
MASH: A Rate Adaptation Algorithm for
Multiview Video Streaming over HTTP

Khaled Diab
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Abstract—Multiview videos offer unprecedented experience
by allowing users to explore scenes from different angles and
perspectives. Thus, such videos have been gaining substantial
interest from major content providers such as Google and
Facebook. Adaptive streaming of multiview videos is, however,
challenging because of the Internet dynamics and the diversity of
user interests and network conditions. To address this challenge,
we propose a novel rate adaptation algorithm for multiview
videos (called MASH). Streaming multiview videos is more user
centric than single-view videos, because it heavily depends on
how users interact with the different views. To efficiently support
this interactivity, MASH constructs probabilistic view switching
models that capture the switching behavior of the user in the
current session, as well as the aggregate switching behavior across
all previous sessions of the same video. MASH then utilizes these
models to dynamically assign relative importance to different
views. Furthermore, MASH uses a new buffer-based approach
to request video segments of various views at different qualities,
such that the quality of the streamed videos is maximized while
the network bandwidth is not wasted. We have implemented a
multiview video player and integrated MASH in it. We compare
MASH versus the state-of-the-art algorithm used by YouTube for
streaming multiview videos. Our experimental results show that
MASH can produce much higher and smoother quality than
the algorithm used by YouTube, while it is more efficient in
using the network bandwidth. In addition, we conduct large-
scale experiments with up to 100 concurrent multiview streaming
sessions, and we show that MASH maintains fairness across
competing sessions, and it does not overload the streaming server.

I. INTRODUCTION

Recently, there has been significant interest in streaming
immersive multimedia content such as multiview and vir-
tual reality (VR) videos. These videos consist of multiple
views of the same scene but captured by several cameras
at different angles. For example, YouTube [1] released a
small-scale experiment to stream multiview content in early
2015, in which a user can experience the scene (a concert
in that experiment) from different perspectives by switching
among various views. Two of the main challenges in streaming
this complex multiview video content over the Internet are
adaptation to dynamic network conditions and supporting user
interactivity; which we address in this paper.

Current popular streaming services such as YouTube and
Netflix employ adaptive streaming over HTTP, using standards
such as DASH [2]. In such services, the video is encoded into
multiple quality levels at different bitrates. Each quality level is

divided into segments of equal length. During the streaming
session, clients request segments from the HTTP server. To
handle varying network conditions, a rate adaptation algo-
rithm is used by each client to dynamically request segments
with the most suitable quality for the current conditions. The
rate adaptation algorithm needs to balance multiple, sometimes
conflicting, performance metrics including quality level, qual-
ity variations, and smoothness of playback [3], [4].

Unlike single-view videos, multiview videos require much
more complex rate adaptation algorithms. This is because these
algorithms need to fetch segments for active views as well as
other views to enable the user to smoothly navigate across
views. In addition, the video may have many possible views,
and naively fetching segments from all of them can lead to
significant waste in network bandwidth. On the other hand,
fetching segments from only the active view and nothing from
other views will introduce long delays when a user switches
to another view, which can damage the immersive experience
and lead to user dissatisfaction. Furthermore, users interact
with multiview videos in different ways, based on their own
interests and perspectives. Thus, predicting the view that may
be needed next is not straightforward. These complications are
all added to the challenge of handling the network dynamics.
Although the rate adaptation problem for single-view videos
has been extensively studied in the literature [5], [6], [4],
[7], it has received little attention for the more complex
multiview videos, which are expected to be quite popular in
the near future given the huge interest and investments of
major companies such as Google, Facebook, Microsoft, and
Samsung.

In this paper, we propose a novel Multiview Adaptive
Streaming over HTTP (MASH) algorithm. MASH introduces
a new perspective to the rate adaptation problem in multi-
view video streaming systems: it constructs probabilistic view
switching models and it utilizes these models in dynamically
selecting segments of various views at different qualities, such
that the quality and immersiveness of the videos are maxi-
mized while the network bandwidth is not wasted. Specifically,
for each multiview video, MASH constructs global and local
switching models. The global model captures user activities
across all streaming sessions seen by the server so far, while
the local model understands user activity during the current
streaming session only. MASH combines the two models to

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE

dynamically weigh the importance of each view given the one
being watched. Then MASH uses a new buffer-based approach
to select segments of different views according to their relative
importance. The contributions of this paper are summarized as
follows:

• We present view switching models based on Markov
chains to capture user activities. We combine these mod-
els dynamically to prioritize the views (Section III).

• We propose a new buffer-based rate adaptation algorithm
for multiview video streaming systems that use the HTTP
protocol. We show that the proposed algorithm and view
switching models impose negligible overheads and we
analyze their convergence properties (Section IV).

• We developed a multiview video player and implemented
our rate adaptation algorithm and view switching models
in it. We conducted extensive empirical study to com-
pare our algorithm versus the one used by YouTube
for multiview videos, and the results show substantial
improvements across multiple performance metrics and
in different network conditions. For example, MASH
achieves up to 300% improvement in the average render-
ing quality and up to 200% improvement in the prefetch-
ing efficiency compared to the YouTube algorithm. In
addition, our results show that MASH achieves fairness
across concurrent sessions, and it does not overload
the streaming server. Furthermore, we compare MASH
versus other rate adaptation algorithms, which are derived
from current rate adaptation algorithms for single-view
videos, and we show that MASH outperforms all of them.
(Section V).

II. RELATED WORK

We categorize rate adaptation algorithms to rate-based [8],
[4], [9], [10], buffer-based [5] and hybrid [6] approaches. In
rate-based approaches, the algorithm estimates the network
capacity and chooses suitable segments accordingly. For ex-
ample, FESTIVE [8] uses the harmonic mean to smooth the
measured network capacity. It also uses randomized segment
scheduling to mitigate differences in users join time. The probe
and adapt algorithm [4] smoothes the estimated bandwidth
using an approach similar to the TCP congestion control, and
schedules segment requests to avoid buffer underflows. Accu-
rate network capacity estimation is, however, difficult [11].
Buffer-based approaches, on the other hand, do not estimate
the network capacity. They rather observe the current buffer
occupancy (i.e., its length in time unit), and request low
bitrate segments if the buffer occupancy is low and vice
versa. For example, Huang et al. [5] integrated a buffer-based
adaptation algorithm in a Netflix player, and they showed that
their algorithm reduces the rebuffering events while preserving
player video quality and stability. A hybrid approach [6] was
proposed in the literature to combine both buffer occupancy
and capacity estimation to improve the overall quality. This ap-
proach models rate adaptation as an optimal control problem,
and solves it by enumerating pre-calculated solutions at the

client-side. All of the above works address traditional single-
view videos, and thus, they cannot handle multiview videos in
which users switch among views. Rate adaptation algorithms
for single-view videos will either waste network bandwidth
if they prefetch all views or lead to playback interruptions if
they prefetch the active view only.

Few recent works considered more complex videos, but
none addressed our problem of rate adaptation for multiview
videos, to the best of our knowledge. For example, Hamza
and Hefeeda [12] proposed an interactive free-viewpoint video
streaming system using DASH. The client fetches original
views and generates virtual views at the client side when
required. Their work, however, focuses on optimizing the
quality of the synthesized virtual views using rate-distortion
models. Su et al. [13] proposed a rate adaptation algorithm for
3D video streaming using the High Efficiency Video Coding
(HEVC) standard. Unlike our work, they only address non-
interactive 3D videos where users cannot choose the view-
ing angles. Another set of works address 3D tele-immersive
systems (3DTI). 3DTI systems have different interactivity
semantics and streaming models than our work. Such systems
are multi-user, real-time, and object-oriented, while our work
is concerned with video on demand streaming with view-level
interaction by individual users. Thus, 3DTI systems address
different problems such as object-level [14], frame-level [15]
and perception-based [16] adaptation.

The closest approach to our work is the multiview player
of YouTube, which is integrated in the Google Chrome web
browser. It allows users to navigate to different views and it
dynamically fetches segments of different views during the
streaming session. We compare MASH against the algorithm
used by YouTube. Furthermore, we modify recent buffer-based
rate adaptation algorithms [5] to support multiview videos, and
we compare against them.

III. OVERVIEW AND SWITCHING MODELS

A. Overview of MASH

We consider an adaptive streaming system based on HTTP
using standards such as DASH [2], where a server streams
multiview videos to diverse users over dynamic networks. A
multiview video consists of N views, which enables users
to experience the video from different angles. A user is
allowed to interact with the video to choose the desired
view at anytime. Supporting multiview videos is, however,
challenging. First, the streaming system needs to support
efficient view switching, without imposing long waiting delays
(when switching happens, which could damage the viewing
experience) or consuming excessive network resources (by
naively sending all views to every user, even if most of them
will not likely be viewed). Second, the streaming system needs
to adapt to the dynamic network conditions of different clients
and serve the best possible quality in such conditions. The
proposed MASH algorithm addresses these challenges, by
constructing probabilistic view switching models and using
these models in a novel buffer-based rate adaptation method.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Global

Model

Local

Model

+

B1(t)

f1

Bmin Bmax,1

Qmin

Qmax,1

BN(t)

fN

BminBmax,N

Qmin

Qmax,N

β1

βN

...
...

MASH

V1

requests

VN

requests

...

Fig. 1: High-level overview of MASH. MASH runs at the
client side, uses global and local view switching models, and
constructs buffer-rate functions fi’s to dynamically request
segments from different views at different quality levels.

Following DASH principles, each view Vi is encoded into
multiple quality levels Qi ∈ {Qmin, . . . , Qmax} (measured
in Mbps). Each quality level is divided into equal-length
segments and stored at the server. At the client side, MASH
decides which segments of which view(s) and at what quality
levels should be requested from the server. When requested
segments of view Vi arrive at the client, they are decoded
and stored in the frame buffer corresponding to that view.
We use Bi(t) (in seconds) to denote the buffer occupancy
of the frame buffer of view Vi at time t. We refer to the
view being watched as the active view, while others are called
inactive views. When a user switches to view Vj and it
happened that the corresponding buffer is empty, the client
will not be able to render Vj and playback interruption (or
re-buffering) occurs. To minimize these re-buffering events,
we design a composite model for predicting view switching,
which captures the switching pattern of: (i) all users who
watched this multiview video before (global model), and (ii)
the user of the current streaming session (local model).

Figure 1 shows a high-level overview of MASH, which
runs at the client side. MASH combines the outputs of
the global and local view switching models to produce a
relative importance factor βi for each view Vi. MASH also
constructs a buffer-rate function fi for each view Vi, which
maps the current buffer occupancy to the segment quality
to be requested. The buffer-rate functions are dynamically
updated during the session; whenever a view switch happens.
As shown later, MASH strives to produce smooth and high
quality playback for all views, while not wasting bandwidth
by carefully prefetching views that will likely be watched.

B. View Switching Models

MASH combines the outputs of two stochastic models (local
and global) to estimate the likelihood of different views being
watched. We define each view switching model as a discrete-
time Markov chain (DTMC) with N (number of views) states.
An illustrative example is shown in Figure 2a for a video with
four views. View switching is allowed at discrete time steps of
length ∆. The time step ∆ is the physical constraint on how
fast the user can interact with the video. For example, we do

not expect the user to switch views more than once in less than
100 ms, because of the limitations on the input interface (e.g.,
touch screen). In the following we describe the construction
of each model. Then, we describe how we combine the two
models together. We note that the construction of the switching
models is carefully done to ensure convergence as well as
minimize the imposed overheads on the system, as detailed in
Section IV-B.

Local Model: It captures the user activities during the
current streaming session, and it evolves with time. That is, the
model is dynamic and is updated with every view switching
event that happens in the session. The model maintains a count
matrix M(t) of size N × N , where Mij(t) is proportional
to the number of times the user switched from view Vi to
Vj , from the beginning of the session up to time t. The
count matrix M(t) is initialized to all ones. Whenever a
view switching occurs, the corresponding element in M(t) is
incremented. Increasing that element by 1, however, may result
in wide fluctuations in the switching model, especially early in
the session where all elements still have small values (typically
1). We use an exponential weighted moving average (EWMA)
to smooth out these fluctuations. Thus, after switching from Vi
to Vj , we set Mij(t) = γMij(t−∆)+(1−γ)(Mij(t−∆)+1),
where γ is a smoothing factor. In our experiments, we set
γ = 0.2. The count matrix M(t) is used to compute the
probability transition matrix of the local model L(t), where
Lij(t) = Mij(t)/

∑N
k Mik(t). A row of L(t) is denoted

by Li(t), and it is a vector of size N that represents the
conditional probability distribution p(Vj |Vi) for every j (e.g.,
the probabilities in Figure 2a). At the end of the streaming
session, the final transition matrix L(t) is sent to the server to
update the global model.

Global Model: This model aggregates users activities
across all streaming sessions that have been served by the
server so far. At beginning of the streaming session, the client
downloads the global model parameters from the server. We
use G to denote the transition matrix of the global model,
where Gij = p(Vj |Vi) is the probability of switching to Vj
given Vi. If this is the fist streaming session, Gij is initialized
to 1/N for every i and j.

Combined View Switching Model: The local and global
model complement each other in predicting the (complex)
switching behavior of users during watching multiview videos.
For example, in some streaming sessions, the user activity
may significantly deviate from the global model expectations,
because the user is exploring the video from different viewing
angles than most previous users have. Or the multiview video
may be new, and the global model has not captured the
expected view switching pattern yet. On the other hand, the
local model may not be very helpful when the user has not
had enough view switches yet, e.g., at the beginning of a
streaming session. We combine the local and global models to
compute an importance factor βi for each view Vi as follows.
We normalize the elements of the local and global transition
matrices by subtracting the diagonal elements from them; for

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

V1V2

V3 V4

0.50.47

0.1
0.1

0.4

0.47

0.05

0.03

0
.0
5

0
.3

0
.0
5

0
.4

0.5
5

0.0
5

0.47

0.01

(a)
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

h(x)

(b)

Fig. 2: (a) Simple example of the stochastic switching model
used by MASH. (b) The sigmoid function used in assigning
importance factors to different views.

L(t) (and similarly for G):

L̄ii(t) = 0, (1)
L̄ij(t) = Lij(t)/(1− Lii(t)),∀j 6= i, 1 ≤ i, j ≤ N. (2)

These distributions are similar to the original ones with
initializing the diagonal elements by zeros, and updating the
counting matrix only when there is a view switch. Given the
active view is Vi, we calculate its importance factor βi as well
as the importance factors βj of all other views Vj ∀j 6= i at
time t as follows:

βi = 1, (3)
βj = αi × L̄ij(t) + (1− αi)× Ḡij ,∀j 6= i, (4)

αi = h
(
E
(
L̄i (t) , Ḡi

))
, and (5)

E(L̄i(t), Ḡi)) =

√√√√ 1

N − 1

N∑
j=1,j 6=i

(
L̄ij(t)− Ḡij

)2/√
2

(6)

h(x) = (1 + exp−(ax−b))
−1

(7)

Equation (3) states that the active view is the most important
view. We calculate the inactive view importance factor βj as
a linear combination of Ḡi and L̄i(t) in Equation (4), where
the αi parameter is carefully computed (by Equations (5)–(7))
to dynamically adjust the relative weights of the global and
local models. Specifically, αi is calculated as a normalized root
mean squared error E(·) of Ḡi and L̄i(t) in Equation (6). The
denominator

√
2 is the maximum value, since both Ḡi and

L̄i(t) have values less than 1. The intuition behind E(·) is
to prioritize only the most important inactive views. At the
beginning of a streaming session, E(·) is expected to be high,
thus, all inactive views will have low β values unless they
are very important in the global model. During the streaming
session, if the user activity approaches the global model, then
E(·) decreases and the global model output would have a
higher weight. If the user activity deviates from the global
model, E(·) is high and β will follow the local model more.
After computing E(·), we apply a shifted sigmoid function
h(·) as in Figure 2b. We design h(·) such that its domain

and range are in the period [0, 1], and it grows faster than the
identity function when E(·) increases. The design of h(E(·))
ensures that the local model weighs more, unless an inactive
view is very important in the global model. Thus, MASH
fetches only important segments to save bandwidth while
ensuring smooth playback.

IV. PROPOSED MASH ALGORITHM

A. Details of MASH

The proposed combined view switching model in the previ-
ous section results in an importance factor βi for each view Vi,
which is computed dynamically at each view change. Using
the importance factors for all views, MASH determines the
quality for the segments to be requested.

MASH is a buffer-based rate adaptation algorithm for
multiview videos, which means it determines the requested
segment quality based on the buffer occupancy level, and
it does not need to estimate the network capacity. Previous
buffer-based algorithms [5], [6] are designed for traditional
single-view videos. Thus, they employ a simple buffer-rate
mapping function. This function basically defines two pa-
rameters: the minimum Bmin and maximum Bmax buffer
occupancies in seconds. If the buffer level is less than Bmin,
the requested quality for the segment is set to the minimum
quality Qmin. And if the buffer level is greater than Qmax,
the requested quality is set to the maximum quality Qmax.
For buffer levels between Qminand Qmax, the requested
quality is linearly proportional to the slope of the function:
(Qmax −Qmin) / (Bmax −Bmin).

Rate adaptation for multiview videos is far more complex, as
it needs to handle many views of different importance, while
not wasting network bandwidth or resulting in many stalls
during playback for re-buffering. To handle this complexity,
we propose employing a family of buffer-rate functions, which
considers the relative importance of the active and inactive
views and how this relative view importance dynamically
changes during the streaming session. Specifically, we define
a function fi(Bi(t)) for each view Vi, which maps the buffer
level Bi(t) of that view to a target quality Qi(t) based on its
importance factor βi at time t. We use βi to limit the maximum
buffer occupancy level for view Vi as: Bmax,i = βi ×Bmax.
Since we set βi = 1 for the active view, the algorithm can
request segments up to the maximum quality Qmax,i. Notice
that this equation implies that βi ≤ βj ⇐⇒ Bmax,i ≤
Bmax,j ⇐⇒ Qmax,i ≤ Qmax,j . Thus, for inactive
views, MASH can request segments for up to a fraction of
their maximum qualities. Figure 3 illustrates the buffer-rate
functions for two views Vi and Vj . Vi is the active view, so
Bmax,i = Bmax. The figure shows when the requests stop for
both Vi and Vj , and the maximum bitrate difference to reflect
the importance of each view.

We show the pseudo code of MASH in Algorithm 1. We
first note that there is an initialization phase of MASH (not
shown in Algorithm 1), which occurs in the beginning of the
streaming session. In this phase, MASH downloads the global
transition matrix G from the server, and calculates the local

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

B(t)

f(B(t))

Bmin Bmax,iBmax,j

Qmin

Qmax,i

Qmax,j

Max. bitrate
difference

Requests
stop for Vi

Requests stop for Vj

Fig. 3: Proposed buffer-rate functions of views Vi (active) and
Vj (inactive).

model transition matrix L(0) and its normalized form L̄(0)
using Equations (1) and (2). Then, given an initial active view
Vi, the view importance factors βk (Equations (3) and (4))
and Bmax,k are calculated for all k 6= i. Finally, the buffer-
rate functions fk are calculated given Bmin, Bmax,k and the
available quality levels. After the initialization phase, MASH
runs periodically every ∆ seconds and it updates the local
counting and transition matrices given M(t − ∆). It then
checks if a view switch happens since the last invocation
(Line 3), and updates its state accordingly. First, MASH
updates normalized local vector L̄i(t) for the current active
view. Second, it updates parameter αi for the current active
view Vi (Line 5). Third, MASH iterates over all views and
updates their importance factors βk and maximum buffer
occupancy Bmax,k values. Then, it updates the buffer-rate
functions according to these new values (Line 13). Finally,
at Line 17, MASH uses corresponding buffer-rate function fk
to compute segments rates.

B. Analysis and Overheads of MASH

Overheads: MASH requires two stochastic matrices: G and
L, each of size N2, where N is the number of views. For
simplicity, let us assume that each element in all matrices takes
2 bytes, although more optimization is possible. Since G is
maintained at the server, the client would need to download
extra 2N2 bytes at the beginning of the streaming session.
At the end of the session, the client uploads the final local
model L to the server to update G, which also takes 2N2

bytes. The client stores G and L in the local memory, along
with the counting matrix M used to simplify calculation of
L. Thus, the added memory requirement is 6N2 bytes. On
the server side, G is updated only once after the completion
of each streaming session with total computational complexity
of O(N2). On the client side, the initialization of L and M
matrices takes O(N2) steps, but it is done once. During the
session, only O(N) steps are required to update M and L
with every view switch. To put these bounds in perspective,
consider a rich multiview video with 100 views. The client
will download/upload up to 20 KB and need up to 60 KB of
memory. These values are insignificant compared to the size
of the multiview video (100s of MB). To create and maintain

Algorithm 1 MASH rate adaptation algorithm.
Input: Vi, Vj : current and previous active views.
Output: requests: segments to be requested from server.

1: Mji(t) = γMji(t−∆) + (1− γ)(Mji(t−∆) + 1)

2: Lj(t) = Mjl(t)/
∑N

k Mjk(t),∀1 ≤ l ≤ N
3: if (Vi 6= Vj) then
4: L̄ii(t) = 0; L̄ik(t) = Lik(t)/(1− Lii(t)),∀k 6= i
5: αi = h(E(L̄i(t), Ḡi))
6: for (Vk ∈ V) do
7: if (Vi == Vk) then
8: βk = 1; Bmax,k = Bmax

9: else
10: βk = αi × L̄ik(t) + (1− αi)× Ḡik

11: Bmax,k = βk ×Bmax

12: end if
13: fk = f(Bmin, Bmax,k, Qmin,k, Qmax,k)
14: end for
15: end if
16: for (Vk ∈ V) do
17: requests.add(getRequest(fk, Bk(t)))
18: end for
19: return requests

the matrices, only N2 = 10K simple operations are performed
in few msec per each session (which lasts for minutes).

Analysis of the View Switching Models: We focus on
two properties in the context of multiview video streaming:
(1) convergence and (2) rate of convergence. These properties
imply whether and when such models represent user activities.

Lemma 1 (Model Convergence): The global and local view
switching models converge to the stationary distributions π(g)

and π(l), respectively.
Proof: We constructed our models with the following

properties, which reflect real multiview video applications.
First, each model has a finite state space with state count
equals N , which represents the finite views of the video.
Second, the user can switch from any view to any view, that
is, any state i can reach any other state j. Thus, our models
are irreducible. Third, each state i can return to the same state
i in irregular number of view switches. Hence, our models are
aperiodic. It was shown in [17] (Theorem 1.8.3) that a finite
state, irreducible, and aperiodic Markov chain converges. That
is, for our global G (and similarly local L), there exists a
unique probability distribution π(g) such that π(g) = π(g)G.
That is, the global and local models converge to π(g) and π(l),
respectively.

We note that by definition, π(g) is the left eigenvector ~e of
G where its corresponding eigenvalue λ1 = 1, and it equals
to ~e/

∑N
i ei. Such eigenvalue λ1 = 1 exists since G is a

stochastic matrix. Moreover, there are N eigenvalues such
that λ1 = 1 > |λ2| ≥ · · · ≥ |λN |. Given the eigenvalues
λ’s in the above lemma, the global model G can be shown to
converge to π(g) in O(|λ2|k) steps. Specifically, it was shown
in [18] (Theorem 5.1, p. 378) that the convergence rate of such
model is exponential in the order of the second dominating

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

eigenvalue λ2. Since the global model is updated at the end
of a streaming session, k is the streaming sessions count. We
note that as λ2 approaches 0, the model convergences very
quickly (i.e., requires a small number of streaming sessions).
λ2 is small when most users agreed on watching specific
views. As λ2 increases, the global model needs more streaming
sessions to reach its stationary distribution. This fact shows the
advantage of the local model to capture user activity during
single streaming session, where such user may deviate from
people consensus, or there are no enough streaming sessions
yet to represent such agreement.

V. EVALUATION

We assess the performance of MASH through actual im-
plementation and comparisons against the state-of-the-art al-
gorithm in the industry. We also analyze the fairness of our
algorithm across concurrent multiview video sessions and
compare its performance against two variations of current rate-
adaptation algorithms that could be used for multiview videos.

A. Experimental Setup

We have implemented a complete multiview video player
in about 4,000 lines of Java code. It consists of HTTP
client, decoders, renderer and rate adapter. Each view has its
own decoder and frame buffer. The rate adapter decides on
the segments to be requested and their quality levels. Then,
segments are fetched from the HTTP server. Once a segment is
fetched, it is decoded to frames and stored in the corresponding
frame buffer. The renderer has references to all frame buffers,
and it renders the corresponding active view.

Figure 4 shows our testbed, which consists of multiple
virtual machines (VMs) running on the Amazon cloud. We
chose high-end VMs with 1 Gbps links, so that the shared
cloud environment does not interfere much with our network
setup. The HTTP server in the figure is YouTube, when we
actually run the YouTube multiview client. In other experi-
ments, we install and use the nginx 1 as our HTTP server.
Users run our multiview player with different rate adaptation
algorithms. When we compare against YouTube, we use the
player embedded in the Google Chrome web browser. The
bandwidth and latency of the network links connecting VMs
with the server are controlled using the Linux Traffic Control
tc utility. We experiment with multiple network conditions to
stress our algorithm.

We use a multiview video released by YouTube [1]. The
video is for a concert and it has four different views shot by
four cameras. The views cover the singer, band, stage, and
fans. The user is allowed to switch among the four views at
any time. The video is about 350 sec long, and it has four
quality levels Q = {0.5, 1, 1.6, 2.8} Mbps. As of the writing
of this paper, YouTube did not release other multiview videos,
and we can not import multiview videos to YouTube because
of the proprietary nature of its multiview player.

We consider a general user activity model, which is captured
by the Markov chain in Figure 2a. The Markov model has

1https://www.nginx.com/

User1

UserM

...Server

C1

CM

C

Fig. 4: Setup of our testbed. Link characteristics (e.g., band-
width and latency) are controlled using the Linux Traffic
Control (tc) utility.

four states corresponding to the four views of the video. We
control the transition probabilities to analyze the performance
under different user activity patterns. Specifically, we create
three activity patterns from this Markov chain by adjusting
the transition probabilities: (1) FQ, frequent activity, where the
user frequently switches views with an average view watching
time of 30 seconds, (2) IFQ, infrequent activity, where the
number of view switches is much less and the average view
watching time is 60 seconds, and (3) GLB, where pattern
follows the probabilities in Figure 2a. In FQ and IFQ patterns,
we assign higher probabilities to switching to next view such
that p(Vi+1|Vi) > p(Vj |Vi), i 6= j to make sure that the user
will watch the four views during the session. We note that our
algorithm is totally unaware of these user patterns initially, but
it does try to infer and use them as the session proceeds.

We consider multiple performance metrics; most of them
were used in similar previous works, e.g., in [3], [4]. In
particular, we measure the average of each of the following
metrics across all streaming sessions in each experiment:
• Rendering Quality: bitrate of the watched views.
• Rate of Buffering Events: number of buffering events

divided by the session duration.
• Prefetching Efficiency: ratio of the used (i.e., rendered)

bytes to the total amount of fetched bytes from all views.
• Fairness (Jain’s) Index: for M concurrent sessions, we

calculate Fairness Index as JI = (
∑M

i=1Qi)
2/(M∑M

i=1Q
2
i), where Qi is the average quality in session

i.
• Server Load: total bits sent by the server per second to

serve all streaming sessions.
User studies [19], [3] show that the rendering quality

and rate of buffering events should be optimized to gain
user engagement. Thus, the first two metrics indicate user
satisfaction. The third metric shows the bandwidth utilization.
The Fairness Index indicates whether competing users get
their fair share of bandwidth. The server load represents
the bandwidth requirements on the server side to support
multiview streaming.

B. MASH vs. YouTube Multiview Rate Adaptation

In this experiment, we compare individual multiview
streaming sessions managed by the rate adaptation algorithm
of YouTube (denoted by YT), which is proprietary and im-
plemented in the Google Chrome web browser, against the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

0 50 100 150 200 250 300 350
Time (sec)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Q
ua

lit
y

(M
bp

s)

3X

MASH YT

(a) Rendering Quality

0 50 100 150 200 250 300 350
Time (sec)

0
5

10
15
20
25
30
35

R
eq

ue
st

S
iz

e
(M

b)

MASH YT

(b) Prefetching Size

0 50 100 150 200 250 300 350
Time (sec)

0
10
20
30
40
50
60
70

R
eq

ue
st

S
iz

e
(M

b)

MASH YT

(c) Total Size

0 50 100 150 200 250 300 350
Time (sec)

0

1

2

3

4

5

R
eq

ue
st

S
iz

e
(M

b)

V1 V2 V3 V4

(d) MASH Per-view Requests

0 50 100 150 200 250 300 350
Time (sec)

0

5

10

15

20

25

R
eq

ue
st

S
iz

e
(M

b)

V1 V2 V3 V4

(e) YouTube Per-view Requests

MASH YT
0
1
2
3
4
5
6

R
at

e
of

B
uff

er
in

g

×10−2

(f) Rate of Buffering

MASHYT
0

10
20
30
40
50
60

P
re

fe
tc

hi
ng

E
ff

.
(%

)

(g) Prefetching Eff.

Fig. 5: Comparison of MASH versus YouTube, for FQ (frequent view switching) scenario and bandwidth = 8 Mbps.

MASH algorithm implemented in our own multiview player.
We stream the considered multiview video many times in
different network conditions using the two rate adaptation
algorithms: MASH and YT.

Specifically, we use the tc utility to create five scenarios
for the average bandwidth on the link between the client
and the Internet, assuming the bottleneck link is the last hop
as YouTube is well provisioned: (1) average bandwidth of
8 Mbps, (2) average bandwidth of 16 Mbps, (3) bandwidth
changes from 16 to 40 Mbps at t = 60 seconds, (4) bandwidth
changes from 40 to 16 Mbps at t = 60 seconds, and (5)
bandwidth changes from 16 to 40 Mbps at t = 60 seconds,
then from 40 to 16 Mbps at t = 90 seconds. In the first two
scenarios, the average bandwidth is kept constant, while in the
last three the bandwidth changes. Thus, in our experiments,
we are capturing the view switching by users as well as the
dynamic changes of bandwidth. For each bandwidth scenario
and for each user activity pattern, we start the streaming
session using the Chrome browser and request the considered
multiview video from YouTube. Once the session starts, we
open the Developer Tools panel in Chrome to collect HTTP
request and response records. During the streaming session, we
switch among the views following the user activity patterns.
After the session ends, we collect the corresponding HAR file.
HAR files store information about the page, HTTP requests
and responses, and timing information. We are interested in
one object called entries. YouTube client interacts with
the server using request query string. Specifically, YouTube
client includes 36 query strings in each request for each view.
We extract four query strings: (1) id: distinguishes different
views, (2) mime: indicates whether this is a video or audio

segment, (3) itag: represents the quality profile, and (4)
bytesrange: the requested byte range. We focus on video
segments only. We also do not pause the video at any time. We
repeat the whole experiment using the MASH algorithm. Due
to space limitations, we only present a sample of our results;
other results are similar. In all following figures, vertical dotted
red lines correspond to view switch time.

Figure 5 summarizes the results for the FQ user activity
pattern, when the client average bandwidth is 8 Mbps. We note
that 8 Mbps should be sufficient for YouTube since it naively
downloads multiple views. If we decrease the bandwidth,
YouTube will have lower rendering quality and higher rate of
buffering. Figure 5a shows that MASH achieves much higher
and more consistent rendering quality than YT. The figure
indicates an improvement of up to 300% in the rendering
quality can be achieved by our rate adaptation algorithm. The
maximum improvement is shown in the figure around t = 210
seconds. MASH is conservative about fetching segments of
different views at high bitrates. YT, however, is aggressive
and requests highest bitrates most of the time, even if a
view is inactive. This is shown in Figures 5b and 5c where
YT prefetches a lot of bytes most of the time, especially at
the beginning. MASH prefetches more bytes only when an
activity pattern is captured. For example, Figures 5b and 5d
show that at period [240, 270], MASH prefetches V2 at higher
bitrate although the active view is V1. That is why MASH’s
rendering quality does not suffer at view switches. On the
other hand, Figure 5e shows that YT is unaware of such
pattern. At the beginning, YT fetches all views at highest
bitrates, then it focuses on the current and previous active
views only. For example, if the user switches from V1 to

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Server Upload Bitrate (Mbps)×103

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 2X

1.7X

MASH Bl Im

Fig. 6: Load on the server to handle 100 concurrent users.

V2, YT keeps requesting V1 at high bitrates for a while.
This is shown in Figure 5e, where YT fetches bytes for
inactive views V1, V3 and V4 in period [150, 180] almost
as V2. So, when it requests segments for active view V2
in the same period, it takes time to reach a high bitrate.
The decisions taken by MASH and YT do not only affect
rendering quality, but the rate of buffering and prefetching
efficiency as well. YT suffers from playback interruptions as
shown in Figure 5f, with buffering rate of 0.056 (i.e., 20 re-
buffering events in 350 sec), while MASH is perfectly smooth.
Similarly, YT prefetches a lot of bytes without rendering them
with prefetching efficiency of 24.3%, whereas for MASH it is
52.7% (Figure 5g). For other view switching and bandwidth
scenarios, similar prefetching efficiency and rate of buffering
results are obtained. YT can achieve the same rendering quality
as MASH in high bandwidth scenarios only.

In summary, our experiments showed that MASH can
produce much higher (up to 3X) and smoother quality than
YT. They also show that unlike YT, MASH does not suffer
from any playback interruptions even in presence of frequent
user activities and dynamic bandwidth changes. Moreover,
MASH is more efficient in using the network bandwidth, with
a prefetching efficiency up to 2X higher than that of YT.

C. Fairness and Comparisons vs. others

In this experiment, we assess the fairness and scalability
of MASH, by analyzing the performance of concurrent mul-
tiview streaming sessions. We also compare our algorithm
versus others. As shown in Figure 4, each of the M VMs
concurrently runs our multiview player and requests the video
from the server. The upload capacity of the server is C
Mbps, and it is shared among all M users. Users have
different download capacities. We set these capacities accord-
ing to the Akamai state of the Internet report.2 Specifically,
the probability of Ci = x Mbps follows this distribution
{0.31, 0.37, 0.13, 0.12, 0.07}, where x ∈ {4, 10, 15, 25, 35}
Mbps. Similarly, we set the latency using the AT&T global IP
network latency averages3 with values {20, 35, 55, 100} msec
following a uniform distribution. For user activities, 60%, 25%
and 15% of players follow the GLB, FQ and IFQ patterns,

2https://www.stateoftheinternet.com/downloads/pdfs/2015-q4-state-of-the-
internet-report.pdf

3https://ipnetwork.bgtmo.ip.att.net/pws/global network avgs.html

respectively. We use same quality levels Q as the previous
experiment. We evaluated two configurations: (1) C = 100
Mbps, M = 10 users, and (2) C = 1 Gbps, M = 100 users.
We only report the results of second, larger, configuration due
to space limitations.

As elaborated in Section II, we are not aware of any
rate adaptation algorithms for multiview video streaming over
HTTP in the literature. To partially mitigate this issue, we
compare MASH against two variations of current rate adap-
tation algorithms for single-view videos that can be used,
after our modifications, with multiview videos. One might
think of these variations as representative samples of possible
extensions of current algorithms [5]. Specifically, we consider
two buffer-based rate adaptation algorithms: (1) BL, baseline,
that prefetches every view independently whether it is active or
not, and (2) IM, inactive minimum, that prefetches the active
view based on a buffer-rate function, and all inactive views
with the minimum quality Qmin.

Figure 6 shows the cumulative distribution function (CDF)
of the server upload bitrate to serve the 100 users by each
algorithm. BL requests more data most of the time: more than
500 Mbps 80% of the time and up to 1050 Mbps. Whereas
the maximum server upload bitrate is 780 and 470 Mbps
for IM and MASH, respectively. The total amount of data
during streaming sessions is 253 Gb, 146 Gb and 131 Gb for
BL, IM and MASH respectively. Compared to BL and IM,
MASH requests less data while improves rendering quality,
prefetching efficiency, buffering rate and fairness. Figures 7a
and 7b show that MASH outperforms IM in terms of rendering
quality and prefetching efficiency for all streaming sessions.
Specifically, MASH improves the average rendering quality
and average prefetching ratio by up to 78.5% and 38.6%,
respectively. This is because IM fills its inactive buffers with
low bitrate segments, hence, the quality drops. Also, when a
view switch occurs, most of these segments are not rendered,
thus, the prefetching efficiency decreases. Since BL fetches all
views all the time, it shows an improvement of the average
rendering quality by up to 10%. This, however, comes at the
cost of low prefetching efficiency. MASH improves the aver-
age prefetching efficiency compared to BL by up to 54.4%.
Moreover, MASH improves BL average buffering rate by up to
50% as shown in Figure 7c. MASH incurs less buffering events
in less number of streaming sessions. In particular, MASH and
BL incur 1 and 1.125 buffering events for 6 and 8 streaming
sessions, respectively. Since IM prefetches all views, it delivers
smooth playback for 99 streaming sessions. However, it fills
the buffers of inactive views with low quality segments, hence,
it significantly reduces rendering quality compared to MASH
(Figure 7a). Finally, MASH provides fair share of average
quality across concurrent sessions with Fairness Index of 0.93.
On the other hand, the index is 0.88 and 0.82 for BL and
IM, respectively (figure not shown). This is because these
algorithms request segments more than a user may need,
hence, resulting in large quality variation across concurrent
sessions. While MASH smartly considers user quality needs
according to his/her activity pattern, resulting in fair share of

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Quality (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MASH Bl Im

(a) Rendering Quality

0 10 20 30 40 50
Prefetching Eff. (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

MASH Bl Im

(b) Prefetching Efficiency

MASH Bl Im
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
at

e
of

B
uff

er
in

g

×10−4

(c) Rate of Buffering

Fig. 7: Comparison of MASH versus other rate adaptation algorithms.

high quality for all concurrent sessions.
In summary, our experiments showed that MASH achieves

fairness across competing multiview streaming sessions, and it
does not overload the streaming server. Moreover, MASH out-
performs other rate adaptation algorithms, which are derived
from current adaptation algorithms for single-view videos.

VI. CONCLUSIONS

Adaptively streaming multiview videos over HTTP is more
challenging than streaming single-view videos, because the
system needs to support user interactivities as well as han-
dles the network dynamics. Despite the recent interest in
the generation of multiview videos, very few works consid-
ered designing rate adaptation algorithms for such complex
videos. This paper addressed this problem and presented a
novel client-based multiview adaptive streaming over HTTP
algorithm (called MASH). MASH achieves high rendering
quality, smooth playback and efficient bandwidth utilization
by modeling and supporting user interactivities. Specifically,
MASH constructs and combines local and global view switch-
ing Markov chains to weigh the importance of views in the
video. We showed that these models converge and impose low
overheads on the client and server. We presented a new buffer-
based approach to request segments based on the relative
importance of different views and the current network condi-
tions. We implemented the proposed algorithm and compared
it against the rate adaptation algorithm used by YouTube to
stream multiview videos. Our extensive empirical evaluation
showed that MASH substantially outperforms the YouTube
algorithm in terms of rendered quality, number of buffering
events, and prefetching efficiency. In addition, our results
showed that MASH: (i) is scalable as it does not overload
the server, (ii) achieves fairness across concurrent streaming
sessions, and (iii) renders smooth and high quality even in
presence frequent view changes. This work can be extended
in multiple directions. For example, we plan to apply MASH
in virtual reality (VR) streaming and evaluate MASH with real
users and more content.

ACKNOWLEDGMENT

This work is supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, and by the
Qatar National Research Fund (grant # [NPRP8-519-1-108]).

REFERENCES

[1] “YouTube Experiment,” http://tcrn.ch/1I1TcdK, accessed: January, 2017.
[2] T. Stockhammer, “Dynamic adaptive streaming over http: standards and

design principles,” in Proc. of ACM MMSys, San Jose, CA, Feb 2011,
pp. 133–144.

[3] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the impact of video quality on user
engagement,” in Proc. of ACM SIGCOMM, Toronto, Canada, Aug 2011,
pp. 362–373.

[4] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe
and adapt: Rate adaptation for http video streaming at scale,” IEEE
JSAC, vol. 32, no. 4, pp. 719–733, Apr 2014.

[5] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” in Proc. of ACM SIGCOMM, Chicago, IL, Aug 2014,
pp. 187–198.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proc. of
ACM SIGCOMM, London, UK, Aug 2015, pp. 325–338.

[7] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over http,” in Proc.
of ACM MMSys, San Jose, CA, Feb 2011, pp. 157–168.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” in Proc.
of ACM CoNEXT, Nice, France, Dec 2012, pp. 97–108.

[9] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, “Qdash:
A qoe-aware dash system,” in Proc. of ACM MMSys, Chapel Hill, NC,
Feb 2012, pp. 11–22.

[10] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in
dynamic http streaming,” in Proc. of ACM CoNEXT, Nice, France, Dec
2012, pp. 109–120.

[11] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: Picking a video streaming rate is hard,”
in Proc. of ACM IMC, Boston, MA, Nov 2012, pp. 225–238.

[12] A. Hamza and M. Hefeeda, “A dash-based free-viewpoint video stream-
ing system,” in Proc. of ACM NOSSDAV, Singapore, Singapore, Mar
2014, pp. 55–60.

[13] T. Su, A. Javadtalab, A. Yassine, and S. Shirmohammadi, “A dash-based
3d multi-view video rate control system,” in Proc. of ICSPCS, Gold
Coast, Australia, Dec 2014, pp. 1–6.

[14] P. Xia and K. Nahrstedt, “Object-level bandwidth adaptation framework
for 3d tele-immersive system,” in Proc. of IEEE ICME, San Jose, CA,
Jul 2013.

[15] Z. Yang, B. Yu, K. Nahrstedt, and R. Bajscy, “A multi-stream adaptation
framework for bandwidth management in 3d tele-immersion,” in Proc.
of ACM NOSSDAV, Newport, RI, May 2006, pp. 14:1–14:6.

[16] W. Wu, A. Arefin, G. Kurillo, P. Agarwal, K. Nahrstedt, and R. Ba-
jcsy, “Color-plus-depth level-of-detail in 3d tele-immersive video: A
psychophysical approach,” in Proc. of ACM Multimedia, Scottsdale, AZ,
Nov 2011, pp. 13–22.

[17] J. R. Norris, Markov chains. Cambridge University Press, 1998.
[18] E. Cinlar, Introduction to stochastic processes. Prentice-Hall, 1975.
[19] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts

viewer behavior: Inferring causality using quasi-experimental designs,”
in Proc. of ACM IMC, Boston, MA, Nov 2012, pp. 211–224.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

