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Abstract—We study and analyze segment transmission schedul-
ing algorithms in swarm-based peer-to-peer (P2P) streaming
systems. These scheduling algorithms are responsible for co-
ordinating the streaming of video data from multiple senders
to a receiver in each streaming session. Although scheduling
algorithms directly impact the user-perceived visual quality in
streaming sessions, they have not been rigorously analyzed in
the literature. In this paper, we first conduct an extensive
experimental study to evaluate various scheduling algorithms on
many PlanetLab nodes distributed all over the world. We study
three important performance metrics: (i) continuity index which
captures the smoothness of the video playback, (ii) load balancing
index which indicates how the load is spread across sending
peers, and (iii) buffering delay required to ensure continuous
playback. Our experimental analysis reveals the strengths and
weaknesses of each scheduling algorithm, and provides insights
for developing better ones in order to improve the overall
performance of P2P streaming systems. Then, we propose a new
scheduling algorithm called On-time Delivery of VBR streams
(ODV). Our experiments show that the proposed scheduling
algorithm improves the playback quality by increasing the
continuity index, requires smaller buffering delays, and achieves
more balanced load distribution across peers.

Keywords-peer-to-peer streaming, segment scheduling, multi-
sender transmission

I. INTRODUCTION

Many peer-to-peer (P2P) streaming systems have been pro-

posed in the literature and deployed in real life [1]. Among

these systems, mesh-based (also known as swarm-based) sys-

tems are simpler to implement [2] and more widely used in

practice; examples of such systems include CoolStreaming

[3] and PPLive [4]. Mesh-based systems also adapt better to

network dynamics, lead to better perceived quality [5], and

incur lower maintenance overhead. The goal of this paper is

to further improve the performance of mesh-based streaming

systems. Such systems typically have several main components

for overlay management, allocation of seed server resources,

peer selection for forming swarms, and coordination of senders

in each streaming session. We focus on studying and opti-

mizing the scheduling algorithms responsible for coordinating

multiple senders in streaming sessions.

In particular, in mesh-based systems, a video stream is parti-

tioned into small segments, and segments are transmitted from

multiple senders to a receiver. The receiver uses a segment

scheduling algorithm to compute the transmission schedule

for each sender. The schedule specifies which segments to

send and their transmission times. The scheduling algorithm

is an important component that directly impacts the user-

perceived visual quality in the streaming session [6]. Despite

the importance of segment scheduling algorithms, they have

not been rigorously analyzed in the literature. For example,

works such as [7], [8] only use simulations to evaluate the

scheduling algorithms. Simulations, although useful for pre-

liminary analysis, may abstract away many important practical

details.

In this paper, we conduct extensive experimental study

to evaluate various scheduling algorithms in the literature.

We isolate the scheduling algorithm from the whole P2P

streaming system and highlight its impact on the overall

system performance. We implement the three most common

scheduling algorithms in a streaming prototype and we deploy

our prototype on more than 70 PlanetLab nodes distributed all

over the world. We use actual video streams with diverse visual

content, motion complexities, number of frames, and bit rates

in the experiments. We study three important performance

metrics: (i) continuity index which captures the smoothness of

the video playback, (ii) load balancing index which indicates

how the load is spread across sending peers, and (iii) buffering

delay required to ensure continuous playback. Our analysis

provides insights on the functioning of scheduling algorithms,

and highlights the strengths and weaknesses of each algorithm.

This is useful for other researchers working on optimizing the

performance of P2P streaming systems.

Based on our analysis, we propose a new scheduling al-

gorithm, which we call On-time Delivery of VBR streams

(ODV). A key feature of the proposed algorithm is that it

considers the variability in the bit rates of encoded video

streams, which is more realistic as most encoded videos have

variable bit rates (VBR) because of the different compression

methods used for different frame types and the diverse vi-

sual complexities of video frames. That is, unlike previous

scheduling algorithms that typically assume segments have

fixed size computed using the average bit rate of the video

stream, our algorithm allows scheduling of video segments

with variable sizes. Our experimental results show that the

proposed ODV scheduling algorithm improves the playback

quality by increasing the continuity index, requires smaller

buffering delays, and achieves more balanced load distribution



across peers.

The rest of this paper is organized as follows. We summarize

the related work in Section II. In Section III, we describe

our experimental setup. We analyze the current scheduling

algorithms in Section IV, and we present the new algorithm

in Section V. We evaluate and compare the performance of

all scheduling algorithms in Section VI, and we conclude the

paper in Section VII.

II. RELATED WORK

A recent measurement study on PPLive [4] reports that

users suffer from long start-up delays and playout lags, and

suggests that better segment scheduling algorithms are needed

[6]. The main goals of scheduling algorithms in P2P streaming

systems are to achieve a target quality of service and balance

the load on peers. Constructing optimal segment schedules

to maximize the video quality, however, is computationally

complex (NP-Complete) and therefore, many P2P streaming

systems, such as [3], [9], [10], resort to heuristic algorithms for

segment scheduling. The authors of [9] propose to randomly

schedule segment transmission. The authors of [3] assume that

segments with fewer potential senders are more likely to miss

their deadlines, and propose to schedule the segments with

fewer potential senders earlier. The authors of [10] describe a

weighted round-robin algorithm based on senders’ bandwidth.

Unlike our algorithm, none of these algorithms considers the

segment scheduling problem with VBR video streams. We

analyze and compare our proposed algorithm against the ones

in [3], [9].

The authors of [11] formulate an optimization problem

to maximize the perceived quality, and they solve it using

an iterative descent algorithm. The authors of [12] define a

utility for each segment as a function of the rarity, which

is the number of potential senders of this segment, and the

urgency, which is the time difference between the current time

and the deadline of this segment. They then transform the

segment scheduling problem into a min-cost flow problem.

These algorithms, however, are computationally expensive and

can not be used in real-time streaming systems in which peers

typically have limited resources to solve these optimization

problems. Therefore, we do not consider these algorithms

further in this paper.

Several other works are also related to the segment schedul-

ing problem, but they do not directly solve it. The authors of

[2] propose using network coding to bypass the scheduling

problem among small blocks belonging to the same relatively

large segment. However, employing network coding may im-

pose higher processing overhead on peers, which may require

special hardware to speed the decoding process [13], and is not

easy to deploy. Finally, several segment scheduling algorithms,

such as [14], have been proposed for tree-based systems. They

are, however, not applicable to mesh-based systems, in which

peers have no knowledge on the global network topology.

III. EXPERIMENTAL SETUP

We conduct performance analysis and comparison of dif-

ferent segment transmission algorithms on the PlanetLab wide

area testbed.

Our experiments involved approximately 70 different Plan-

etLab nodes, which were uniformly spread throughout North

and South Americas, Europe, Asia, and Australia. We divided

the PlanetLab nodes into 10 node groups and we conducted a

similar set of experiments within each node group. The nodes

within each group were selected to provide large geographical

distances between each other in order to stress the scheduling

algorithms. If we had used nodes very close to each other with

abundant bandwidth, all algorithms would likely yield similar

performance and we would not be able to uncover the unique

characteristics of each algorithm that would surface in realistic

resource-scarce environments.

We have implemented a prototype P2P streaming system,

in which we implemented all of the four segment scheduling

algorithms analyzed in this paper. Each active PlanetLab node

ran a copy of the prototype system, which was capable of

acting as a sender, a receiver, or both. We performed numerous

tests cases to rigorously evaluate the performance of each

algorithm. For every algorithm, we varied the number of

senders from 2 to 6. For each chosen number of senders,

we used a diverse set of five variable bit rate (VBR) video

streams, which we obtained from [15]. Table I summarizes

various characteristics of these video streams. As the table

shows, the chosen video streams have quite heterogeneous

visual content, bit rate, motion, number of frames, and file

size. This is done to create realistic evaluation scenarios. In

total, we had 25 test cases with different videos and number

of senders. Furthermore, every test case was repeated at 22

different PlanetLab nodes acting as receivers. Therefore, more

than 500 experiments were conducted on PlanetLab to evaluate

each of the four algorithms considered in this paper.

To manage such number of experiments, we designed an

administrative interface to control all nodes from a central

test driving application. The test driving application specifies

the test parameters, including: receiver node, sender nodes,

video stream, scheduling algorithm, segment duration, and

number of segments in a schedule. The test driving application

also collects detailed statistics and information about the

experiments, and it stores them in structured XML log files.

The collected data about each video session includes receiver

hostname, current bandwidth estimate, timestamp, segment

number, and segment length. This information is collected

after all segments in a schedule have been received. This

approach allows us to analyze all experimental data offline.

Once the test driving application specifies a receiver and

the required parameters, that receiver is instructed to manage

the streaming session. The receiver is responsible for invoking

the scheduling algorithm to create a schedule for the next

window of the requested video stream. The window size is

the number of segments that will be considered for the current

schedule. During our experiments, window sizes of 10, 20,



Video Name Size Frame Mean Bit
(MB) Count Rate (kbps)

South Park 26 30334 170

Alladin 200 89998 440

Starship Troopers 270 89998 600

Formula 1 190 44998 840

Soccer 500 89998 1100

TABLE I
VIDEO STREAMS USED IN THE EXPERIMENTS.

and 40 segments were used, and the segment size was set at 1

second. Once a schedule is created, the receiver node creates

a streaming session and each sender is delivered its respective

schedule, i.e., the segments it is expected to transmit. Once

a sender node receives a schedule, it creates a new thread

that handles the segment transmission. While the receiver

node is receiving media segments, the bandwidth estimates

for the sender nodes are updated. Once all the segments in the

requested schedule have been received or the segment window

has almost expired (for 1 second segments and a 20 segment

window size, this occurs after 20 seconds), a new schedule

is created and this process is repeated. The results captured

by the receiver are sent back to the test driver after every

completed schedule.

In all experiments, the same test was executed for all

scheduling algorithms one after another so that the network

conditions were as similar as possible for each algorithm’s

test run.

IV. ANALYSIS OF CURRENT ALGORITHMS

In this section, we briefly describe the key ideas of different

segment scheduling algorithms in the literature and used in

some deployed systems. We also qualitatively analyze these

algorithms and highlight the strengths and weaknesses of each.

In our analysis, we use example video sessions captured during

our experiments on PlanetLab. We note that we present only

sample examples to illustrate various aspects of each algo-

rithm. The extensive, quantitative, analysis and comparison of

all algorithms are presented in Sec. VI.

To analyze a given scheduling algorithm, we use what

we call schedule trace graph. This graph, see Fig. 1 for an

example, captures the impact of the scheduling algorithm on

the quality of video streaming sessions. The y-axis of the graph

represents the video time and the x-axis represents the data

offset in the video stream. The video playout is represented

by the red curve that traverses diagonally from the lower-

left corner of the graph. Since we use VBR videos in our

experiments, the slope of the playout curve can vary. If the

videos were CBR, this curve would have been a straight

line. The schedule trace graph also contains multiple short

horizontal lines. These lines are actually composed of data

points that represent video frames. Each video frame data

point indicates the sequence of that particular video frame

and the time that it arrives at the receiving peer. Since the

sender peers transmit segments that are composed of multiple

frames, we can see groups of frames arriving at the same

time, forming the short horizontal lines. The frames delivered

from different sender peers have different colors. The most

important piece of information represented by the schedule

trace graphs are the relative locations of the received video

frames and the playout line. All frames below the playout line

meet their deadlines whereas all frames above the playout line

miss their deadlines. Note that these schedule trace graphs

do not take the buffering delay into consideration. Buffering

delay would essentially move the playout line higher on the

graph, ideally into a position just above all the received video

frames. We assume no buffering delay in the schedule trace

graphs as we are more interested in the relative performance

of the scheduling algorithms and not the absolute values of

the continuity index.

We will only present a very small set of scheduling trace

graphs, because of the space limitations. We have created and

analyzed many such graphs for each algorithm.

A. Round-Robin (RR) Algorithm

In this basic scheduling algorithm, every consecutive seg-

ment is assigned to the next sender in the sender list. Once

we reach the end of the sender list, we start from the first

sender. We continue in this manner until all segments have

been assigned to a sender. Every sender will have the same

number of segments assigned and no preference is given

to any peer based on the bandwidth estimate, reliability, or

any other factors. The round-robin (RR) algorithm, or some

of its variants, is widely deployed because of its simplicity.

This algorithm does not take the network and peer conditions

into account, as it just equally spreads the transmission load

across all peers. Thus, it will likely yield inefficient schedules,

especially for heterogeneous network and peer conditions.

Although simple, the RR algorithm serves as a basis for

comparison against more sophisticated scheduling algorithms.

Let us now examine some streaming traces from our Plan-

etLab experiments. Fig. 1(a) shows a 3-sender trace where

the indiscriminate assignment to senders without considering

the bandwidth results in 1/3 of the segments missing their

deadlines. In order to compensate for all the late segments

delivered by peer 1, we would need to use a large buffering

delay. Also, if we consider the pattern of the frames sent by

peer 1 and compare it to the playout line, we see that they

have different shapes (or create lines with different slopes).

As such, we would need to increase the buffering delay by

a larger amount that would move the end of the playout line

over the last segment sent by peer 1.

B. Random Algorithm

In this scheduling algorithm, every segment is assigned to a

random sender from the sender list [9]. Similarly to the round

robin algorithm, no preference is given to any sender based on

bandwidth or reliability estimates. In most implementations,

the random seed is based on system time, resulting in pseudo-

random schedules. This algorithm is very simple and much

like the RR algorithm, it servers as a basis for comparison

against other scheduling algorithms. The main disadvantage
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Fig. 1. Analysis of the round-robin, random, and rarest first algorithms.

is that there is a low probability that the resulting assignment

will be anywhere close to an optimal schedule.

Let us now examine some streaming traces from PlanetLab

experiments. In Fig. 1(b) we can see a segment assignment

created by the random scheduler. Although it’s possible for a

random algorithm to come up with an efficient schedule, this

is not the case here. Fig. 1(b) shows an inefficient schedule

created by the random algorithm where the schedule assigns

most of the early segments to the slowest sender (peer 1),

resulting in all those segments missing their deadlines.

C. Rarest First (RF) Algorithm

The Rarest First (RF) scheduling algorithm is used in

several deployed P2P streaming systems, including the pop-

ular CoolStreaming/DONet system [3]. This algorithm first

calculates the number of potential suppliers for each segment

(i.e., the partners containing the segment in their buffers). The

assumption is that segments with fewer potential suppliers are

more difficult to meet deadline constraints and as such the

algorithm determines the supplier of each segment starting

from those with only one potential supplier, then those with

two, and so forth. In other words, the rarest segments get

scheduled first. If there is a segment with multiple potential

suppliers, the supplier with the highest bandwidth is selected

[3].

The main advantage of this algorithm is that it tends to

assign more segments to the fastest peers, which also tend to

be the most reliable peers. The disadvantage is that in many

cases this scheduler will reduce to streaming from a single

or a few peers even though there may be multiple partners

available. In large scale systems, this may lead to overloading

of fast peers. Also, this algorithm relies on the absolute

values of the bandwidth estimates when determining whether a

sender has enough available time to transmit a segment. Since

bandwidth estimates are rarely 100% accurate, algorithms that

rely on relative ratios of the bandwidth estimates instead of

absolute values tend to achieve better performance and create

better load sharing schedules. Another problem with relying

too much on the absolute bandwidth estimate is that abrupt

changes in bandwidth or congestion of the connections with

the fastest peers may result in many segments missing their

deadlines.

We show in Fig. 1(c) a trace collected from the PlanetLab

experiments that used the RF algorithm. As mentioned earlier,

one of the characteristics of the RF algorithm is that it

tends to overutilize the faster senders and underutilize the

slower ones. Relying on a few senders may not be ideal in

practical settings, since communication paths among peers

often dynamically change during a video session. Fig. 1(c)

shows an example case that suffered from this situation. At

the time of scheduling, peer 1 was the fastest sender and

it got assigned most segments. At run time, the network

communication got delayed and as a result many segments

missed their deadlines.

V. PROPOSED SCHEDULING ALGORITHM (ODV)

We propose a new segment scheduling algorithm, which we

call On-time Delivery of VBR streams (ODV). The goal of this

algorithm is to maximize the number of segments that meet

their deadlines by assigning them to peers that will deliver

them earlier. As demonstrated by our extensive evaluation in

Sec. VI, our algorithm leads to better user-perceived visual

quality, balances the loads across peers and efficiently utilizes

most of the available peers.

One of the key features of the proposed algorithm is

that it explicitly considers the inherent variability in the bit

rates of encoded video streams. In particular, it does not

assume that video segments with the same time duration have

necessarily the same byte size. This is more realistic as most

encoded videos have variable bit rates because of the different

compression methods used for different frame types as well as

the diverse visual complexities of video frames. This is unlike

most current scheduling algorithms, which estimate the size

of each segment by using the average bit rate of the video

stream.

To illustrate the importance of considering variable segment

sizes, we analyzed several video streams. A sample of our

results is shown in Fig. 2, where we plot the segment size

(in KB) for each 1-second video data. The horizontal line

represents the estimated segment size, which is based on

the computed average bit rate for the entire video stream.

The fluctuating curve represents the actual segment size. The
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Fig. 2. Variability of segment sizes in video streams (Aladdin video).

figure clearly shows the variability in segment sizes. Notice

that each segment contains all video frames (24–30) in the

corresponding 1-second period of the video, which include

different I, P, and B frames. The figure does not plot the sizes

of individual video frames, rather the sum of all of them in

1 second. In all instances where the actual segment sizes are

larger than the estimated constant size, the risk of inefficient

scheduling increases. This is because we could assume that,

for example, each 1-second segment is 55 KB whereas the

actual 1-second segments vary between 70 and 80 KB for a

particular piece of the video. So even if we have accurate

bandwidth estimates, the segment assignments will likely lead

to video frames missing their playback deadlines. On the

other hand, if the actual segment sizes are smaller than the

estimated constant size, the resources of the sender peers will

be underutilized because they will be idle for some time.

A high-level pseudo code of the proposed scheduling al-

gorithm is shown in Fig. 3. This algorithm is executed by

the receiver in a streaming session. The receiver collects

segment availability information from potential senders, which

is usually obtained by exchanging buffer maps among peers.

In addition to segment availability, the buffer maps include

the size of each segment. The segment size can easily be

computed by parsing the headers of the encoded video stream.

The segment sizes could also be stored in a small meta

file associated with the video. We notice that including the

segment size in the buffer maps adds negligible overhead

compared to the video traffic. For example, current scheduling

algorithms use at least one field to indicate the availability of

each segment. In our algorithm, we use the same field, but

include the size of the segment if it is available and zero

otherwise. A 2-byte field is sufficient to store the size of

the segment in our algorithm. For a scheduling window of

30 segments, i.e., 30 seconds of video data, segment sizes

need only 60 bytes which is indeed negligible compared to

the video data that is in order of, at least, several kilo bytes.

Our algorithm also estimates the bandwidth of each peer based

on the history of the connection between the receiver and that

peer.

After collecting the needed information for a scheduling

window, the algorithm computes the expected delivery time

ODV: On-time Delivery of VBR streams

1. for n = 1 to senderCount

2. foreach s in potentialSegments[n]

3. // segment s with n potential suppliers

4. ps = ∅ // selected sender

5. ted = Nmax // earliest delivery time

6. foreach p in suppliers[s]

7. // potential supplier peer p for segment s
8. tx = size(s) / bandwidth(p) // tx time

9. td = util(p) + tx // delivery time

10. if (td < ted)

11. ps = p
12. ted = td
13. end if

14. end for

15. util(ps) = util(ps) + (size(s) / bandwidth(ps))
16. assignSegment(s, ps)

17. end for

18. end for

Fig. 3. The proposed segment scheduling algorithm.

td for each segment s when it is assigned to each one of the

potential senders p. Then it chooses sender ps that will deliver

segment s at the earliest delivery time ted. In this assignment,

the algorithm begins with the segment that has the fewest

number of potential senders, similar to the RF algorithm.

However, unlike the RF algorithm, the ODV algorithm does

not simply select the sender with the highest bandwidth and

enough available time. Rather, the ODV algorithm considers

the current utilization of each peer, util(p), to estimate the

expected delivery time of each segment and achieve the

ultimate target of on-time delivery of video data. Thus, the

ODV algorithm may actually assign segments to slower peers

before fully saturating faster peers, if the slower peers will

deliver them earlier. Thus, the ODV algorithm also achieves

better load sharing by utilizing the slower senders.

We now examine some streaming traces from the PlanetLab

experiments to illustrate the ODV algorithm. In Figs. 4(a) and

4(b) we have two examples of efficient schedules created by

the ODV algorithm. The first thing we should notice is that

the ODV algorithm tends to use most (if not all) of the sender

peers when assigning segments. The fastest senders will still

get most of the segments but the slower senders will be utilized

much more than by the RF algorithm. Fig. 4(c) shows an

example of a failed schedule. Again, the communication with

another peer can sometimes get slower and/or delayed and that

is exactly what happened with peer 2. As a result there may be

some segments that miss their deadlines. This can be handled,

however, using different techniques such as buffering delay.

VI. EVALUATION

In this section, we conduct extensive evaluation and com-

parison of all segment scheduling algorithms described in this
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Fig. 4. Analysis of the proposed ODV algorithm first algorithm.
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Fig. 5. Continuity index of scheduling algorithms under different scenarios.

paper, including our proposed one. The experiments were

performed on the PlanetLab testbed and the setup of our

experiments is described in Sec. III. As detailed in that section,

we use diverse video streams, vary the number of senders, vary

the location of receivers, and consider four different scheduling

algorithms. For each algorithm, we conduct more than 500

different experiments and we report the average results.

We consider three important performance metrics: continu-

ity index, load balancing across peers, and buffering delay.

The continuity index captures an important angle of the

user-perceived video quality, which is the smoothness of the

rendered video streams. The continuity index is computed as

the number of video frames that arrive before their playback

deadlines over the total number of frames. Late or dropped

frames cause glitches in the video playback and may cause

the scene to be frozen. In our experiments, we used a reliable

transport layer (TCP) so that there are no lost frames–only

late frames.

The load balancing metric, referred to as the balance index,

attempts to describe the relative utilization of each sender peer

in a streaming session. We propose the following equation to

compute the balance index:

Balance Index = 1 −

P
∑

i=1

∣

∣

∣

∣

si

stotal

−

1

P

∣

∣

∣

∣

/biPmax, (1)

where si is the number of segments received from peer i,
stotal is the total number of segments received from all peers,

P is the total number of peers, and biPmax is the maximum

peer delivery ratio deviation for P senders.

Let us examine some of the terms in Eq. (1). The term

si/stotal is the ratio of segments delivered from peer i and

1/P is the ratio of segments delivered by any peer in a per-

fectly balanced scenario. The absolute value of the difference

between these terms measures the deviation of the segments

delivered by peer i from an ideally balanced delivery ratio. Let

us now turn our attention to Eq. (2) that describes the term

biPmax

biPmax =
P

∑

j=1

∣

∣

∣

∣

sj −
1

P

∣

∣

∣

∣

, (2)

where s1 = 1 and sk = 0 for 2 <= k <= P .

This term is essentially the sum of the peer delivery ratio

deviations from an ideally balanced delivery ratio in a scenario

where all segments have been delivered by one peer. When we

divide the sum of all peer deviations in Eq. (1) by the term

biPmax, we are essentially normalizing this sum’s value. We

subtract the result from Eq. (1) to indicate that high balance

index implies high load balancing and a low balance index

implies low load balancing. In other words, a balance index of

1.0 indicates that all peers contributed equally to the streaming

session, and a balance index of 0 indicates that all segments

were received from only one peer. Any value in between,

indicates an intermediate level of sender utilization.



The third performance metric is the buffering delay, which

is the time period required to preload some of the video

content in order to ensure that once playback begins it will

remain uninterrupted. In our experiments, we compare the

scheduling algorithms based on the amount of buffering delay

that are required to achieve a continuity index of 1.0, i.e.,

the buffering delay required to receive all video frames before

their deadlines.

Due to space limitations, we only present a small sample

of our results.

Results for Continuity Index. In Fig. 5, we plot the continuity

index computed for different scheduling algorithms using the

considered five video steams, which have the average bit rates

of 170, 440, 600, 840, and 1100 kbps. Different subfigures

represent different number of senders in each streaming ses-

sion. A few observations can be made on this figure. First, the

random and the round-robin algorithms have roughly the same

low continuity index. This is because they do not consider the

characteristics of peers and the network conditions in assigning

segments to senders. The performance of these algorithms gets

worse as the bit rate of the video increases. For example, in

Fig. 5(b), with four senders the continuity index is around 0.7

for videos with average bit rates of 840 kbps. This means that,

on average, 30% of the frames miss their playback deadlines

and the user-perceived quality will suffer significantly. As the

bit rate increases, the importance of the scheduling algorithm

becomes more apparent as there is more video data to be

transmitted.

The second observation on Fig. 5 is that our proposed ODV

algorithm consistently outperforms the rarest first algorithm.

For example, in Fig. 5(b), the ODV algorithm achieves a

continuity index of about 0.85 for high-quality video streams

(with bit rate of 1100 kbps) with four senders, while the rarest

first algorithm achieves only a continuity index of 0.7. In

addition, as shown by all three subfigures in Fig. 5, the gap

between our ODV algorithm and other algorithms increases

as the bit rate of the video increases, which is expected in

future P2P streaming systems as users continually demand

better quality and higher resolution videos. Therefore, our

proposed algorithm will yield even better performance for

future P2P streaming systems. The final observation on Fig. 5

is that increasing the number of senders generally improves

the continuity index, which is intuitive as more senders bring

in more streaming capacity.

Results for Load Balancing Index. A sample of our results

for the load balancing index of all algorithms is demonstrated

in Fig. 6. As expected, the figure shows that the round robin

and random algorithms achieve a high load balancing index,

which is almost one. This is because these algorithms make

all senders contribute equally without regard to the quality of

the streaming session or the capacity of the senders. While

the load balancing is a desirable property, it should not be

used to sacrifice the ultimate goal of achieving good streaming

quality. That is, a reasonable, not too skewed load balancing

index is acceptable as far as the quality is not compromised.

Fig. 6 shows that our proposed ODV algorithm significantly

improves the load balancing index beyond that of the rarest

first algorithm. The rarest first algorithm stresses the fast peers

too much by saturating them with segment requests first before

allocating any requests to slower peers. This results in a very

skewed load distribution on peers, which may discourage peers

from contributing resources. Our algorithm, on the other hand,

does not ignore slower peers and assign to them the segments

that they can deliver on time. This in turn reduces the load

on faster peers and results in more balanced load distribution

across all peers. Finally, from looking at the load balancing

index results in all subfigures, we can infer that this metric

is quite independent of the streaming bit rate and the number

of senders. The load balancing index is an intrinsic property

of the scheduling algorithm and it is not affected by the

experiment variables.

Results for Buffering Delay. Fig. 7 shows the effects of

the scheduling algorithms on the buffering delay required to

achieve smooth playback of the videos, again with different

number of senders and for various video streams. The figure

shows that the round-robin and random algorithms require

substantial buffering delays. On the other hand, the proposed

ODV and rarest first algorithms require much smaller buffering

delays, less than 10 seconds in all cases. The buffering delay

is decreased to below 3 seconds by increasing the number of

senders to six as shown in Fig. 7(c). The results in Fig. 7 also

show that our ODV algorithm always produces smaller or the

same buffering delay as the rarest first algorithm.

In summary, our proposed ODV scheduling algorithm im-

proves the playback quality by increasing the continuity index,

achieves more balanced load distribution across peers, and

requires small buffering delays.

VII. CONCLUSIONS

In this paper, we have experimentally analyzed three com-

mon segment transmission scheduling algorithms in P2P

streaming systems: round robin, random, and rarest first.

Our analysis was done by implementing a prototype P2P

streaming system and deploying it on more than 70 PlanetLab

nodes distributed all over the world. We conducted numerous

experiments with different video streams and number of sender

peers. We measured the continuity index, load balance index,

and buffering delay for all algorithms. Our analysis confirms

that the segment scheduling algorithms have a significant

impact on the user-perceived visual quality in P2P stream-

ing systems. Several lessons were drawn from our analysis.

For example, we showed that the rarest first algorithm may

overload fast sender peers while leaving the slower ones

underutilized, which may lead to small continuity index and

could also discourage peers from contributing resources to the

P2P streaming system.

In addition, we proposed a new segment transmission

scheduling algorithm, which we call On-time Delivery of VBR

streams (ODV). ODV considers the variability nature of video

streams, and tries to maximize the number of segments that

meet their deadlines by assigning them to peers that will

deliver them earlier. Our extensive PlanetLab experiments
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Fig. 6. Load balancing index of scheduling algorithms under different scenarios.
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Fig. 7. Buffering delay of scheduling algorithms under different scenarios.

showed that ODV results in a continuity index that is 35—

40% higher than round-robin and random algorithms, and

20—25% higher than the rarest first algorithm. Our results

also show that the buffering delay for ODV is only up to

8% of the time required for the round-robin and random

algorithms, and, on average, is about 40% of the rarest first

algorithm. Furthermore, the ODV algorithm achieves much

better load balancing index than the rarest first algorithm:

up to 5 times improvement is observed in our experiments.

Therefore, our proposed ODV algorithm not only provides

better video quality, but also yields more efficient utilization

of the peers’ resources.
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