl and qsl respectively. Here r11 denotes the

data rate of the base layer of the first stream. Thus, we have

the problem of choosing the substreams such that the average

quality across the video streams is maximized subject to the

following constraints. The first constraint is that the total data

to be transmitted must fit into the MBS areas in the current

scheduling window. The second constraint is that the buffers

at the subscribers must not run out of data anytime during the

scheduling window, and the third constraint is that the base

layer of each stream must be transmitted to guarantee a basic

service level agreement.

Theorem 1: The Optimal Substream Selection Problem is

NP-Complete.

Proof: First, we consider a relaxed version of the problem

with no buffer overflow or underflow constraints. Thus, we

are left with the problem of selecting the substreams such

that the average quality is maximized. We assume that in

each scheduling window at least all the base layer streams

have to be transmitted due to service level agreement. Thus,

we further modify the problem by eliminating the base layer

constraints, which can be trivially done, by reducing the

scheduling window capacity by the sum of data rates of all

base layers. Therefore, the modified data capacity can be given

as C′ = C − ∑
s∈S

rs1. Now we are left with the problem of

deciding which substreams to chose from each stream. We

show that this problem is equivalent to the NP-Complete 0-1

Multiple Choice Knapsack Problem (0-1-MCKP) [9], which

is defined as follows. Given M classes N1, . . . ,NM of items

to pack in some knapsack of capacity W . Each item (i, j),
where i ∈ M, j ∈ Ni, has a profit p(i, j) and a weight w(i, j).
The problem is to choose at most one item from each class

such that the profit sum is maximized without having the

total weight exceed W . We reduce the 0-1-MCKP problem

to Optimal Substream Selection problem in polynomial time

as follows. We make the data rates of choosing a substream

represent the item weight and the corresponding quality values

represent the profit of choosing an item. We also make

the streams represent the multiple choice classes and the

scheduling window capacity represent the knapsack capacity.

Thus, we have an MCKP instance with S classes, L−1 items

per class and a knapsack capacity of C′. This means that

an efficient solution for the simplified Optimal Substream

Selection Problem could be employed to efficiently solve

the NP-Complete 0-1-MCKP problem. In other words, the

substream selection problem is NP-Hard. In addition, clearly

a solution for the simplified Optimal Substream Selection

Problem can be verified in polynomial time. Thus the simpli-

fied Optimal Substream Selection Problem is NP-Complete.

Consequently, the more general Optimal Substream Selection

Problem subject to buffer overflow and underflow constraints

is also NP-Complete.

TABLE I
LIST OF SYMBOLS USED IN FORMULATION

Symbol Description

S Number of streams
L Number of layers

qsl PSNR of substream sl

rsl Data rate of substream sl

bsl Number of frame sized blocks of substream sl

nsl Number of frame bursts for substream sl

tk
sl Start of burst k of substream sl

wk
sl Width of burst k of substream sl

τ Duration of a TDD frame
F Capacity of MBS data in a TDD frame
P Number of frames in scheduling window
C Data capacity of scheduling window
B Buffer size at the receiver
us Initial buffer level for stream s

C. Analytical Formulation

We assume all subscribers have B amount of buffer available

for the video streaming application and the data rate and

quality values for all substreams of each stream are known

ahead of the scheduling window. This information can either

be obtained as a separate meta data for each stream or if

the scalable video is encoded using H.264/SVC [10] and

the base station is media-aware, this information can be

obtained directly from the encoded video stream itself using

the Supplementary Enhancement Information (SEI) messages.

Let the data rate values of substreams be {rs1,rs2, . . . ,rSL}
and the corresponding quality values be {qs1,qs2, . . . ,qSL}.

Each scheduling window is of duration τP. If substream l

of stream s is selected, the amount of data to be transmitted

during a scheduling window can be given as τPrsl . Let binary

variables xsl take the value 1 if substream l of stream s is

selected for transmission in the current scheduling window

and 0 otherwise. For a substream, we define a burst as a

consecutive set of MBS data areas allocated to the substream in

the scheduling window. For any schedule, let nsl be the number

of bursts for substream l of stream s. We denote by variables

tk
sl the starting frame number and by variable wk

sl the number

of MBS data areas in burst k for substream l of stream s. The

solution of the optimum substream selection problem should

generate a list < l,n,< t1
sl ,w

1
sl >,. . . ,< tn

sl ,w
n
sl >> for each

stream. In the list, l denotes the selected substream, n denotes

the number of bursts required for transmitting substream l,

and < tk
sl ,w

k
sl > denote the starting point and width of burst

k, respectively. For a subscriber receiving channel s, let the

buffer level at the beginning of scheduling window be us.

We need to ensure that all data received during a scheduling

window are also consumed in the same window. In other words

∑
nsl

k=1 wk
sl = τPrsl . At the same time we need to ensure that

buffer overflow and underflow does not occur. At the end of

each burst, the total data received is given by ∑k
i=1 wi

sl . During

that period the total data consumed is given by τ(tk
sl +wk

sl)rsl .

Now in order to avoid underflow, the difference of these

two terms must be greater than zero for all bursts. Similarly,



the overflow conditions can be applied by constraining the

difference to be never greater than B. Our objective is to

maximize the average video quality over all the streams. We

use the PSNR values of the streams to denote quality and take

an arithmetic average of the PSNRs of the selected streams to

denote the average quality. Let us assume that the data to be

transmitted for each substream can be divided into bsl number

of F sized data blocks. Consequently, we have the following

optimization problem.

Maximize
1

S

S

∑
s=1

L

∑
l=1

xslqsl (P1)

such that
S

∑
s=1

L

∑
l=1

xslbsl ≤ P (1a)

L

∑
l=1

xsl ≤ 1 (1b)

us +
k

∑
i=1

wi
slF − τ(tk

sl +wk
sl)rsl ≤ B (1c)

us +
k−1

∑
i=1

wi
slF − τ(tk−1

sl +wk−1
sl )rsl ≥ 0 (1d)

[tk
sl . . . t

k
sl +wk

sl ]∩ [t k̄
s̄l

. . . t k̄
s̄l

+wk̄
s̄l
] = /0 (1e)

nsl

∑
k=1

wk
s = xslbsl (1f)

In the above formulation the constraint (1a) makes sure that

the selected substreams can be transmitted within the broadcast

bandwidth. Constraint (1b) ensures that at most one substream

is selected for each stream. Constraints (1c) and (1d) represent

the buffer overflow and underflow constrains, respectively.

Constraint (1e) implies that no two bursts of data blocks

should be allocated to the MBS area of the same TDD Frame.

Here the operator [. . .] denotes integer interval. This constraint

is required because the streams are transmitted over a time-

shared, multiple-access wireless channel where only one burst

can be transmitted at a time. Constraints (1f) implies that if a

layer is selected, then all the data blocks corresponding to the

layer must be allocated in the schedule.

IV. PROPOSED APPROXIMATION ALGORITHM

A. Overview of the Proposed Algorithm

The proposed algorithm is called Substream Selection Al-

gorithm and is denoted by SSA. The high level idea of the

algorithm is as follows. We first find a set of near optimal

substreams given the data capacity of a scheduling window.

Then, we allocate them to the MBS areas in the frames of

the scheduling window. If no feasible allocation is found, we

reduce the problem instance by discarding the substream with

lowest quality among all substreams. We solve the optimal

substream selection problem again for the reduced set of

substreams. This cycle is repeated until, either a feasible

solution is found, or none of the substreams are selected. The

block diagram of this general scheme is shown in Figure 2.

First, we design an approximation algorithm for the multiple

choice knapsack problem. Then, the frame allocation is done

in a modified weighted round robin manner. As we showed

Fig. 2. High-level diagram of the Substream Scheduling Algorithm (SSA).

in Theorem 1, the problem of selecting optimal scalable

substreams is equivalent to solving a 0-1 Multiple Choice

Knapsack Problem. This problem has been well studied in

the mathematical programming community and several near

optimal solution schemes exist. The reader is referred to the

survey by Lin [11] for a summary of the main results. Dynamic

programming is one of the techniques used for designing ap-

proximation algorithms for the 0-1 Multiple Choice Knapsack

Problem. However, dynamic programming solutions are often

memory intensive and may involve large constants. In our

algorithm we derive both an upper bound and lower bound on

the value of the solution. These bounds significantly reduce

the solution search space [12].

B. Details of the Proposed Algorithm

Figure 3 summarizes the pseudo-code of the SSA algorithm.

There are three main steps of the algorithm: (i) Finding an

approximate solution to the substream selection problem, (ii)

Allocating the selected substreams to the MBS data areas

of the scheduling window, and (iii) Validating the schedule

to confirm that there are no buffer underflow or overflow

conditions. We describe each step in the following.

1) Approximate Substream Selection: In a naive dynamic

programming solution we construct a table of all possible

data rates for the given streams (i.e., 1 . . .∑rSL) and their

resulting quality values. We note that multiple quality values

can result for a single aggregate data rate value depending on

the composition of the substreams selected. Then, we search

for the highest quality entry in the table such that the data rate

is less than the scheduling window capacity. In our proposed

algorithm, we first derive bounds on the solution value which

will reduce the size of the search space. Then, we construct a

dynamic programming table for all quality values within the

bounds and find the solution substreams using backtracking.

Bounding the Optimum Solution Value: A lower bound

on the optimal solution is obtained from a solution to the linear

relaxation of the 0-1 MCKP problem as follows. A solution

x∗c to the linear relaxation has the following two properties:

(1) x∗c contains at most two fractional values and (2) when

there are two fractional values in x∗c , they belong to substreams

of the same stream. For the proof of these properties the

reader is referred to [13]. Let z∗c be the value of the objective

function corresponding to x∗c . Let Q0 be the maximum of (a)

the objective function value when both the fractional values

are dropped from the solution and (b) maximum of the quality



values of the fractional variables. If the optimal solution for

the integer problem is Q∗, it is evident that Q0 ≤ Q∗. From

the properties of x∗c it is evident that at most two variables are

dropped. Since at most two variables are dropped, z∗c can be

bounded as z∗c ≤ 2Q0. Also, since the solution obtained by the

linear relaxation must be greater than or equal to the solution

obtained by the integer program, we have an upper bound on

the optimum integer solution as Q0 ≤ Q∗ ≤ z∗c ≤ 2Q0. We note

that although the bound is obtained from linear programming

theory, we do not require an LP solver to calculate Q0. Q0 can

be calculated using the median finding algorithms in linear

time [14].

Recursive Table Generation: Now that we know the

bounds of the optimal solution value we define a dynamic

programming formulation as follows. For all streams s ∈
{1, . . . ,S} and all quality values q ∈,{0 . . . ,2Q0}, we define

V (s,q) as the set of substreams from streams 1, . . . ,s such that

no two substreams are selected from the same stream and the

total quality of the selected substreams is q. If for a quality

value q the at most one substream per stream constraint is

violated we set the corresponding sum of weights to infinity.

Let R(s,q) denote the sum of data rates selected in V (s,q).
We assume that the sum of data rates to produce zero quality

is zero, i.e., R(s,0) = 0. Also, for the first stream, the data

rate values can be computed easily as just the data rate of

the substream, or the minimum of the data rates if more than

one substream has the same quality, i.e., R(1,q) = min
l

{rsl}

where qsl = q. In mathematical terms, the first stream data

rates can be expressed as in equation (2a). The data rates for

the other quality values and other streams can be computed

by the recursive definition described in (2b) and the optimum

quality can be expressed by equation (2c).

R(1,q) =

{

min
l
{rsl}, where l ∈ L and qsl = q,

∞, otherwise.
(2a)

R(s,q) =











min{R(s−1,q),min
l∈L

{rsl

+R(s−1,q−qsl)}}, when qsl ≤ q,
R(s−1,q), otherwise.

(2b)

Q∗ = max{q|R(s,q) ≤ PF}. (2c)

However, the size of the table can still be very large as it

is bounded only by Q0. Therefore we select a scaling factor

K = εQ0
S

, and scale down the quality values to q′sl = qsl
K

. This

operation considerably reduces the table size while admitting

only a small error factor. We bound the quality degradation

due to scaling in our mathematical analysis in Section IV-C.

Backtracking: Once we have computed the dynamic pro-

gramming table, the solution quality value is obtained by a

simple scanning of the table as in equation (2c). The solution

substream vectors are found using a backtracking mechanism

as follows. While constructing the recursive table, we store the

composition of substreams leading to the data rates R(s,q) as a

list for each table cell. The solution substream vector is found

using the additional information by backtracking from the cell

containing the solution quality value.

Substream Selection Algorithm (SSA)

1. For each enhancement layer i across all streams do

2. Compute ρi = rsl − rsl−1 and φi = (qsl −qsl−1)

3. Select k largest
φi

ρi

such that ∑
i∈k

ρi < PF −∑rs1

4. Determine lower bound Q0 = ∑φi +∑qs1

5. Compute scale factor K = εQ0/S

6. Scale the quality values such that q′sl = qsl
K

7. For q = 1 to 2Q0 do

8. For s = 1 to S do

9. If s is 1, Compute R(s,q) using equation (2a)

10. Else, Compute R(s,q) using equation (2b)

11. Backtrack table R(s,q) to find the substreams s∗

12. Until all streams are allocated do

13. Arrange substreams in ascending order of
Bs

rs

14. Allocate σs = min Bs
τrs

frames to stream s

15. Update Bs = Bs +σs ∗F −σsτrs

16. If no valid allocation found do

17. Find substream (l̂, ŝ) such that qŝl̂ = min
s∈S,l∈L

{qsl}

18. Discard substream (l̂, ŝ)
19. Go to step 3

Fig. 3. The proposed Substream Selection Algorithm.

2) Data allocation: Once the substreams are selected, it

remains to allocate them to the MBS data area such that the

subscriber playback buffers do not overflow or underflow. We

use a modified version of the weighted round robin algorithm

to allocate data to frames. The weighted round robin has

been used for scheduling constant bit rate traffic before [15].

However, for a variable bit rate stream the stream priorities

are not static. We derive the priority of a stream based on

its buffer level at the subscriber. At the beginning of the

scheduling window, for a stream s let the data rate of the

selected substream be rs and the buffer level be Bs. Then

stream s is assigned priority Bs
rs

. A lower value of Bs
rs

denotes

higher priority. We also need to allocate the number of frames

to a stream in the current round, that is, the length of the burst.

The burst length is chosen such that none of the other streams

suffer from starvation, nor does it cause overflow or underflow

at the receiver buffer. For a stream s the length of the burst is

given by min{ Bs
τrs

}.

3) Buffer State Validation: After the schedule is con-

structed, we check if any buffer constraints are violated. This

can be easily determined by verifying the buffer overflow and

underflow constraints described in equations (1c) and (1d). If

the buffer constraints are violated, the current substreams can-

not be allocated within the current scheduling window. Hence,

we reduce the problem size and re-compute substreams. The

problem size is reduced by discarding the substream with

minimum quality value among all substreams. This process

is repeated until a feasible solution is found or none of the

substreams is selected. We note that even though the scheduler



is located at the base station, it is aware of the subscriber

buffer size and stream data rates. From this information it

can calculate the change in buffer states for a given schedule

without any involvement from the subscribers.

C. Correctness and Performance Analysis

We first prove in Lemma 1 that the data rate and quality

values of substreams of a scalable stream constitute a non-

dominated set. In Lemma 2, we prove the correctness of the

recursive formulation described in equations(2a)-(2b). Using

Lemma 1 and Lemma 2 we prove the correctness of SSA.

Lemma 1: Data rates and quality values of substreams

extracted from scalable streams constitute non-dominated set.

Let l and l′ be two substreams of a given stream s.

Substream l is said to be dominated by substream l′ if

including l′ in the solution always leads to better quality than

including substream l. For example, let rsl ,r
′
sl be the data

rates and qsl ,q
′
sl be the quality values of substreams l and

l′. If rsl > r′sl and qsl < q′sl then l is dominated by l′. Greet et

al. [16] have shown that, for H.264 PSNR scalability, when

there is sufficient variability in the video, its rate-distortion

characterization is close to a quadratic function which is

convex. In our problem, since the streams are variable bit rate

videos and layer encoded, the data rate and quality value pair

of the layers within a stream can be assumed to form a convex

set. This means that our problem instances are already in non-

dominated form and we can easily solve the linear relaxation

of the best quality substream selection problem. Efficient

solution to the linear relaxation will help us in efficiently

computing the final solution value. We empirically validate

this assumption of rate variability and convexity. In Figure 4a

we plot the sizes of frames of one of our test streams to show

the high data rate variability. In Figure 4b we plot the data

rate and PSNR values of three test streams and validate that

they indeed form a convex envelop.

Lemma 2: The recurrence relations described in equations

(2a)-(2c) produce a near optimal substream selection solution.

Proof: According to Lemma 1, all instances consist of

only non-dominated substreams. Thus we only need to prove

the correctness of the recurrence relation. We can prove the

correctness of the recursive expression by induction. The basis

step where s = 1 is true since it will lead to the selection of

the maximum quality substream such that the data rate is less

than the scheduling window capacity. Now let us assume that

it is also true for the case of s−1 streams. For stream s the

expression R(s−1,q−qsl) retrieves the weight of the solution

and updates it by adding the current data rate. Then all such

data rates are compared which can result in quality q and only

the minimum is chosen. Since R(s−1,q) is already minimum,

this results in R(s,q) also being minimum for every quality

value. Also, since data rates are accumulated only between

two different streams only one substream from each stream

is selected for all quality values. The solution is not optimal

since the quality values are scaled.

Theorem 2 (Correctness): SSA algorithm described in Fig-

ure 3 returns a valid solution for the Substream Selection

Problem.

Proof: By Lemma 2, the solution to the dynamic pro-

gramming formulation selects substreams such that the average

quality is close to the optimal and the total data requirement

is less than the scheduling window capacity. Therefore, the

capacity constraint and the at most one substream per stream

constraint are satisfied. The round robin algorithm assigns

MBS data areas to streams one frame at a time. Thus, it

guarantees that no two frame bursts are assigned to the same

frame. Finally, the buffer state validation step of the algorithm

ensures no buffer overflow or underflow instances occur in the

schedule. Hence, the SSA algorithm generates a valid solution

for the substream selection problem.

Next we analyze the approximation factor and time complex-

ity. Let Π be a maximization problem with objective function

z, optimal solution S∗ and optimal objective function value z∗.

Let I be an instance of Π and ε > 0 be an error parameter. A′ is

an approximation algorithm for the problem Π if for the input

pair (I,ε), A′ outputs a solution S′ with an objective function

value z such that z ≥ (1− ε)z∗.

Theorem 3 (Approximation Factor): The SSA algorithm

described in Figure 3 is a constant factor approximation

algorithm for a constant ε.

Proof: Let us describe a scaled instance obtained by

using quality values q′sl as I′. Now for all substreams we

have qsl −K ≤ Kq′sl ≤ qsl . Let A∗ be an optimal algorithm and

Π(I,A∗) the solution obtained by algorithm A∗ on all instances

I. Therefore Π(I : A∗) = Q∗. Considering the data rates for all

substreams, we have Q∗−Π(I′,A∗)K ≤ SK. Since A is optimal

in I′ we know that Π(I′,A)≥Π(I′,A∗) and applying the above

inequality we have

KΠ(I′,A) ≥ KΠ(I′,A∗) ≥ Q∗−SK.

From properties of qsl , we also know for any feasible solution

T that, Π(I,T ) ≥ Π(I′,T )K. We thus have:

Π(I,A) ≥ Π(I′,A∗)K ≥ Q∗−SK = Q∗− εQ0.

Also the algorithm always returns a solution of value at least

Q0. Therefore, Π(I,A) ≥ Q∗ − εQ0 ≥ Q∗ − εΠ(I,A), which

gives us Π(I,A) ≥
1

1+ ε
Q∗ ≥ (1−ε)Q∗. Thus algorithm SSA

is a constant factor approximation algorithm for constant ε.

Theorem 4 (Time and Space Complexity): The SSA in Fig-

ure 3 has a time complexity of O(
nL

ε
+ Pn logn), where

n = O(∑L) is the total number of substreams, L is the

maximum number of substreams within a stream, P is the

scheduling window size, and ε > 0 is a small constant. The

space complexity is O(SQ∗).
Proof: The dynamic programming algorithm computes

S×2Q0 entries for constructing the R(s,q) table. Computing

each entry takes O(L) time. Hence the table can be completely

constructed in O(L ·S ·2Q0) time or O(nQ∗) time. Computation

of Q0 takes O(n logn) time, leading to a total time complexity

of O(n logn+nQ∗). This is not polynomial in n since the value

of Q∗ may not be bounded polynomially in n. For a small



50 100 150 200 250 300
0

5

10

15

20

25

Frame Number

F
ra

m
e

S
iz

e
(k

b
)

(a) Foreman sequence

0 500 1000 1500 2000
25

30

35

40

45

Data rate (kbps)

P
S
N

R
(d

B
)

 

 

News

Crew

City

(b) Non-dominating property of scalable videos

Fig. 4. Rate-Distortion characteristics of scalable video.

constant ε, let us select a scale factor K and scaled quality

value for each substream q′sl according to equations (3a)-(3b).

K =
εQ0

S
(3a)

q′sl = ⌊
qsl

K
⌋ (3b)

Since Q∗ ≤ 2Q0 we have
Q∗

K
≤

2L

ε
. Thus the table computation

can now be computed in O(
nL

ε
) time. The round robin

allocation takes O(n logn) time for sorting the buffer levels

in each round. The number of rounds depends on the size of

the scheduling window P. Hence the total time complexity is

O(
nL

ε
+ Pn logn). The storage of the table requires O(SQ∗)

space which includes the O(Q∗) space for saving the back-

tracking information for constructing the solution.

V. TRACE-DRIVEN EVALUATION

A. Simulation Setup

We have implemented a point-to-multipoint WiMAX mul-

timedia broadcast simulator and evaluated our algorithm in it

using actual scalable video traces. For the WiMAX network

parameters we use the 16-QAM modulation scheme with

3/4 convolution turbo coding and 10MHz channel frequency

width. Since each TDD frame is 5ms, for a one second

scheduling window we will have to allocate data to 200 TDD

frames. Also we assume that within each TDD frame we have

an MBS data area of 50kb. This gives us a broadcast channel

bandwidth of 10Mbps [17]. At the receiver side we assume

a buffer limit of 512kb. For generating the video traffic we

use 10 raw (YUV files in 4:2:0 format) video files from the

video trace repository of Arizona State University [18]. For

each video we generate a 10 minute workload by starting

from a random initial frame and then repeating the frame

sequences. Then we encode the videos into H.264/SVC format

using the JSVM reference software version 9.18 [19]. We

encode each stream into four PSNR scalable layers using the

medium grain scalability (MGS) feature and tune the encoding

parameters such that the substreams have average bit rate

TABLE II
DATA RATES (kbps) AND PSNR (dB) VALUES OF THE SCALABLE VIDEOS

USED IN EVALUATION

Name
1 Layer 2 Layers 3 Layers 4 Layers

r1 q1 r2 q2 r3 q3 r4 q4

CREW 306 32.92 578 34.99 814 36.5 1184 37.41
FOOTBALL 442 30.50 827 32.91 1114 33.98 1621 35.55

MOBILE 189 35.76 322 37.87 442 38.93 649 40.36
CITY 448 29.62 923 32.21 1288 33.28 1943 34.88

FOREMAN 170 32.9 407 34.86 589 36.0 890 37.43
BUS 185 33.17 390 35.43 567 36.41 857 37.65

HARBOUR 577 31.8 1025 33.46 1379 34.67 1929 36.25
NEWS 121 35.6 259 37.55 372 38.63 564 40.5

SOCCER 385 29.92 795 32.18 1095 33.13 1651 34.68
ICE 277 32.35 548 34.71 767 35.82 1123 37.32

between 100kbps and 2.5Mbps. In Table II, we summarize

the information of the data rates and quality values of each

layer of the different video files.

B. Simulation Results

1) Video Quality: In our first experiment, we compare the

performance of the SSA algorithm versus the optimum algo-

rithm in terms of video quality. We perform this comparison

over a period of 100 consecutive scheduling instances. We

keep the receiver buffer size fixed at 512kb, the scheduling

window size at 1 sec and vary the number of streams from

10 to 50. The results shown in Figure 5a show that our

SSA algorithm produces near optimal solutions, which are

less than 1dB from the absolute optimal solutions computed

using optimization software GLPK [20]. We also observe that

the proposed SSA algorithm scales well when the number of

streams increase. In another experiment we keep the number

of streams fixed at 20 and vary the scheduling window

from 1 to 10 sec. As we can see from the results of this

experiment in Figure 5b, the solution quality improves as the

scheduling window grows. These two experiments show that

our algorithm produces close to optimal results and it scales

well, which means that it can support large scale WiMAX

streaming services.

2) Time Efficiency: We evaluate the running time of our

algorithms by changing the problem size in two ways. First

we keep the scheduling window capacity fixed and increase



10 20 30 40 50
30

32

34

36

38

40

Number of Streams

A
ve

ra
ge

Q
u
al

it
y

(d
B

)

 

 

OPT
SSA

(a) Fixed window size at 1 sec

2 4 6 8 10
30

32

34

36

38

40

Sceduling Window (sec)

A
ve

ra
ge

Q
u
al

it
y

(d
B

)

 

 

OPT

SSA

(b) Fixed number of streams at 20

Fig. 5. Near optimality of the solutions obtained by the SSA algorithm.

10 20 30 40 50
0

200

400

600

800

Number of Streams

E
x
ec

u
ti

on
T

im
e

(m
se

c)

 

 

OPT

SSA(0.005)

SSA(0.01)

(a) Fixed window size at 1 sec

2 4 6 8 10
0

200

400

600

800

Scheduling Window (sec)

E
x
ec

u
ti

on
T

im
e

(m
se

c)

 

 

OPT

SSA(0.01)

(b) Fixed number of streams at 20

Fig. 6. Running time of the SSA and the optimal algorithms.

the number of streams. In a second experiment we keep the

number of streams fixed and increase the scheduling window.

We compare the execution times of our algorithms to that of

the optimum. For deriving the optimum solution we first use

the GLPK LP solver [20] to determine the substreams that can

be scheduled and then sequence the frames within a scheduling

window in a weighted round robin manner. For the SSA

algorithm, we compute the running time with error parameters

ε = 0.01 and ε = 0.005. For a one second scheduling window

we vary the number of streams from 10 to 50 and observe their

asymptotic behavior. The execution times of these algorithms

are measured on a computer with 1.6GHz dual-core processor

and 1GB of memory. The results of the first experiment are

shown in Figure 6a. As expected, computing the optimum

solution using GLPK takes much longer as the number of

streams grow. The SSA algorithm runs well within the time

window even as the problem instance sizes grow. For the

second experiment we keep the number of streams fixed at

20 and vary the scheduling window size from 1 sec to 10

sec. From the results of the second experiment, depicted in

Figure 6b, we can see that the SSA algorithm scales efficiently

with increase in window size. For real time operation, the

algorithm needs to compute the solution within the scheduling

window duration. From Figure 6b, we see that with every one

second increment in the scheduling window size the execution

time increases by only a few milliseconds. This shows that the

SSA algorithm scales well for large problem instances under

real-time constraints.

3) Resource Utilization and Buffer Validation: Next, we

evaluate the resource utilization of the SSA algorithm in

terms of the scheduling window capacity used. Let the total

schedulable data capacity of a scheduling window be PF .

If {r̄1, . . . , r̄S} are the data rates of the chosen substreams,

the total data sent in the schedule is ∑Pτr̄s. The capacity

utilization is then given by
∑Pτr̄s

PF
. As seen in Figure 7a,

the resource utilization of the SSA algorithm remains close

to optimal for different scheduling window capacity sizes.

Finally, we verify that the buffer conditions are satisfied by

the SSA algorithm. That is, we check if the SSA algorithm

causes any buffer overflow or underflow. We found neither

overflow nor underflow occurrences for any of the streams. In

Figure 7b, we display the buffer level dynamics of subscribers

receiving the stream Foreman for 300 consecutive scheduling

windows, which show that the buffer level never exceeds

500kb, that is, there are no overflow instances. It also shows

the the buffer level never goes below zero, which means there



20 40 60 80
50

60

70

80

90

100

Scheduling Window Capacity (Mb)

U
ti

li
za

ti
on

(%
)

 

 

OPT

SSA

(a) Resource utilization

0 50 100 150 200 250 300
0

100

200

300

400

500

Time (sec)

P
la

y
b
ac

k
B

u
ff
er

L
ev

el
(k

b
)

(b) Receiver buffer dynamics

Fig. 7. Performance of the SSA Algorithm in terms of resource utilization and receiver buffer dynamics.

are no underflow instances. Similar results were obtained for

subscribers receiving other video streams.

VI. CONCLUSION AND FUTURE WORK

We studied a framework for disseminating scalable video

streams over mobile WiMAX networks. We mathematically

analyzed the problem of selecting the optimal substreams of

scalable video streams under bandwidth constraints. Solving

this problem is important because it enables the network

operator to transmit higher quality video or more number of

video streams at the same capacity. We showed that substream

selection problem in presence of bandwidth limitation is NP-

Complete. We proposed a novel approximation algorithm for

this problem. We proved that our algorithm has a small

approximation factor of (1− ε), and it has a time complexity

of O(
nL

ε
), where n = O(∑L) is the total number of layers,

and L is maximum number of layers in a scalable stream.

We implemented and validated our algorithm in a simulation

setup and studied the impact of a wide range of parameters

using multiple video traces. Our simulation results show that

the approximation factor of the proposed algorithm is very

close to one for practical scenarios. We also verified that our

algorithm can run in real time and that it scales well to larger

scheduling problems.

The work in this paper can be extended in different direc-

tions. For example, we are currently extending our algorithm to

consider the battery constraints of mobile receivers such that,

the produced solution not only optimize the video quality but

also minimize the energy consumed by mobile receivers.

REFERENCES

[1] “IEEE 802.16 : Broadband Wireless Metropolitan Area Network ,” 2009,
http://standards.ieee.org/getieee802/802.16.html.

[2] “Yota Mobile WiMAX,” 2009, http://www.yota.ru/en/info/main/.

[3] “UDCAST WiMAX TV,” 2009, http://www.udcast.com/products/
udcast wimax tv products.htm.

[4] P. Hosein, “Broadcasting VBR traffic in a WiMAX network,” in Proc.

of IEEE Vehicular Technology Conference (VTC’08), Calgary, Canada,
September 2008, pp. 1–5.

[5] J. Wang, M. Venkatachalam, and Y. Fang, “System architecture and
cross-layer optimization of video broadcast over WiMAX,” IEEE Jour-

nal on Selected Areas in Communications, vol. 25, no. 4, pp. 712–721,
May 2007.

[6] R. Cohen, L. Katzir, and R. Rizzi, “On the trade-off between energy
and multicast efficiency in 802.16e-like mobile networks,” IEEE Trans-

actions on Mobile Computing, vol. 7, no. 3, pp. 346–357, March 2008.
[7] H. Juan, H. Huang, C. Huang, and T. Chiang, “Scalable video streaming

over mobile WiMAX,” in Proc. of International Symposium on Circuits

and Systems, New Orleans, LA, May 2007, pp. 3463–3466.
[8] V. Reguant, F. Prats, R. de Pozuelo, F. Margalef, and G. Ubiergo,

“Delivery of H.264 SVC/MDC streams over WiMAX and DVB-T
networks,” in IEEE International Symposium on Consumer Electronics

(ISCE’08), Algarve, Portugal, April 2008, pp. 1–4.
[9] M. Garey and D. Johnson, Computers and Intractability: A guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.
[10] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of

the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, July
2003.

[11] E. Lin, “A bibliographical survey on some well-known non-standard
knapsack problems,” Information Systems and Operation Research,
vol. 36, pp. 274–317, November 1998.

[12] M. Bansal and V. Venkaiah, “Improved fully polynomial time ap-
proximation scheme for the 0-1 multiple-choice knapsack problem,”
International Institute of Information Technology, Tech. Rep., February
2004, available online at http://www.iiit.net/cgi-bin/techreports/display
detail.cgi?id=IIIT/TR/2004/3.

[13] A. Sinha and A. Zoltners, “The multiple-choice knapsack problem,”
Operations Research, vol. 27, no. 3, pp. 503–515, June 1979.

[14] E. Zemel, “An O(n) Algorithm for the linear multiple choice knapsack
problem and related problems,” Information Processing Letters, vol. 18,
no. 3, pp. 123–128, March 1984.

[15] P. Hosein and T. Gopal, “Radio resource management for broadcast
services in OFDMA-based networks,” in Proc. of IEEE International

Conference on Communications Workshops, Beijing, China, May 2008,
pp. 271–275.

[16] V. Geert, P. David, M. Reisslein, and L. Karam, “Traffic and quality
characterization of the H.264/AVC scalable video coding extension,”
Advances in MultiMedia, vol. 2008, no. 2, pp. 1–27, January 2008.

[17] D. Gray, “Mobile WiMAX Part I - Overview and Perfor-
mance,” WiMAX Forum, White Paper, August 2006, available on-
line at www.wimaxforum.org/technology/downloads/Mobile WiMAX
Part1 Overview and Performance.pdf.

[18] “Arizona State University: Video Traces Research Group,” 2009, http:
//trace.eas.asu.edu.

[19] “H.264 AVC/SVC Reference Software,” 2009, http://ip.hhi.de/
imagecom G1/savce/downloads/SVC-Reference-Software.htm.

[20] “GNU Linear Programming Kit,” 2009, http://www.gnu.org/software/
glpk/glpk.html.


