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Abstract—Current data mining techniques used to create
failure predictors for online services require massive amounts
of data to build, train, and test the predictors. These operations
are tedious, time consuming, and are not done in real-time. Also,
the accuracy of the resulting predictor is highly compromised by
changes that affect the environment and working conditions of
the predictor. We propose a new approach to creating a dynamic
failure predictor for online services in real-time and keeping
its accuracy high during the services run-time changes. We use
synthetic transactions during the run-time lifecycle to generate
current data about the service. This data is used in its ephemeral
state to build, train, test, and maintain an up-to-date failure
predictor. We implemented the proposed approach in a large-
scale online ad service that processes billions of requests each
month in six data centers distributed in three continents. We show
that the proposed predictor is able to maintain failure prediction
accuracy as high as 86% during online service changes, whereas
the accuracy of the state-of-the-art predictors may drop to less
than 10%.

I. INTRODUCTION

Online services have Service Level Agreements (SLAs)
covering various aspects of the service such as reliability,
response times, and up-times. For example, Amazon has a
stated up-time of 99.95% SLA, and 3Tera has a 99.999%
availability SLA. The cost of not meeting these SLAs is not
only low customer satisfaction, but also a heavy price tag due
to fines and loss of business. It is estimated that the annual
downtime cost of IT systems in North America is about $26.5
Billion [1].

A failure is an observed deviation by the user of the service
from the expected behavior. The user can be human or another
computer system. Failure management, a term we use to refer
to all aspects of dealing with failures, plays a key role in the
reliability of online services. It includes failure monitoring,
prediction, detection, root-cause analysis, all the way to failure
handling by prevention and/or hiding. We focus in this paper
on failure prediction. If failures are predicted correctly and in
time, corrective measures can be taken to prevent or hide them
from being observed by users.

There are several approaches to create an online ser-
vice failure predictor. These include statistical methods like
Bayesian, decision rules methods like decision-trees, artificial
intelligence methods like neural-networks, and cluster analysis
methods like clustering algorithms [2], [3]. The predictor
generation entails: (1) generation of data about the system;
including its inputs, working environment, and outputs, (2)
collection of this data into containers like log files to be used
later, (3) pre-processing and analysis of the data to exclude
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extraneous data, and organize the remaining impactful data
into usable data models like dimensional models [4], (4)
designing of prediction algorithm(s) and system(s), (5) training
the predictor, (6) testing it, and (7) deploying it in production
to be used in failure prediction in the online services. These
steps are lengthy, complex, and time consuming [5], [6]. Thus,
they usually take place before the run-time lifecycle of the
online service. Also, the resulting predictor is built for certain
system configurations and working conditions like the amount
of available resources and their performance characteristics,
e.g., the number of routers and their throughput, and the
number of database systems and their sizes. If these configu-
rations change, the predictor may no longer be accurate. For
example, the predictor could be designed for a database system
that meets its throughput SLA when it encounters up to NV
concurrent requests per second, and it fails beyond that. If the
system administrator adds a performance enhancing database
cluster to the database system where now it can handle up to
3 x N requests per second and still meets its throughput SLA
requirements, the predictor would likely continue to predict
failure if the requests per second approaches N not 3 x N. In
this paper, we call these predictors static predictors, because
they do not adapt to changes in the service functionality, the
system resources, or other changes.

Furthermore, data mining techniques used to generate fail-
ure predictors require high volumes of data to reach high pre-
diction accuracy [5], [7], [3]. Current data mining techniques
de-emphasize the system under study, by treating it as a black
box, and focus on its inputs, outputs, and working conditions
to build the failure predictor models. These characteristics
of current data mining techniques make them not suitable
for real-time creation and updates. Static predictors work
well within environments that do not change often; such as
transportation systems like airplanes and navy ships, engineer-
ing systems like factories and assembly lines, and software
systems like games. On the other hand, modern online services
lack such stability over time at many levels including func-
tionality, designs and implementations, and service hardware
provisions to accommodate the changing user requirements
and loads over time. The ever-changing landscape of online
services, coupled with requirements such as continuous up-
times, make the use of static failure predictors challenging
and less efficient.

We investigate a new approach to failure prediction in
online-services during their real-time lifecycle that overcomes
the problems noted above. Real-time refers to the runtime



lifecycle of the service, where the service is in production and
is being used by real customers. We use synthetic transactions
during the service real-time lifecycle to generate current data
about the service. This data is used in its ephemeral state to
build, train, test, and maintain an up-to-date failure predictor.
We evaluate the effectiveness of the proposed approach on a
large-scale enterprise backend ad service. The service handles
over 4 billion ad requests a month. We show that during the
production phase where the service goes through changes,
our approach is able to maintain high prediction accuracy of
about 86%, whereas the prediction accuracy of current state-
of-the-art predictors may drop to less than 10%. The recall
of the data generated by our synthetic transactions is 100%.
Recall in this context refers to the percentage of the generated
data that is relevant and used. In contrast, the recall in the
production logs is less than 2%. In addition, we show that we
can update the predictor in real-time in less than 7 minutes;
this includes generating data, creating the predictor, training it,
and testing it. On the other hand, building a failure predictor
using typical data mining techniques for the same service by
using production logs requires about 5 weeks of production
running and logging, and it takes more than 17 hours of pre-
processing, training and testing.

The contributions of this work are (1) a novel approach
to build real-time failure predictors, (2) a light-weight data
mining algorithm for failure predictors in online services, and
(3) the actual implementation and deployment of the proposed
approach in a real online service environment.

The rest of this paper is organized as follows: Section
2 discusses related work. Section 3 presents our approach.
Section 4 describes the evaluation of the proposed approach.
Section 5 has the conclusions and suggested future work.

II. RELATED WORK

We summarize the current approaches for creating failure
predictors based on production logs. Then we discuss the need
to have failure prediction in online services, and the key efforts
done there.

A. Handling Production Logs

Quite a few research efforts emphasize the problems en-
countered in building accurate data mining models based on
production logs. First, logs are complex and hard to mine [5].
Second, data in the logs may not be sufficient for data mining
[5], [7]. Third, pre-processing the logs to get them to a state
where they are usable in prediction models is tedious and
expensive [5], [8]. Snyder et al. [7] argue that the insufficiency
of log data causes problems for mining them because data in
the logs are extraneous, and it is hard to identify the relevant
pieces that are needed in the data mining process. Xu et al. [5]
describe the voluminous nature of data in production logs, and
show that logs are not actually helpful in many cases, because
of their large volume. Chen et al. [9] study the application of
machine learning to logs of faulty executions to predict the
root cause of failures. Their Pinpoint model requests paths in
the system to cluster performance behaviors, and identify root

causes of failures and anomalous performance. Pre-processing
of system logs to prepare them for analysis and mining is
studied by Salfner et al. [10].

The research threads above describe the problems with
production logs that make them hard to work with, especially
in real-time. They aim at alleviating some of the problems and
symptoms, but come short of reducing the cost of processing
production logs to levels that are suitable for real-time analysis
and mining. These limitations show the need to produce a real-
time predictor that does not depend on production logs.

B. Online Service Failure Prediction

Data mining and machine learning techniques used in creat-
ing failure predictors require data to be in some structure [2],
[3]. Many efforts have focused on enhancements of production
logs by adding structure through the use of meaningful logging
[11]. Zheng et al. [8] suggest event categorization and filtering
of logs to overcome their lack of structure and lack of
usability for data mining. Xu et al. [5] attempt to identify
problems with production logs of distributed systems, and
suggest methodologies to enhance the performance of mining
the logs by automatic matching of log statements. Cohen et
al. [12] describe how failure prediction models are built to
identify and study the root-causes of failures. They propose
techniques to categorize the faulty execution results found in
the logs, before building failure prediction models based on
them. They also propose the use of indexing and clustering
of system histories to correlate with failures. Leners et al.
[13] propose an algorithm to improve availability in distributed
systems by using failure informers. The failure informer is a
reporting service that is built based on mining and analyzing
the system messages in the logs.

In addition to root-cause analysis, failure predictors aim at
analyzing the execution path structures that lead to failures.
This is done by using instrumentation data from online servers
to correlate bad performance and resource usage. Sambasi-
van et al. [14] implement path tree comparisons as means
of predicting the paths that lead to failures. Realizing that
failure is the norm in massive online service infrastructures,
Hystrix of Netflix [15] aims at isolating points of access
to remote systems, services and 3rd party libraries, to stop
the cascading of failures. This adds resilience to services in
distributed systems. Hystrix uses real-time monitoring, and
acts on failures after they are detected. A few efforts attempt
to build predictive models based on execution analysis by
replaying the debugging information in logs [11], [16], [10].
Li et al. [17] propose WebProphet and the use of parental
dependency graph to encapsulate web object dependencies
to implement webpage load predictions. Viswanathan et al.
[18] develop semantic framework for data analysis to enhance
the performance of networked systems, and logging is the
mechanism of collecting data about the system.

We note that all efforts related to our work of failure
prediction depend on some form of logging for later analysis,
and act on failures after they happen. Considerable effort is put
to enhance the performance of mining the logs. Our approach



has a key difference from existing approaches to enhancing
online service reliability. We use data in real-time, because the
cost of working with logs is too high for real-time processing.

III. PROPOSED APPROACH

Predictors are designed to predict the outcome of an event
[2], [3]. In online services, events represent a variety of
measurable aspects and characteristics of the service, such as
the response time of the service, the availability of the service,
and the number of packets routed correctly in a given time.
The dynamic data prediction approach we propose is usable
with any of these events. For the rest of the paper, we use
the term failure prediction to indicate predicting when the
outcome of an event does not meet its SLA. For example, if
the event of interest is response time, then failure prediction
means predicting the cases where the operation under study
does not finish within the SLA.

We define two concepts: Local System and Scenario.
Local System refers to the stack of software, hardware, and
operating system used to perform a specific functionality in
the online service. Scenario refers to the collaboration of the
set of local systems that are used to implement an end-to-
end (e2e) user scenario. As an example, assume the online
service of interest is a retail service, where customers buy
sports products. An example of e2e scenario is the process
of finalizing the online purchase through a checkout process.
Assume the event of interest is response time. The response
time SLA for the e2e transaction could be 300ms; the purchase
process meets its SLA if it completes in less than 300ms, and
fails otherwise. Assume that the checkout process makes the
following calls behind the scene: check cart contents, check
product availability, calculate total price, validate credit card,
submit the transaction, return to user, and update all related
systems such as inventory, credit cards, and logging systems.
The collaboration of these local systems to implement the
purchase process represents the checkout scenario.

A. Testing in Production

Before we delve into the details of our approach, we
describe Testing in production (TiP). TiP is a set of software
testing methodologies that utilizes real production environ-
ments in a way that leverages the diversity of production, while
mitigating risks to end users [19], [20], [21]. Enterprise service
providers such as Facebook, Google, Microsoft and Yahoo use
TiP to perform functional, stress and performance, as well as
A/B testing in real-time [21]. The synthetic transactions used
in TiP generate loads that are marked with special moniker(s)
so that they are distinguished from real transactions, and do not
interfere with the service destructively, or result in an incorrect
state of the system like product inventory reduction due to test
purchases. Synthetic transactions in TiP do utilize the service
resources, and this puts an impact on the service. Service
designers account for such an impact due to the importance
of TiP; without it the service is flying blind [19], [21]. We
utilize TiP principles and infrastructures as the platform for
our suggested approach. No production code is instrumented
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Fig. 1. Interaction between proposed failure predictor and production system.

to generate the data. Data is generated through TiP synthetic
transactions. This is an advantage of our approach, because we
do not impact the production code, and thus no extra testing
is needed. Also, updates to the failure predictor do not require
production code update or redeployment. We use TiP to cover
functional, performance, and data failure modes.

B. Overview of the Proposed Dynamic Failure Predictor

Our proposed dynamic failure predictor is suitable for the
dynamic nature of online services’ functionality, environments,
and elasticity of their loads over time. It can be used for
systems with static environments as well, but it is superior
in systems with dynamic situations. The proposed approach
can be summarized in the following steps:

o Step 1: Using synthetic transactions, local synthetic
transactions (LSTs) and scenario synthetic transactions
(SSTs), to execute the local systems of the online service
in a way that mimics user behavior, and constitute a
complete e2e scenario such as a user buying a product
online.

o Step 2: Collecting the synthetic transactions inputs, local
systems outputs, e2e scenario outputs, and events of
interest. This data is collected into in-memory constructs
with a predefined dimensional model [4].

e Step 3: Using the freshly collected data from running
the synthetic transactions to correlate the local systems
inputs, local systems outputs, the output of the e2e
scenario, and the event of interest.

o Step 4: Building a real-time predictor from the collected
data and the correlations found in the previous steps, and
training and testing it in real-time.

The failure predictor is used in production as long as it
has high prediction accuracy. We can measure its prediction
accuracy since we know the output of the e2e scenario and
the output of the event of interest from running the synthetic
transactions as well as real transactions in real-time. If the
accuracy of the predictor drops below a threshold for a given
period of time, we rebuild a new predictor, train it, and test it.

Figure 1 depicts the relationship between a production
system and the failure prediction system used to generate and
maintain the predictor. The production system is comprised of
multiple local systems that constitute one e2e scenario. The
failure prediction system is an independent product that runs
in the same environment where the online service runs. It



has access to the same resources as the production service,
but is not part of the online service code. Updates and
re-deployments of the predictor code can be done anytime
without interfering with the service production system.

C. Generating Real-time Synthetic Transactions

The transaction generator, in the failure prediction system
in Figure 1, mimics the user scenario by making all the local
system calls that comprise the scenario. The system monitor
collects the responses of each LST, the event of interest, and
other information about each local system such as the number
of running tasks, and the used resources in the system.

The algorithm we propose to generate synthetic transactions
is as follows. The transaction generator makes LST calls
using test loads, which are similar to real loads. The real
user behavior (loads and call distributions) are found from
the logs of previous deployments of the service, or from
field/market studies about the service. For example, it would
be known based on what is found in previous production logs,
or estimated from market research, that the average customer
of a retail online store buys 5-10 items a time, and that the
service gets around 500 concurrent users at peak times. So if
local system 1 is an addProductToCart() function, the average
expected products to add are 7, and the average expected
concurrent function calls are 100. Then the LSTs made by
the predictor transaction generator start with these loads, and
progressively add more loads until the failure causing loads
are found. The test loads are executed on the current system,
and so generate current information that represents the current
state of the system.

The LST calls are made at equidistant time series; once
every N seconds. The value of N is configurable, depending
on the service, and it varies during execution time, increases or
decreases, depending on the state of the service. If the service
is churning and failures are happening more, then NV is reduced
to get a better pulse of the system. The event is captured after
each of these tests, and its value is compared to the result of
the prediction. If the accuracy of the predictor starts to drop,
the tests are done at a higher rate to generate data to build
a new predictor. The set of tests performed every N seconds
need not be exactly like those of customer behavior. However,
if the service at hand requires an exact replica of the user
behavior, then parts of previous production logs representing
that behavior can be replayed as suggested by [11], [16], [10].

D. Collecting the System Data

The system monitor collects the data generated by running
the LSTs around the failure points found by the transaction
generator. The data is passed to the predictor configuration
cache, as shown in Figure 1. The data includes the current
load and state of the system like the number of tasks, and the
used resources like CPU and memory utilization. The data is
collected and hosted in memory in an array with a dimensional
model schema [4]. Dimensional modeling refers to a set of
concepts and techniques used in data analysis which provide
insights into the cause-effect relationships between entities.

Data is organized into two sets, a set of measured or monitored
data, called facts, and a set of parameters, called dimensions
that define, impact, and control the facts.

For this work, the fact is the event of interest that is to be
predicted, such as response time. The dimensions are the other
sets of data that impact the event, such as:

o The LST that is called: this allows us to know which test
is run.

o The time that LST is called: the time stamp is what allows
us to relate and study the cause and effect in the system
calls, i.e., at this time there are this many function calls
and this many tasks, which caused this response time.

o The number of tasks: processes or jobs in the system.

o The resource (CPU, compute servers, and memory)
utilization: although this may be seen as a measure, it
plays the role of a dimension that impacts the event.

Dimensions Fact
Diml1 Dim2 Dim3 Dim4 Dim5 Factl
LST Tasks CPU Mem- | LST SST
ory time time
1 53 19% 35% 23 191
2 53 17% 35% 17 191
3 53 18% 35% 31 191
4 53 11% 35% 19 191

Table 1 Sample of Local System Response Time SLA.

Table 1 presents a sample of such a dimensional model.
Note that we use surrogate keys [4] to represent non-measured
and non-numeric values. A surrogate key is a unique identifier
of an entity; it can be an integer and it is not derived. This
makes a table with smaller footprint in memory, only integers
are used, and enhances the performance of operations done on
1t.

E. Design of the Real-time Predictor

The predictor trainer, in Figure 1, is the module that creates,
trains, and tests the proposed predictor. This happens on
the test platform not the production platform. A predictor,
fundamentally, is a classification system [2], [3]. It defines
and monitors boundaries of working conditions that result in
an event. It predicts the outcome of an event based on the
system working conditions and loads. Our proposed light-
weight predictor defines the independent variables of the local
systems that impact the event of interest; the independent
variables are the ones that can be controlled. The independent
variables we propose to use are the number of active tasks,
jobs and processes, in the system. We identify the dependent
variables that control the output of the event to be the
resource utilization; the compute and memory resources. They
are dependent on the independent variables, but their values
impact the event of interest.

Our classifier follows a logical expression model that defines
the safe working boundary conditions for each of these vari-
ables by their upper values. For example, the event of interest
would succeed if:



o Conditionl:
— IndependentVariablel 1<L11

o Condition2:
— DependentVariable21<M21

« ConditionN:
— IndependentVariableN1<PN1

As an example, Condition] may have two independent vari-
ables and their values that cause failure as follows: concurrent-
processes <15 and Number-of-routed-packets <100. At the
time of running the LSTs, the values of concurrent processes,
active packets, LSTs inputs, and event value are captured from
the system. They are then fed to the predictor. If the value of
concurrent-processes is 13, and number of active packets is
95, the predictor predicts that the operations over the coming
period of time will be successful, but issues a warning to
the load-balancing-system to reduce the system loads as it
is approaching failure points. The prediction value (success
in this case) is compared with the actual event values that
are captured from the system, ground truth, over the coming
period of time. This allows measuring the accuracy of the
predictor as well as false positives and negatives. We explain
how to find the variable values that result in event failures in
the next section.

F. Training and Testing the Predictor

Our approach uses synthetic transactions to execute the
system by controlling the load to produce failures. It captures
the transactions inputs, the results from the transactions, the
event value, and the used loads. We can search for the classifier
values that result in failures in the captured data. This is an
advantage of our approach, as the findings are based on the
ground truth.

The Real-Time Dynamic Failure Predictor (RTDFP) algo-
rithm we devise, to find the classifier values that result in
failures, is as follows:

1) Make a new set of LST calls with increasing intensity
until the LSTs start to result in violating the SLA of the
event.

2) Test the system using LST calls with loads around the
failure causing loads.

3) Capture the LST inputs, system states, independent and
dependent variable values, and event value into an array
with a dimensional schema similar to Table 1.

4) Use search algorithm, e.g., A* search, to find the clas-
sifier values that correspond to the event failures.

5) Store these values for each local system in an array with
a schema similar to that shown in Table 2. We call this
table the Local System Predictor Configuration Table
(LSPCT).

6) Repeat these steps, 1 through 5, and capture 7" instances
of Table 2 until the classifier values reach a steady
state; a good way to determine that is by using standard

deviation for the variable values. The system continues
to be in change mode until a steady state in these
values is reached. The number of table instances, T,
depends on the system characteristics. Some systems
reach a steady state faster than others, and may require
a low 7" value like 5 tables. Other systems with higher
instability characteristics may require more tables. It is
up to the system designers to define 7. The T tables
extracted from running sets of LST tests constitute a
rolling window, i.e., the T'+ 1 new LST tests will push
out the results of the first LST run so that the tables
have the LST test sets 2 to 7"+ 1.

When a steady state in the classifier values is reached, a new
instance of Table 2 is created by averaging the values found in
the 7" tables created during the training steps. This instance is
called the predictor configuration table (PCT). These average
values, in the PCT, are the values of the classifier variables
that result in failures.

To test the predictor, we run a new set of LSTs around the
failure points and capture the event value for each. We test
the predictor accuracy by comparing its predictions against
the event value for each test. If the accuracy of the predictor
meets the goal, it is ready for use. If not, we repeat the training
steps. When the predictor passes testing, the values in the
PCT are stored in the predictor configuration cache, and are
used as the classifier values that would predict failures in the
system. Procedure 1 illustrates the RTDPF algorithm to train
the proposed predictor.

Local Sys- | Independent| Dependent | Dependent

tem Varl e.g. | Varl e.g. | Va2 e.g.
Tasks CPU Memory

1 153 68% 73%

2 149 1% 68%

3 223 67% 71%

4 196 70% 2%

Table 2 Sample Configuration of Local System Predictor.

Note that other techniques, such as regression [2], [3], can
be used to find the predictor variable values that result in
failure. However, we believe that searching the results of the
synthetic transactions has better results as the values are found
based on the ground truth coming fresh from the system.

The accuracy of the predictor is continuously monitored, by
the system monitor in Figure 1. If the predictor is successful at
predicting the event, the predictor is kept. If not, the system
is tested until it reaches a steady state, before deciding to
create a new predictor. Note that during system changes, the
old predictor is kept in use until the new predictor is created.
When a new predictor is created, the predictor trainer updates
the predictor configuration table, which updates the dynamic
real-time predictor without any impact on the service.

IV. EVALUATION

We validate our approach on a large-scale enterprise online
ad service, used in Microsoft, that works as an ad request



Procedure 1 RTDFP Algorithm
PREDICTOR TRAINER
1: function TRAINPREDICTOR

2: Counter =0

3: T = NumberOfTables2 > configured value
4: FailurePoints = FindEventFailurePoints()

5: while No-Steady-State-in-Classifier-Values do
6: RunTestsAroundFailurePoints();

7: Search for values that cause failure;

8: Store values into (Counter % T') of Table2;
9: Compute steady-state-in-classifer-values;

10: Increment Counter;

11: end while

12: RunTestsAroundFailurePoints();

13: Test Classifier Values;

14: if ClassifierValueTest Succeeds then

15: PCT = Average Table2 T Instances;

16: end if

17: if ClassifierValueTest Fails then

18: TrainPredictor()

19: end if

20: end function
FIND EVENT FAILURE POINTS
1: function FINDEVENTFAILUREPOINTS
2: while no-event-failures do
Increase LST loads
Run LST calls
Capture Event-Failure-Causing-Loads
6: end while
7: end function
TEST EVENT FAILURE POINTS
1: function RUNTESTSAROUNDFAILUREPOINTS
2: for each n% below Event-Failure-Causing-Loads to n%
above Event-Failure-Causing-Loads do
3 Run LST calls
4: Capture LST and system values into Tablel
5: end for
6: end function

nosw

arbitration unit. The high level diagram of the service is
depicted in Figure 2. The service is composed of the ad
request facade, the ad request processor, the targeting system,
and the response validator. The service is a large distributed
system, has challenging requirements, and operates under strict
SLA, making it an ideal environment for the validation of
the proposed technique. It is hosted in three continents; North
America, Europe, and Asia. It receives ad requests from appli-
cations running on mobile devices and PCs. It processes each
ad request, determines the source, PC or mobile, and attempts
to find targeting opportunities based on app categories, device
types, user information if available with user permission and
consent to use, and client location. It then makes a call that
has the targeting information to an ad serving network. The
ad serving network identifies a suitable ad to be served to
the application, and sends a response back to the service. The
service validates the ad response against rules about the user,
the calling application, ad type, and ad size, and returns the
ad response to the calling application. The response time SLA
for serving an ad is 250ms; this is the event value we watch
for.

_ Response
l_ _—— —I Validator
| Client | 3
| Mobile l_> ReASest Ad Request I Ad Serving l
| or I Faqa 4 Processor | Network |
| PC ace ) L 1
Application I
I
—_— = _I | Targeting

System

Fig. 2. The online ad service used in the experiment.

A. Implementation and Setup

We implement the LSTs for the ad service local systems and
measure the SST response time for the ad request scenario.
There are three local systems: ad request processor, targeting
system, and response validator. For our study, we use a local
ad serving network, which becomes the fourth local system.

The ad service gets about 4 billion ad requests a month. It
is deployed in 6 data centers, 3 continents with 2 data centers
each. The setup we have is based on the model shown in Figure
1. The transaction generator makes a call to each of the local
systems and controls the various aspects of the ad request,
client type, ad type, location, and user information. The
transaction generator also simulates ad request calls made by
multiple clients, by making simultaneous calls with different
user agent information. It controls the load in two ways: the
number of ad requests made by each simulated client in a given
time, and the number of simultaneous ad requests representing
multiple client calls. We implement a predictor instrumentation
that can make up to 10,000 concurrent ad requests. By design,
each user cannot request more than one ad every 30 seconds,
this is a real requirement to prevent ad fraud. The maximum
load that can be generated by the failure prediction system
is 10,000 simultaneous ad requests every 30 seconds. This is
more than 100x the expected real load of the system; so it is
a good stress test. Each ad request results in about 0.5KB of
data returned from the service, and this is what is captured
by the system monitor into a schema similar to that shown in
Table 1. The prediction system is implemented and is used for
several months.

B. Data Collection

Responses to the LST calls and each local system state
are collected for every LST call made to the service. These
values are stored in memory arrays with the schema of Table
1, in the predictor configuration cache. In steady state, when
the service is not going through any changes that warrant a
predictor update, which is determined if the predictor main-
tains accuracy above threshold, the synthetic transactions are
designed to run 100 concurrent LSTs every minute. Each LST
takes an average of 25ms to complete, so running 100 tests
every minute takes less than 3 seconds. Note that the LSTs are
used for production testing purposes as well as for predictor
verification. If the prediction accuracy drops below a threshold,



we rebuild the predictor using the RTDFP algorithm. We use
a high threshold of 80% accuracy, to ensure the online service
maintains its failure SLA. We use the algorithms described in
Section 3 to collect new data, create a predictor, train it, and
test it. We find that it takes, on average, about 3-5 minutes
with about 7,000 to 10,000 LSTs to generate enough failure
information to start the creation, training, and testing of the
predictor. Each transaction generates about 0.5KB of data, so
the total data used in training is about SMB only. In contrast,
the production log has about 88GB of data a day, and requires
5-6 weeks worth of production running, as shown later in Table
3, to generate enough data that can be used to create, train,
and test the failure predictors.

Using synthetic transactions for about 7 minutes we were
able to generate data, create, train, and test the proposed
dynamic predictor and get to accuracy close to 86%. On the
other hand, we find that the average real production failure
rate is less than 1%. That is an average of less than 150
failures a minute in the whole data center which has hundreds
of servers. There is also the fact that production failures do
not actually happen uniformly throughout the day. So from
a test perspective, it can be hours, or even days, before real
failures are encountered.

C. Performance Metrics

We validate the effectiveness of our approach by measuring
its ability to adapt to production system changes, and still
maintain high accuracy. We also compare the performance
characteristics of the proposed predictor with four static pre-
dictors based on neural network, clustering, Bayesian, and de-
cision trees algorithms. We do not implement these predictors,
we use commercially available software that implement them.
We choose these algorithms because of their wide use [9],
[12], [5], [14] and because they represent different approaches
to data mining and machine learning; they represent Artificial
Intelligence, Clustering Analysis, Statistical Methods, and
Decision Rules respectively [2], [3], [22].

To assess the accuracy of the proposed dynamic predictor,
we use the following metrics:

« False positives: a prediction is called a false positive
when a transaction is predicted to fail to meet the
response time SLA, but the transaction meets the SLA
time.

« False negatives: when a transaction is predicted to meet
the response time SLA, but the transaction fails to meet
the SLA time.

e Accuracy: is the ability to predict the results of the
new transactions correctly; i.e., the predictor’s ability to
identify and exclude true errors. It is calculated as the
ratio of correct predictions, which is ’all predictions’
minus ‘true errors’, divided by all predictions.

D. Detecting Failures in Dynamic Environments

To test the predictors’ ability to adapt to real-time changes,
we start with a baseline configuration and configure/program
the four commercial static predictors. The proposed dynamic

100%

80%

60%

Accuracy

—Proposed Predictor
- Neural Network

- Bayesian
=Clustering
—QccisiQH Trgcs A A ‘ A } .
0 20 40 60 80 100 120 140
Execution Time in Minutes

40%

20%

0%

Fig. 3. Accuracy of the proposed predictor vs. current predictors in dynamic
environments.

predictor is built during the experiment. The baseline configu-
ration is a cluster of 10 compute servers. Each compute server
is a quad-core intel Xeon server with 12 gigabyte RAM. We
deploy the predictors into the test client. We run the synthetic
transactions, LSTs, and SST. We make the following changes:
increase the available compute resources by 5 more processing
servers and wait for thirty minutes, and then increase by 5
more servers for a total of 20 servers, and wait for 30 minutes.
We drop the compute resources to 6 servers and wait for
thirty minutes, and then drop the servers to 3 and wait for
30 minutes. During that period, we capture, every minute, the
results of the LSTs and SST, event value, which is response
time for the tests, and predictions made by all predictors. The
event value we capture is the ground truth. We then measure
the false positive rates, false negative rates, and the accuracy
of all predictors to determine how they react and adapt to
production system changes.

Figure 3 shows the accuracy of all predictors in dynamic
environments over 2.5 hour period. Figure 4 shows the false
positives, and Figure 5 shows the false negatives for all
predictors. As expected, the current static predictors fail to
adapt to the resource changes; they drop in accuracy after
the first configuration change, which is adding 5 processing
servers, and never regain their accuracy back. It is worth noting
that after increasing the compute resources above the baseline,
it is the false positives that are responsible for the drop
in accuracy. In other words, many transactions are actually
successful, but are predicted to fail. While after reducing the
compute resources below the baseline, it is the false negatives
that are responsible for the drop in accuracy. On the other
hand, Figures 3 through 5 show that the proposed predictor is
able to maintain high accuracy. It manages to maintain about
the same average of false positives and false negatives post the
compute resource changes. On average, it takes the proposed
predictor about 7 minutes to adapt to the changes and reflect
current state of the system.

The transient period, which is the period from the time we
add or remove resources until steady state in the proposed
predictor is reached, is on average about 7 minutes. That’s
how long it takes to update the proposed predictor. During
the transient period, the current static predictors and proposed
dynamic predictor drop in accuracy. However, since the pro-
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posed predictor was updated after each change, its accuracy
during the transient period is far better than the static ones,
because their accuracy drop accumulates over time, as shown
in Figure 3.

E. Receiver Operating Characteristics of the Predictors

To compare the performance characteristics of the proposed
dynamic predictor with the four current static predictors that
are created from real production logs we build a Receiver
Operating Characteristic (ROC) curve for each predictor. The
ROC curves show the relationship between the specificity and
sensitivity of the predictors. This is a standard methodology
for comparing predictor accuracy over a range of controlled
input specificity. The following metrics are used to generate
the ROC curves:

o True Positives: when a predictor correctly predicts a
transaction to fail to meet the SLA time.

o True Negatives: when a predictor correctly predicts a
transaction to meet the SLA time.

o True Negative Rate: is the ratio of true negatives to the
sum of true negatives and false positives. This is also
known as Specificity.

o Recall: is the ratio of true positives to the sum of true
positives and false negatives. This is also known as
Sensitivity.

Figure 6 shows the ROC curves of the predictors in their
steady state, when the static predictors are still relevant to
the system; note that post system changes, it is no longer
possible nor meaningful to plot the ROC curves for the static
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Fig. 6. Predictors ROC Curves.

predictors. The goal of this comparison is to show that the
proposed predictor has comparable and viable performance
characteristics to industry standard commercial predictors. The
main advantage of the proposed predictor is that it takes a
fraction of the time to build, train and test in real-time, whereas
the static predictors require orders of magnitude more data
and time to build, train, and test. Table 3 shows a comparison
between the predictors in terms of their data generation and
processing times, as well as data Recall.

The downside to the proposed predictor is that it requires
high-level knowledge about the system to be implemented as
part of its testing whereas the static predictors do not require
that knowledge. We argue that this knowledge is already
required by the system designers, implementers, and testers
who are the intended audience of our suggested approach.

Predictor Generation | Processing | Data Re-
Time Time call
Proposed 3-5 Mins 2-4 Mins 100%
Bayesian 5 Weeks 21 Hrs 0.91%
Clustering 6 Weeks 18 Hrs 0.57%
Decision Trees 5 Weeks 19 Hrs 0.68%
Neural Network 5 Weeks 17 Hrs 0.97%

TABLE 3 - Processing time and data needed by each
predictor.

F. Performance Analysis over Long Period

Figure 7 shows the daily accuracy, false positives, and false
negatives of running the proposed predictor for more than three
months. We note the stability and consistent behavior of the
predictor over that period of time.

G. Overheads

The overheads incurred by the proposed predictor fall into
two categories: during steady state, and during system changes.
During steady state, which is a state where the predictor’s
accuracy is maintained above 80%, 100 tests are run every
minute for an average of about 2.5 seconds. Adding about
2.5 seconds worth of production testing constitutes less than
5% impact on each production server, which is low. The
average real production requests per minute made to each
production server is about 150 requests. Each request takes an
average of 25ms. So the impact on production servers is low.
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During system changes, when the prediction accuracy starts to
fluctuate and drop below 80%, we double the testing load. We
run the test every 30 seconds, which results in doubling the
amount of time we use the system. We use the system for about
5-6 seconds every minute, which is still low. The fact that the
LSTs are part of the required production testing, and are used
to accomplish other jobs than the prediction maintenance, like
testing the actual functionality of the local systems, makes
the investment less of an overhead. The test client servers are
already dedicated to the production testing functionality, and
as such they are not considered an extra cost.

There is no production code overhead special to the predic-
tor functionality. The measurements we take, such as resource
utilization and tasks measurements, are provided by the oper-
ating system of the production local systems. These are taken
at equidistant time series, with or without our approach, as
means of monitoring the health of production servers.

V. CONCLUSIONS AND FUTURE WORK

Current approaches to failure prediction are static and can
not keep up with the changes that happen during the real-time
lifecycle of online services. Static predictors require massive
amounts of data to rebuild, which is not possible in real-time.
Static predictors have their strengths and areas of application;
they do not require specific knowledge about the system, and
are successful in static environments and situations. Online
services, however, have dynamic situations that require them
to change often.

We presented a dynamic approach to creating and maintain-
ing failure predictors for online services in real-time which
shows superior ability to stay relevant and maintains high
accuracy throughout the real-time lifecycle of the online ser-
vice. Using the proposed real-time dynamic failure prediction
(RTDFP) algorithm, we can regenerate an online service
failure predictor post system changes in a few minutes with a
few megabytes of test generated data.

A future follow up is to study the ability of dynamic pre-
dictors to work with more complex cloud-based systems such
as search engines that require monitoring multiple complex,
and inter-dependent events at a time.
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