
Joint Content Distribution and Traffic Engineering
of Adaptive Videos in Telco-CDNs

Khaled Diab
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Abstract—Telco-CDNs refer to content distribution networks
deployed and managed by Internet Service Providers (ISPs).
They are getting popular among major ISPs because they offer
new revenue streams and have the potential of providing better
performance compared to traditional CDNs. Managing telco-
CDNs is, however, a complex problem, because it requires
jointly managing the network resources (links and switches)
and the caching resources (processing and storage capacities),
while supporting the adaptive nature and skewed popularity
of multimedia content. To address this problem, we present a
new algorithm called CAD (Cooperative Active Distribution),
which strives to serve as much as possible of the requested
multimedia objects within the ISP while carefully engineering the
traffic paths through the network. This is achieved by enabling
the cooperation among caches within the ISP not only to serve
various representations of multimedia objects, but also to create
them on demand using the available processing capacity of
caches. We have implemented CAD and evaluated it on top of a
network emulator that runs deployment code and processes real
traffic. Using an actual ISP topology, our experimental results
show that CAD achieves substantial performance improvements
compared to the closest work in the literature, e.g., up to 64%
reduction in the total inter-domain traffic.

I. INTRODUCTION

The amount of multimedia traffic distributed over the Inter-
net has been increasing at high rates in the past several years
[1]. Content Delivery Networks (CDNs) have played a critical
role in supporting this increasing demand. Current CDNs, e.g.,
[2], replicate content at different caching locations and direct
users to the closet/best location based on various factors such
as geographical distance, end-to-end latency, and traffic load
at different locations.

To improve user-perceived quality, current CDNs often infer
network conditions inside ISPs through complex measurement
methods [2], [3]. However, CDNs cannot control the traffic
flows and what paths they take inside ISP networks, which
ultimately carry the actual traffic. CDNs may not even pre-
cisely know the underlying network topology and the current
traffic situation on links and switches in the ISP network.1

Thus, decisions made by CDNs may negatively impact the
load on various links in the ISP networks [7], especially links
between different network domains (called inter-ISP links),

1Although there are tools for inferring ISP topologies [4] and estimating
network traffic [5], [6], they are, in general, quite expensive and cannot be
used for obtaining accurate information about large-scale ISPs in real-time.

which are costly [8]. This may trigger ISPs to adjust traffic
routing inside their networks, which in turn, could impact
the performance of CDNs. To reduce the mis-match between
the goals of CDNs and ISPs, multiple ISP-CDN collaboration
models have been proposed, from defining interfaces that ISP
and CDN can use to share information [9], to allowing content
providers to deploy caches within ISPs (e.g., Netflix OpenCon-
nect [10]). While useful, these approaches can only provide
partial solutions. For example, OpenConnect caches [10] can
provide local access to popular content within the ISP, but they
cannot control the network paths taken to carry the multimedia
sessions.

The difficulties of enabling ISP-CDN collaboration and the
potential business opportunities motivated major ISPs, e.g.,
AT&T, to deploy and manage CDNs inside their networks [11],
[12]. Such CDNs are referred to as telco-CDNs. Telco-CDNs
offer unprecedented opportunities for optimizing the delivery
of multimedia content, because not only can they jointly
leverage the up-to-date information about the underlying ISP
network and the characteristics of the multimedia objects,
but they can also choose the appropriate paths for different
sessions and configure the network to enforce these decisions.
Managing telco-CDNs is, however, a complex task, because it
requires concurrently managing resources at the network layer
(traffic engineering (TE)) and system layer (processing and
storage capacities of caches), while supporting the adaptive
nature and skewed popularity of multimedia content.

In this paper, we propose a comprehensive solution to
efficiently solve the resource management problem in the
emerging telco-CDNs, which we refer to as CAD (short for
Cooperative Active Distribution). CAD has two goals: (i)
reducing the cost incurred by ISPs, and (ii) improving the
quality of multimedia sessions by reducing end-to-end latency.
CAD achieves these goals by serving as much as possible of
the multimedia traffic locally within the ISP, while carefully
engineering the traffic paths to avoid creating bottlenecks in
the network. CAD can significantly improve the performance
of multimedia streaming systems in scenarios where ISPs and
content providers cooperate (e.g., Netflix OpenConnect [10]),
and when ISPs own their streaming services such as AT&T U-
Verse and Bell Canada. Both scenarios are increasingly seeing
wider adoption and deployment in practice.

We present multiple novel ideas in CAD, and we believe that



each of them can be beneficial in its own right. For example,
we consider the fine-grained caching of multimedia objects.
In particular, in current streaming systems, e.g., Netflix, a
multimedia object is transcoded into multiple forms of quali-
ties/resolutions/formats (referred to as representations) in order
to support a wide-range of users with heterogeneous devices
and dynamic network conditions. Instead of considering the
popularity at the level of multimedia objects, we account for
the popularity of individual representations of each object.
This is important as some representations are requested much
less than others, e.g., a representation customized for uncom-
mon display or rare network condition. In addition, major ISPs
deploy storage infrastructures and general-purpose multi-core
servers inside their networks [3]. We leverage this processing
power in creating some representations on demand, instead of
pre-creating and storing all of them. This can save inter-ISP
bandwidth, as a requested representation that is not locally
stored can be created by transcoding another representation
instead of having to fetch it from outside the ISP. This,
however, needs to be done carefully so that the additional delay
introduced by the on-demand creation of representations does
not exceed a predefined threshold. Another novel aspect of our
solution is that it enables the cooperation among caches within
the ISP not only to serve representations, but also to create
them on demand. Finally, we consider the active creation and
cooperative serving of representations in the computation of
the traffic paths in the network.

We have implemented CAD and evaluated it on top of
Mininet [13], which processes and carries real traffic. We
implemented caching servers that stream multimedia content
using the widely-used DASH protocol [14]. We used virtual
switches to realize the TE aspects of CAD, which are enforced
using SDN (Software-defined Networking) rules. We used
an actual ISP topology and conducted extensive experiments
to assess the performance of CAD and compare it against
the closest work in the literature [15]. Our results show
substantial improvements across multiple performance metrics.
For example, CAD achieves up to 64% reduction in the inter-
domain traffic and 14% improvement in the buffer occupancy
(i.e., number of buffered segments) at clients compared to the
algorithm in [15]. The buffer occupancy indicates a better qual-
ity of experience (QoE) for users in adaptive streaming [16].
Our results also show that CAD does not overload the intra-
domain links. This ensures the stability of the inter-domain
routing policies employed by the ISP [17].

II. RELATED WORK

We summarize the relevant works in the following.
ISP–CDN Collaboration: Most current CDNs are run

independently from ISPs that own and operate the underlying
networks. Thus, such CDNs may not have access to accurate
and current information about the network topology and traffic
conditions [2], [9]. This may result in higher costs and
lower performance for both the CDN and ISP. To overcome
these problems, works such as NetPaaS [9] enable ISP-CDN
collaboration. These works focus on information sharing. In

contrast, CAD jointly solves the content distribution and TE
problems, which is a more challenging problem due to the
heterogeneity of content and its popularity.

Major content providers impose significant load on ISP
networks. For example, IX Australia reported peering traffic
increase by 100% for some ISPs in Australia because of
the high demand of streaming Netflix videos.2 To partially
mitigate this high load, Netflix started installing caches inside
ISPs and deploying peering links to Internet eXchange Points
(IXPs). Similarly, the Streaming Video Alliance has recently
started trials to bring caching servers to ISP networks [18].
Unlike CAD, most of these caches work independently, and
they cannot control the network paths taken by streaming
sessions within the ISP.

Joint Caching and TE: Xie et al. [19] formulated the TE-
guided collaborative caching (TECC) problem for in-network
caching systems. TECC only calculates the amount of traffic
for every source-destination pair along a direct path. CAD,
however, supports multipath routing, and calculates network
paths for every source-destination-video tuple. Unlike TECC,
CAD utilizes the processing power at caching sites and the
relationship between representations to create some of them on
demand. Jiang et al. [20] developed a collaboration mechanism
between ISPs and content providers to coordinate the TE and
server selection, assuming that the content is already placed
at caching servers.

Telco-CDNs: Telco-CDNs share the vision of the recent
proposal in [21], which allows content providers to reach
inside ISPs and control their own traffic flows through net-
work virtualization to optimize the user experience. The work
in [21], however, only outlines the vision and its potential, but
it does not provide algorithmic solutions to manage caching
resources and network traffic. Li and Simon [22] proposed a
push-based approach to manage telco-CDNs, but it does not
manage the network resources. Zhou et al. [23] proposed an
algorithm to maximize the number of live streaming sessions
served with the lowest bandwidth in telco-CDNs. In contrast,
CAD manages telco-CDNs to support on-demand streaming.

Online Transcoding Systems: Cloud transcoding systems
have emerged to create video representations on demand.
Gao et al. [24] jointly scheduled transcoding tasks and provi-
sioned computation resources to maximize revenue and satisfy
user requirements. Krishnappa et al. [25] proposed an online
transcoding system for CDNs. Ma et al. [26] built a transcod-
ing time estimator and integrated it with task scheduler to
reduce transcoding completion time. These systems do not
consider cooperation between servers nor do they support TE.

In summary, unlike previous systems from industry and
academia, CAD simultaneously considers: (1) the joint opti-
mization of caching resources and the engineering of traffic
paths in the network to serve adaptive multimedia content,
(2) the available processing capacity at caches to create video
representations on-demand, and (3) the cooperation among
caches to serve and create video representations on demand.

2http://bit.ly/2htgP4b



III. SYSTEM MODELS AND PROBLEM DEFINITION

A. Multimedia Content Model

We consider multimedia objects served using adaptive
streaming protocols, such as DASH [14], to support heteroge-
neous clients and accommodate dynamic network conditions.
In this model, a multimedia object (e.g., video) is encoded
in multiple representations based on several factors, including
available bandwidth, screen resolution, screen type, and media
player. All representations are created from the original copy,
which is referred to as the master representation. Each repre-
sentation is divided into equal-length segments in the order of
one to a few seconds. In most current CDNs, all representa-
tions are pre-created and stored before starting the distribution
process. In the proposed telco-CDN, we create some of the
representations on demand inside the ISP, which can be done
given the target environment for CAD is telco-CDN where the
content and the network resources are managed/owned by the
same entity (or cooperating entities).

In addition, representations of the same multimedia objects
may have different popularity. For example, a representation
customized for uncommon network conditions will see fewer
client requests compared to a representation customized for
typical network conditions. CAD considers the popularity
of individual representations, which provides more room for
optimizations compared to the current model of considering
the popularity of a multimedia object without accounting for
the relative importance of its various representations. The
popularity of a representation is defined in terms of the number
of requests for that representation during the previous periods.

In the current and widely deployed DASH protocol, each
client dynamically chooses the most suitable representation
based on the rendering device characteristics and network
conditions. CAD does not change the client adaptation method,
nor does it require any modifications to the DASH protocol.
Rather, CAD efficiently manages the telco-CDN such that
clients obtain the requested objects with shorter latency from
local caches through carefully-engineered network paths. This
may indirectly enable the client adaptation method to request
better quality representations and improve the QoE for users.

B. Telco-CDN Model

A simplified view of the considered telco-CDN is illustrated
in Figure 1, where an ISP deploys caching servers at different
sites to serve multimedia objects to clients with short latency,
while minimizing the traffic load on inter-ISP links. The telco-
CDN is managed by the proposed CAD (Cooperative Active
Distribution) algorithm, which runs on a server within the
ISP. The multimedia objects are provided by content providers
interested in the delivery services offered by the telco-CDN.
Content providers encode each multimedia object in multiple
representations. The expected demand for each representation
is estimated using predictive techniques such as [27], [28],
and can be performed either by the telco-CDN or the content
provider. We do not address demand estimation methods
in this paper; our proposed CAD algorithm can work with

Users

SDN routers

Caching Sites

CAD

Internet

Content Provider

TE
Ru
les

Distribution
Plan

Inter-ISPLink

Fig. 1: A simplified view of the proposed CAD to manage
telco-CDNs. CAD reduces the load on inter-ISP links and
shortens the latency perceived by clients.

any demand estimation method. We design CAD to augment
streaming systems where the demand of multimedia objects
can be estimated. For example, Netflix and Hulu may estimate
content demands based on its release cycles. Note that these
systems are increasingly attracting viewership, and they have
agreements with major ISPs. Extending CAD to work in user-
generated video streaming systems is left as a future work.

The design of CAD is motivated by the deployment of
microdatacenters by major ISPs [3]. Caches in CAD are active
and cooperative. They are active because they can create video
representations using their own processing capacity, provided
that the time to create these representations does not exceed
a predefined threshold latency L seconds. The cooperative
aspect of CAD allows one cache to fetch a requested rep-
resentation from another, provided that appropriate network
paths can be found to support the requested session. If a
representation cannot be served from caches within the ISP, it
will be requested from the content provider. This is all done
transparently to end users.

C. Problem Definition

We consider a multi-region ISP operating a telco-CDN,
which is modeled as a graph (S,E), where S represents
caching sites and E represents links between the sites. Each
caching site s ∈ S has one or more servers with aggregate stor-
age capacity b[s] bits and processing capacity p[s] cycles/sec.
Each link e ∈ E has a capacity of c[e] bits/sec. The set of
multimedia objects (videos) is denoted by V, where each video
v ∈ V has up to R representations. The popularity (or demand)
of a video representation r at caching site s is denoted by
d[s][r] bits/sec.

The problem we address in this paper is to serve user
requests from the telco-CDN by allocating the storage and
processing resources at each caching site to the different video
representations as well as directing the traffic flows of the
video sessions through the ISP network such that the cost
incurred by the telco-CDN is minimized (in terms of the
amount of inter-ISP traffic) and the user-perceived quality is
optimized (in terms of end-to-end latency). We divide this



problem into two sub problems: creating distribution plan
(referred to as DP) and deciding the network paths for the
video sessions (referred to as TE). The DP sub-problem
determines for each caching site which video representations
to store locally so that they can readily be served to clients
near to that site, and for the remaining video representations
which ones to: (i) create on demand, (ii) fetch from another
caching site within the ISP, or (iii) fetch from the origin server.
The TE sub-problem computes network paths through the ISP
to minimize the maximum link utilization (MLU) inside the
ISP network. With few modifications to the proposed solution,
other TE objectives can be plugged into the proposed system.

IV. PROPOSED SOLUTION

A. Overview

The proposed CAD algorithm jointly solves the DP and TE
sub-problems. At high level, CAD runs periodically on a server
inside the ISP. The period is a configurable parameter and can
range from tens of minutes to several hours. In each period,
CAD uses information about the popularity of various video
representations and available resources inside the ISP (CPU
cycles, storage, and available bandwidth on different links)
to compute the distribution plan for all video representations.
The distribution plan specifies for each caching site which
video representation to store, create on demand, fetch from
other caching sites, or fetch from the origin server. During
the computation of the distribution plan, CAD considers the
available bandwidth in the calculation and it specifies the
network paths within the ISP to be taken to serve each video
session, that is, it also solves the TE sub-problem while solving
the DP sub-problem.

CAD produces two outputs: distribution plan and traffic
engineering rules. The distribution plan is sent to the caching
sites so that each server knows what to do upon receiving a
user request. The traffic engineering rules are SDN rules that
are sent to routers in the ISP network so that they can enforce
the decisions made by CAD. The actual video sessions are
created only when users submit requests. When a user submits
a request for a video representation, the request is directed to
the caching site nearest to the user, using methods commonly
used in current CDNs such as DNS re-direction. Using the
pre-computed distribution plan, the caching site can handle the
user request locally, from other caches, or from origin server.

Jointly computing the distribution plan and TE rules of
CAD is challenging. Specifically, representations are hetero-
geneous in terms of popularity, and storage and processing
requirements. For example, creating a popular representation
on-demand that has low processing requirements may result in
service delays. In addition, cooperative and active distribution
results in traffic inside the ISP network that needs to be
routed efficiently. Moreover, single path routing may result in
congestion at links inside the network. Finally, CAD should
compute the distribution plan and TE rules in a timely manner.

We introduce multiple ideas to address these challenges.
CAD computes for each representation a value that captures
its importance based on its popularity, storage and processing

Algorithm 1 CAD: Calculate D and T
Input: T: ISP network topology
Input: d[s][r]: demand for representation r at caching site s
Output: D: distribution plan
Output: T : traffic engineering rules
Initialization:

1. Calculate rep. value per site, and add it to V [s]
2. Sort all representations in V [s] by their values, ∀s ∈ S
3. Iterate over all sites s ∈ S and representations in V [s]

If size(V [s][i]) ≤ b[s]:
D[s][i].status = stored,
sites[r].append(s),
b[s] -= size(r); last stored(s) = i

4. γcurrent = 0 // Current MLU is set to zero
5. F = {} // Aggregate traffic map

1: for (s ∈ S) do
2: for (i =last stored(s)+1 ; i < rep count; i++) do
3: r = V [s][i]
4: Construct sub-network T′

5: f = FINDPATHS(s, d[s][r],T′, sites[r])
6: c = CREATEREPAT(s, r)
7: decision = min(f, c) // either f or c based on MLU
8: if (decision) then
9: γcurrent = decision.γ

10: UPDATEDPANDTE(r, decision, F )

11: T = CALCTERULES(F )
12: return D and T

requirements. Given the demand of a representation that is
fetched or created on-demand, we create a weighted sub-
network that spans the destination (i.e., demand site) and
the sources (i.e., sites where the representation or its master
copy are stored). Then, we transform the TE problem of a
fetched or created on-demand representation to a min-cost
flow problem in this sub-network. This allows CAD to support
multi-path routing based on link usage to balance the total
traffic across all links, and reduces the running time of the
proposed algorithm. We note that CAD does not exceed the
storage, processing and network resources of the telco-CDN.

B. Details of CAD

A high-level pseudo code of the proposed CAD algorithm
is shown in Algorithm 1. CAD computes and returns two
outputs: D and T . D is a data structure with a record D[s]
for each caching site s ∈ S. D[s] has one entry for each
video representation r, which contains two fields: status and
sites. The status field indicates whether the caching site s
should store, create on demand, fetch from other caching
sites, or fetch from the origin server the video representation
r when a client submits a request for that representation.
The sites field contains a list of caching sites to obtain a
representation or its master copy from in case the status of
that representation is set to fetch from other sites. The second
output of CAD is T , which is a list of traffic engineering
rules for routers in the ISP network. Each rule is in the



form of 〈RID, src, dst, iport, oports, weights〉, where RID
indicates the ID of the router to execute this rule. A TE rule
specifies that the traffic flow coming from the src address
on input port iport and going to the dst address should be
forwarded on the output ports oports with different ratios
specified by the weights. In the initialization stage, the status
of all representations is set to fetch from the origin server, and
the TE rules are set to the default ones used by the ISP (e.g.,
shortest paths computed by the intra-domain routing protocol).

CAD maintains multiple data structures, including 2-
dimensional matrix V , list sites[r] for each representation r,
and the aggregate traffic map F . For every caching site s ∈ S,
V [s] is a list that sorts all video representations descendingly
based on their values. The value of a representation r at
caching site s is given by d[s][r]× cpu(r)/size(r). This value
determines the priority of storing the representation at a
caching site such that a popular small-size representation with
high processing requirement has higher priority to be stored.
The list sites[r] maintains the caching sites that r is stored at.
The aggregate traffic map F contains the traffic value for every
src-dst pair. Specifically, if F [src, dst][i, j] = f(i,j), then the
aggregate traffic from router i to router j for demands from
src to dst is f(i,j) units of traffic.

As shown in Algorithm 1, CAD starts with an initialization
stage where all representations are sorted based on their values
and the result is stored in V [s]. In addition, for every site
s ∈ S, CAD sets D[s] to store as many representations as
the storage capacity b[s] allows, and keeps an index of the
last stored representation in last stored(s) variable. CAD also
updates the list sites[r] for each stored representation r. The
current MLU γcurrent is set to zero.

Calculating the distribution plan: After initialization,
CAD attempts to update D for every representation at every
site to either fetch or create and calculate T accordingly
in Lines 1–10. For every site s, the algorithm iterates over
all representations starting from the index last stored(s)+1.
In every iteration, the algorithm calls two functions: FIND-
PATHS and CREATEREPAT. Each function returns caching
sites, network paths and the resulting maximum link utilization
γ. A returned γ value of ∞ means no solution was found.
The FINDPATHS function requires creating a sub-network T′

(Line 4). It attempts to find TE paths that accommodate the
demand of r from the caching sites stored in sites[r] to the
local site s. The CREATEREPAT function checks if r can be
created locally. After the two functions return, CAD chooses
the option that minimizes the maximum link utilization γ in
Line 7. CAD then updates the current MLU value γcurrent, and
calls UPDATEDPANDTE to update D and F .

First, the function UPDATEDPANDTE updates the corre-
sponding D[s] status to either fetched or created based
on the decision variable, and sets the caching sites. Second,
based on the returned network paths, it aggregates the traffic
between every two routers per src-dst pair in the F map. It
also decreases the available bandwidth for every link. Third,
if r is to be created on-demand at caching site s, it decreases
the available processing capacity p[s].

We provide more details on the FINDPATHS and CRE-
ATEREPAT functions. The goal of FINDPATHS is to balance
the traffic across all links in the network given a demand
value d[s][r] and stored representations at sites[r]. To achieve
this TE goal, we transform the TE problem to the min-cost
flow problem in the sub-network T′ as follows. We first
construct a sub-network T′ = (S′,E′) with vertexes and
edges contained in all paths from sites[r] to s. Only edges
(links) with remaining capacity greater than zero are included.
The cost of every edge e in the sub-network is calculated
as ω′

e = d[s][r]/c[e]. Then, the costs of inter-ISP links are
increased to double of their value in order to reduce the amount
of inter-ISP traffic, because paths are selected based on lower
costs. Finally, we solve the min-cost flow problem (MCF)
using the cost-scaling algorithm in [29]. The algorithm returns
a set of sites that will transmit the representations, a set of
links with their traffic values, and the resulting maximum link
utilization γ. To calculate γ, we iterate over all links in the
output set of links, divide the total traffic for every link by
its capacity, and choose the maximum value. We note that the
cost-scaling algorithm requires integer edge costs. To meet this
requirement, we multiply all costs by a relatively large integer
(e.g., 100) and round up all costs to the nearest integer values.

The function CREATEREPAT checks if a representation r
can be created on-demand locally within the allowed delay L
seconds. First, it calculates the required CPU cycles to process
d[s][r]. To calculate the cycles, it computes the segments
count of r to be requested per second at caching site s.
Then, it multiplies the processing requirement per segment
by the segments count. If the required cycles are less than
the available CPU resources in L seconds (i.e., p[s] × L),
the algorithm checks if the master copy is stored locally, and
returns the site s as the a caching site. Since the master copy
is stored locally, the MLU is not affected and we return the
current MLU. If the master copy is not stored locally, the
algorithm checks if the network can accommodate fetching it
from sites[r.master]. It then calls FINDPATHS to find TE paths.
If the network can fetch r.master, then the corresponding sites,
links and MLU are returned.

Calculating the TE rules: CAD aggregates the traffic
between every two routers per src-dst pair using the aggregate
traffic map F . Then it calls CALCTERULES in Line 11 to
find the TE rules. CALCTERULES takes F as an input and
calculates the output port weights for every router per src-dst
pair in the TE paths. To do so, CALCTERULES iterates over
all src-dst pairs in F . For a router i, it finds all F entries
where router i has output flows. To find the weight of port
n that connects i to j, we divide the i, j output flow value
over the sum of all output flow values for router i. That is
T [src, dst][i][n] = F [src, dst][i, j]/

∑
k F [src, dst][i, k].

The computed TE rules is abstract enough to be used by
various TE technologies such as OpenFlow [30], or Segment
Routing [31] that does not require additional state at routers.

Time Complexity: CAD terminates in polynomial time in
the order of O(N log(D)), where N is the total number of
representations and D is the maximum demand.



V. EVALUATION

A. Implementation

We implemented all components of the proposed CAD
algorithm, from computing distribution plans and traffic en-
gineering rules, to executing the distribution plans by caching
sites and enforcing the rules by the ISP routers in real time.
Our implementation handles real multimedia traffic, where
clients stream content using the DASH protocol. To rigorously
evaluate the performance of CAD in different settings, we
implemented a configurable framework on top of Mininet [13].
Unlike network simulators, Mininet is a realistic network
emulation environment built on Linux namespaces. Applica-
tions running on Mininet can be deployed on actual systems.
Mininet has been used to evaluate research ideas at the network
level e.g., [5], and application level e.g., [32].

Our Mininet framework emulates an ISP network of a telco-
CDN, where the network topology is given as input to the
framework. An ISP network is composed of points of presence
(PoPs) at different geographical locations, where clients can
access the Internet. We abstract the internal details of a PoP
and implement it as a virtual switch using Open vSwitch
2.5.1 [33]. Links between virtual switches are created based
on the input topology. The latency on a link between two
switches is calculated based on the link medium and length.
Switches and links process and carry real traffic using the
Linux networking stack. An example ISP topology is shown
in Figure 2, which is the AT&T topology in the East Coast
of the US.3 We use this topology in our experiments, because
AT&T manages its own CDN [11]; hence, our setup is close
to a real telco-CDN. We note that ISPs inter-connect with
each other, typically at IXPs. Our framework emulates these
inter-ISP links and measures the load on them, because this
inter-ISP load represents an important cost factor for ISPs.
For the example topology in Figure 2, the three PoPs at
which AT&T inter-connects with other ISPs are marked by
larger blue icons. The inter-connections occur through three
IXPs: Telx Internet Exchange in Atlanta, Equinix Exchange
in Chicago, and CoreSite Any2 Exchange in Boston.

The caching sites of the telco-CDN are located at PoPs. We
implement each caching site as an HTTP server that can stream
multimedia content using the DASH protocol. The character-
istics of each caching site (e.g., storage and processing capac-
ities) are provided as input to our framework. Caching sites
receive and execute the distribution plans computed by CAD.
The CAD algorithm itself is implemented and executed on a
separate server inside the ISP. We implemented the streaming
DASH clients using Go 1.7.4. The DASH clients request
video representations from nearby caching sites according
to the input demands. Finally, we manage the ISP network
using OpenFlow [30]. In particular, we implemented an SDN
controller in Python using Ryu 4.9. The SDN controller
installs the TE rules computed by CAD into the switches.

3http://www.topology-zoo.org/dataset.html

PoP

IXP

Fig. 2: The ISP topology used in our experiments. It is the
AT&T network in the East Coast of the US.

B. Experimental Setup

We compare CAD against the algorithm in [15]. This
algorithm reactively serves users using shortest path inside
the network. We compare against this algorithm because it
was shown in [15] that it outperforms other approaches. We
refer to this algorithm as reactive CDN (rCDN). Both CAD
and rCDN algorithms are used to manage the telco-CDN of
the ISP topology in Figure 2, which has 16 locations.

We consider three important performance metrics that mea-
sure the network load and user QoE: (i) Amount of Inter-
domain Traffic, which is the total bytes fetched from the
origin server through inter-ISP links. (ii) Maximum Link
Utilization (MLU), which is the 95-percentile of the traffic
per second passing through an intra-domain link divided by
its capacity. We use the 95-percentile because it is a good
representation of the overall link performance [34]. (iii) Buffer
Occupancy, which is the average number of video segments in
the playback buffer at clients. High buffer occupancy values
indicate better QoE for two reasons. First, because CAD
does not change the client adaptation algorithm, high buffer
occupancy may indirectly allow the client adaptation algorithm
to request better quality representations [16]. Second, high
buffer occupancy reduces the chance of rebuffering at clients.

There are 1, 000 videos each with up to 7 representations in
the telco-CDN with a total size of 6 TB (i.e., the telco-CDN
manages 7, 000 representations). These representations offer
different quality levels, and they have average bitrates of 5,
3.5, 1.5, 0.5, 0.3, 0.2 and 0.1 Mbps. We transcode the master
representation (5 Mbps) to create other representations using
FFmpeg, and we measure the average processing time and file
size for each representation. We limit FFmpeg processing to
one CPU thread, and run each transcoding multiple times and
take the average. According to DASH, each representation is
divided into equal-size segments, 1 second each. We set the
maximum allowed processing latency to 5 seconds.

We emulate a realistic behavior of users based on the
analysis in [35]. Specifically, we consider four characteristics
when generating user requests: (1) peak weekly demands, (2)



TABLE I: Arrival rates of requests for different periods.

λ1 (12-12:59am) λ2 (1am-3:59pm) λ3 (4-23:59pm)
Fri. 20 10 40
Sat. 35 30 70
Sun. 50 30 60

peak daily demands, (3) user behavior of quitting streaming
sessions, and (4) representation popularity distribution. We
generate user requests for three days: Friday, Saturday and
Sunday, because they represent the peak weekly demands [35].
The request rate is not constant during the day, but it increases
until its peak value in the evening. We employ the mixture
probabilistic model that was observed in [35], which consists
of three components representing early-quitters, drop-out users
and steady viewers. Finally, the representation popularity is
assumed to follow a Zipf-Mandelbrot distribution [36], which
is a generalized form of the Zipf distribution. Unlike the Zipf
distribution which is characterized by a single skew parameter
α, the Zipf-Mandelbrot distribution has two parameters: skew
parameter α and plateau parameter q, which captures the fact
that multiple objects can have close popularity, which is more
realistic. Large q values indicate that the total requests are
spread on many videos, while small q values mean that most
of the requests are concentrated in few, very popular, videos.

Putting all pieces together, we first generate user requests
for each day using three Poisson processes with arrival rates λ1
during early hours of the day, λ2 during mid-day hours, and λ3
during evening hours. Table I shows the λ values used in our
experiments per second per region. When a user arrives, we
randomly pick a representation following the Zipf-Mandelbrot
distribution, and the number of segments the user will watch
during the session using the mixture probabilistic distribution
discussed above.

The key parameters we control and vary in our experiments
are the storage capacity at each caching site and the popularity
of video representations. The storage capacity ranges from
1% to 10% of the video library size. For the representation
popularity, we fix the skew parameter of the Zipf-Mandelbrot
distribution to α = 1.5, but we change the plateau parameter
q from 1 to 10. All other parameters in our setup are fixed as
follows. Each caching site has 16 CPU cores with clock speed
of 2.6 GHz. The capacity of inter-domain links is 400 Mbps
and the average delay on them is 50 msec. The capacity of
intra-domain links is 500 Mbps, and the delay is proportional
to site distances. We repeat each experiment five times with
different random seeds, and we report the average of the
performance metrics across them.

The telco-CDN goes through two phases every day during
our experiments. The first one is the warm-up phase, where
caches are populated with videos either using CAD or rCDN.
The second phase is the streaming phase, where clients request
video segments and caching sites respond with the correspond-
ing content according to the pre-computed distribution plans.
We report the performance metrics during the streaming phase.

C. Results

CAD Outperforms the Closet Algorithm in Literature:
We start by comparing the performance of CAD versus rCDN
under different storage capacities per caching site. We set
the plateau parameter of the video representation popularity
distribution q = 5. A representative sample of our results
is depicted in Figure 3, where we show how the amount of
inter-domain traffic and buffer occupancy change throughout
the 3-day period of the experiment. The results in Figure 3
are for q = 5 and storage capacity of 10% of the video
library size. Similar results were obtained for other values
of the storage capacity and plateau parameter q. Figure 3a
depicts the time series of the inter-domain traffic. Vertical
arrows show the maximum improvements achieved by CAD
for every day. On Friday, both CAD and rCDN result in low
inter-domain traffic, because most demands can be handled
inside the network. CAD, however, results in much lower inter-
domain traffic compared to rCDN. On Saturday, the inter-
domain traffic increases for both rCDN and CAD till early
hours of the evening, because of the increase in the demands.
However, CAD outperforms rCDN in terms of inter-domain
traffic and buffer occupancy as shown in Figures 3a–3b. In
the evening, rCDN results in more requests to the origin
server and increases the end-to-end latency. As a result, CAD
improves the buffer occupancy compared to rCDN. The same
results are observed on Sunday. Specifically, CAD reduces the
inter-domain traffic by up to 83%, 57% and 46% on Friday,
Saturday and Sunday, respectively. These improvements are
instantaneous and may not reflect the overall performance.
Thus, we calculate the resulting improvement of CAD per
day in terms of total inter-domain traffic. In particular, CAD
reduces the total inter-domain traffic by 64%, 32% and 23%
on Friday, Saturday and Sunday, respectively. Both CAD and
rCDN result in same MLU of 21%. This is because CAD
jointly manages the network and caching resources while
fetching or creating representations on-demand. In addition,
CAD increases the number of segments at client buffers by
up to 14%.

Impact of Active Distribution: To shed some lights on the
importance of the active distribution feature of CAD, we plot
in Figure 3c the traffic served by active distribution in CAD
(i.e., creating representations on demand). This figure shows
the difference in inter-domain traffic when CAD employs only
cooperative distribution and when it uses both cooperative and
active distribution. Specifically, without active distribution, the
traffic shown in Figure 3c would have been requested from
the origin server. In terms of the total inter-domain traffic, the
on-demand processing contributes to about 32% of the im-
provement in inter-domain traffic. In particular, CAD reduces
the total inter-domain traffic by 138 Gb compared to rCDN.
In Figure 3c, the total traffic created on-demand is 45 Gb,
which is 32% of the improvement in the inter-domain traffic.
For daily inter-domain traffic, active distribution contributes
to about 50%, 27% and 35% of the improvements on Friday,
Saturday and Sunday, respectively.



Fri. Sat. Sun.
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6
T
ra
ffi
c
(G
bp
s)

83%

57%
46%CAD

rCDN

(a) Inter-domain Traffic

Fri. Sat. Sun.
Time

2

4

6

8

10

12

#
S
eg
m
en
ts

CAD

rCDN

(b) Buffer Occupancy

Fri. Sat. Sun.
Time

0.00

0.01

0.02

0.03

0.04

0.05

0.06

T
ra
ffi
c
(G
bp
s)

CAD

(c) Traffic Served by Active Distribution

Fig. 3: Time series of inter-domain traffic, buffer occupancy, and on-demand created traffic over the 3-day experiment period.

2% 4% 6% 8% 10%
Storage Capacity

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

P
ro
c.

L
at
en
cy

(s
ec
)

Fig. 4: Processing latency distributions of CAD to create
representations on-demand under different storage capacities.

CAD Respects the Maximum Processing Latency: For
every storage capacity setting, we plot the processing latency
distribution of CAD to create video representations on-demand
as a box plot in Figure 4. The box plot is a compact visualiza-
tion of the three quartiles 25%, 50% and 75%, minimum and
maximum values, and the outliers for a given distribution (i.e.,
the processing latency in our case). For example, when the
storage capacity is 8% of the video library size, 25%, 50% and
75% of the created representations on-demand are processed in
less than 0.5, 0.65 and 1.25 seconds, respectively. Moreover,
the minimum and maximum processing latencies are 0.25 and
2.4 seconds. The figure shows that CAD strictly respects the
maximum allowed processing latency set by the operator (i.e.,
5 seconds). It also shows that, as the storage capacity increases,
CAD stores and fetches more representations as indicated by
the reduction in the latency. This ensures that the end-to-end
latency is minimized as the telco-CDN resources allow.

Impact of Varying Popularity Patterns: We assess the
impact of various popularity patterns of the video repre-
sentations. We conduct three experiments where we set the
plateau parameter of the Zipf-Mandelbrot distribution q to: 1
(highly skewed popularity), 5 (moderate skewness), and 10
(less skewness, i.e., more objects have similar popularity). We
set the storage capacity to 10% of the video library size.

Figure 5 depicts the averages of the three considered perfor-
mance metrics across the entire three-day period. The figure
shows that CAD consistently outperforms rCDN in terms of
amount of inter-domain traffic and buffer occupancy. Figure 5a

shows the inter-domain traffic results. CAD outperforms rCDN
by up to 54% when q = 10. This is because decreasing
skewness (i.e., increasing q) gives CAD the room to fetch and
create more representations on-demand inside the telco-CDN.
In term of the buffer occupancy at clients, CAD outperforms
rCDN by up to 14% when q = 1. As q increases (i.e.,
less skewness), the buffer occupancy decreases because more
requests are served by the origin server as Figure 5a shows.
Finally, the MLU of CAD increases from 22% to 26% when
q = 10 compared to rCDN as depicted in Figure 5c. This is
because decreasing skewness allows CAD to fetch and create
more representations on-demand. This small increase in MLU
does not diminish the gain of reducing the utilization of the
more expensive inter-domain links by 54% [8].

Running Time of CAD: We measured the running time
of CAD, which varied from 46 seconds to 140 seconds
to calculate the results of a whole day. The running time
varies based on the expected demands for each day. This
shows two important aspects. First, CAD is practical and
can run on commodity servers. Second, it gives the telco-
CDN operator room for reacting upon demand variations and
network failures. For example, the operator can reduce the
length of CAD period from 24 hours (as in our experiments)
to order of tens of minutes.

Summary: CAD outperforms the closest work in terms
of inter-domain traffic by a wide margin (up to 64%). In
addition, CAD has modular functions and improvements. That
is, CAD can be deployed with no on-demand transcoding.
As shown in Figure 3c, the on-demand creation results in
32% of the improvements in the total inter-domain traffic,
the other 68% improvements are due to the careful TE and
content distribution done by CAD. That is, if caching sites
have processing resources, CAD uses them to improve the
inter-domain traffic. Otherwise, CAD will rely on careful TE
of network paths.

VI. CONCLUSIONS

We considered the problem of managing the resources
of the emerging telco-CDNs, which are content distribution
networks operated by ISPs. We proposed a new algorithm
called CAD (short for Cooperative Active Distribution) to
solve this problem. The key new ideas in CAD include: (i)



1 5 10
Plateau Parameter q

0
1
2
3
4
5
6
7

T
ot
al
T
ra
ffi
c
(G
b)

×102

54%

CAD rCDN

(a) Inter-domain Traffic

1 5 10
Plateau Parameter q

0

2

4

6

8

10

12

#
S
eg
m
en
ts

CAD rCDN

(b) Buffer Occupancy

1 5 10
Plateau Parameter q

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
L
U

CAD rCDN

(c) Maximum Link Utilization (MLU)

Fig. 5: Average metrics of CAD and rCDN under different popularity patterns. Storage capacity is 10% of the library size.

jointly optimizing the utilization of the caching resources
and the selection of traffic paths within the network, (ii)
creating video representations on-demand, and (iii) enabling
cooperation among caching sites to serve as much as possible
of the multimedia traffic within the ISP. We implemented
and evaluated CAD in a Mininet-based emulation network,
which carries real traffic using SDN-managed virtual switches.
We also implemented caching servers and DASH clients, and
used them to serve and request video segments. Our results
show that compared to the closest work in the literature, CAD
achieves up to 64% reduction in the inter-domain traffic, which
is a major cost factor for ISPs. CAD also improves the number
of segments in the client buffer by up to 14%, which is an
important metric to measure user QoE. Finally, CAD chooses
the traffic paths carefully to avoid introducing bottlenecks in
the ISP network. These improvements are critical for ISPs and
content providers who collaborate, especially with the growth
of the viewership of these content providers.

ACKNOWLEDGMENTS

This work is supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, and by the
Qatar National Research Fund (grant [NPRP8-519-1-108]).

REFERENCES

[1] “The Zettabyte Era: Trends and Analysis,” https://bit.ly/295hnsl, [On-
line; accessed Jan 2019].

[2] E. Nygren et al., “The akamai network: A platform for high-performance
internet applications,” SIGOPS Oper. Syst. Rev., vol. 44, no. 3, 2010.

[3] B. Frank et al., “Collaboration Opportunities for Content Delivery and
Network Infrastructures,” ACM SIGCOMM eBook on Recent Advances
in Networking, vol. 1, 2013.

[4] N. Spring et al., “Measuring isp topologies with rocketfuel,” IEEE/ACM
Transactions on Networking (TON), vol. 12, no. 1, 2004.

[5] M. Malboubi et al., “Intelligent sdn based traffic (de)aggregation and
measurement paradigm (istamp),” in Proc. of IEEE INFOCOM’14.

[6] M. A. Sanchez et al., “Inter-domain traffic estimation for the outsider,”
in Proc. of ACM IMC’14.

[7] Y. Liu et al., “On the interaction between overlay routing and underlay
routing,” in Proc. of IEEE INFOCOM’05.

[8] H. Nguyen et al., “Network loss inference with second order statistics
of end-to-end flows,” in Proc. of ACM IMC’07.

[9] B. Frank et al., “Pushing cdn-isp collaboration to the limit,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 3, 2013.

[10] “Netflix OpenConnect,” https://openconnect.netflix.com/en/, Netflix,
April 2017, [Online; accessed Jan 2019].

[11] “AT&T-Content Delivery Network Services.” http://soc.att.com/
1T4sXmB, AT&T, April 2017, [Online; accessed Jan 2019].

[12] “Cisco Report on CDN Federation,” http://bit.ly/2oTT8bp, Cisco, Octo-
ber 2012, [Online; accessed Jan 2019].

[13] N. Handigol et al., “Reproducible network experiments using container-
based emulation,” in Proc. of ACM CoNEXT’12.

[14] T. Stockhammer, “Dynamic adaptive streaming over http: standards and
design principles,” in Proc. of ACM MMSys’11.

[15] A. Sharma et al., “Distributing content simplifies isp traffic engineering,”
in Proc. of ACM SIGMETRICS’13.

[16] T.-Y. Huang et al., “A buffer-based approach to rate adaptation: Evidence
from a large video streaming service,” in Proc. of ACM SIGCOMM’14.

[17] R. Teixeira et al., “Dynamics of hot-potato routing in ip networks,” in
Proc. of ACM SIGMETRICS’04.

[18] “Streaming Video Alliance announces first trials of the alliance’s com-
pliant open caching systems deployed in ISP networks,” http://bit.ly/
2pz5zqm, Streaming Video Alliance, January 2017, [Online; accessed
Jan 2019].

[19] H. Xie et al., “Tecc: Towards collaborative in-network caching guided
by traffic engineering,” in Proc. of IEEE INFOCOM’12.

[20] W. Jiang et al., “Cooperative content distribution and traffic engineering
in an isp network,” in Proc. of ACM SIGMETRICS’09.

[21] M. Ammar et al., “A vision for zero-hop networking (zen),” in Proc. of
IEEE ICDCS’17.

[22] Z. Li et al., “In a telco-cdn, pushing content makes sense,” IEEE
Transactions on Network and Service Management, vol. 10, no. 3, 2013.

[23] F. Zhou et al., “Joint optimization for the delivery of multiple video
channels in telco-cdns,” IEEE Transactions on Network and Service
Management, vol. 12, no. 1, 2015.

[24] G. Gao et al., “Resource provisioning and profit maximization for
transcoding in clouds: A two-timescale approach,” IEEE Transactions
on Multimedia, vol. 19, no. 4, 2017.

[25] D. K. Krishnappa et al., “Optimizing the video transcoding workflow in
content delivery networks,” in Proc. of ACM MMSys’15.

[26] H. Ma et al., “Dynamic scheduling on video transcoding for mpeg dash
in the cloud environment,” in Proc. of ACM MMSys’14.

[27] A. Ganjam et al., “C3: Internet-scale control plane for video quality
optimization,” in Proc. of NSDI’15.

[28] D. Crankshaw et al., “Clipper: A low-latency online prediction serving
system,” in Proc. of USENIX NSDI’17.

[29] A. Goldberg et al., “Solving minimum-cost flow problems by successive
approximation,” in Proc. of ACM STOC’87.

[30] N. McKeown et al., “Openflow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, 2008.

[31] C. Filsfils et al., “Segment Routing Architecture,” RFC 8402, July
2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8402.txt

[32] A. Bentaleb et al., “Sdndash: Improving qoe of http adaptive streaming
using software defined networking,” in Proc. of ACM MM’16.

[33] B. Pfaff et al., “The design and implementation of open vswitch,” in
Proc. of USENIX NSDI’15.

[34] C. Huang et al., “Can internet video-on-demand be profitable?” in Proc.
of ACM SIGCOMM’07.

[35] A. Balachandran et al., “Analyzing the potential benefits of cdn augmen-
tation strategies for internet video workloads,” in Proc. ACM IMC’13.

[36] M. Hefeeda et al., “Traffic modeling and proportional partial caching for
peer-to-peer systems,” IEEE/ACM Transactions on Networking, vol. 16,

no. 6, 2008.


