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ABSTRACT Player engagement is crucial for the success of modern video games, yet its real-time
measurement remains challenging due to the intrusive nature of traditional measurement methods. In this
paper, we present a novel framework for non-intrusive, real-time and indirect measurement of engagement
in multiplayer online games based on flow theory. Our approach combines Graph Convolutional Networks
for modeling player interactions with Transformer networks for temporal processing, enabling indirect
measurement of both player skill and game challenge, which in turn are used to classify player engagement.
Using PlayerUnknown’s Battlegrounds (PUBG) as a case study, we demonstrate that our framework
can effectively measure phase-specific engagement using one minute of gameplay telemetry data. Our
framework achieves 73% accuracy and 0.83 ROC-AUC in engagement classification, matching the
performance of traditional survey-based methods while operating non-intrusively and in real-time. Further
cross-domain validation of the frameowrk, as is and without transfer learning, with the games FIFA’23
and Street Fighter V, leads to 66% accuracy, demonstrating the model’s stable performance despite the
significant differences in the test domains. Interestingly, our results suggest that objective gameplay metrics
may better reflect engagement than subjective player assessments, with skill estimates showing significant
correlation with self-reports.

INDEX TERMS Engagement Measurement, Machine Learning-Assisted Measurement, Flow Theory, Game
Telemetry

I. INTRODUCTION

THE video gaming industry has experienced exponen-
tial growth, now generating more revenue than the

music and movie industries combined [1]. As games be-
come increasingly complex and extensive, measuring and
monitoring player engagement has become crucial for game
developers and researchers alike [2]. Player engagement is
a multidimensional construct that encompasses cognitive,
emotional, and behavioral aspects of gameplay [3], requiring
sophisticated instrumentation methods to capture its various
dimensions [4], [5]. The importance of player engagement
spans various domains, including entertainment, education
[6], and business aspects such as churn prediction [7], [8]
and game design improvements [9]–[11].

Precise measurement of player engagement in real-time
faces multiple measurement challenges. First, player en-
gagement is a complex, multi-dimensional construct re-
quiring simultaneous monitoring of cognitive, behavioral,
and emotional signals. Second, engagement manifests both
as an instantaneous measurable state and as an evolving
process over time, complicating the development of unified
measurement models. Third, players’ diverse preferences
and gaming experiences necessitate adaptive measurement
approaches across different game contexts.

Traditional methods for measuring player engagement rely
on two main approaches: post-game surveys and physio-
logical data collection [12], [13]. Post-game surveys, such
as the Game Experience Questionnaire (GEQ) [14], provide
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comprehensive measurement data and are straightforward to
implement. However, they suffer from recall bias due to the
time gap between gameplay and reporting [15], and cannot
capture temporal fluctuations in engagement signals [16].
Conversely, physiological measurements, such as heart rate
monitoring and eye tracking, offer continuous, objective sig-
nal collection during gameplay. While this approach provides
high-resolution temporal data, it requires specialized sensing
equipment, creates artificial measurement conditions, and
typically involves complex signal processing that prevents
real-time engagement detection.

To address these limitations, we propose a non-intrusive
framework for real-time measurement of player engage-
ment using game telemetry signals. Modern games routinely
collect comprehensive telemetry data about player actions,
performance metrics, and game states, providing an acces-
sible and scalable measurement source. Our measurement
approach is grounded in Flow Theory [17], which posits that
optimal engagement occurs when a player’s skill matches the
game’s challenge. But skill and challenge are also difficult
to measure directly and non-invasively during gameplay.

To address this problem, we propose using easier-to-
measure telemetry signals including combat statistics, move-
ment patterns, resource management, and general match
states, to then indirectly measure skill and challenge. To
do so, we use Graph Convolutional Networks (GCN) that
detect complex player interactions and spatial relationships,
coupled with Transformer networks that process temporal
sequences of game states. This hybrid architecture produces
two proxy metrics that quantify skill and challenge, as
described next.

The first proxy metric is the player’s ranking in the match,
which indicates their skill level. Ranking is usually deter-
mined at match completion, but our framework detects likely
match outcomes in real-time based on ongoing performance
signals. Higher ranking indicates the player outperforming
others, suggesting higher skill levels. We consider skill to be
a continuous ordinal quantity normalized between 0 (lowest
skill) and 1 (highest skill).

The second proxy metric is the total damage sustained
from both enemy attacks and environmental hazards per
game phase, which quantifies the challenge level. Higher
damage indicates relatively more difficult game conditions
during that phase. We consider challenge to be a continuous,
positive, and unbounded ordinal quantity.

Finally, the measured skill and challenge are fed to an
engagement measurement module - a binary classifier which
uses an established baseline from player survey data to
classify engagement as an ordinal quantity of either 0 (low
engagement) or 1 (high engagement). The entire measure-
ment pipeline operates in real-time, providing engagement
estimates that precede actual gameplay outcomes by variable
time intervals, depending on when the player is eliminated
or the phase ends.

The instrumentation and measurement literature empha-
sizes the importance of user engagement mainly in medical
measurement applications, such as recognizing the emotional
dimension of engagement in rehabilitation [18], measuring
engagement using a proprietary tool from Emotiv Inc. to
evaluate the performance of an ADHD detection system [19],
utilizing cognitive engagement for risk assessment in the
use of medical devices [20], and predicting engagement in
older adults with dementia [21]. An exception is [22], which
uses physiological measures to assess driver engagement.
While [19] and [21] also use games, none of the above works
use game telemetry data to measure engagement in real time,
which is a main novelty of our proposed framework. The
primary contributions of our framework can therefore be
summarized as:

• An instrumentation methodology for real-time measure-
ment of engagement based on flow theory, transforming
standard game telemetry signals into continuous skill
and challenge measurements without gameplay inter-
ruption.

• A hybrid signal processing architecture combining
GCN for player interactions with Transformers for tem-
poral sequences, demonstrating superior measurement
performance over single-architecture alternatives.

• A high-resolution engagement measurement methodol-
ogy using survey-calibrated baselines, enabling detec-
tion of significant variations within inherently engaging
game contexts.

• A practical realization of the measurement framework
in PUBG, demonstrating its viability for complex mul-
tiplayer environments with diverse gameplay mechanics
and player interactions.

• Cross-domain validation of the model, as is and without
transfer learning, with FIFA’23, a sports game, and
Street Fighter V, a fighting game, demonstrating that
the approach is genre-agnostic, applicable to a wide
variety of game types beyond combat-focused games,
including sports games, racing games, strategy games,
and more.

The real-time engagement metrics provided by our frame-
work offer several practical applications for game develop-
ers. First, they enable dynamic difficulty adjustment, where
the game can automatically modify challenge levels based on
detected engagement states, preventing player frustration or
boredom [23], [24]. Second, they facilitate targeted content
delivery, allowing developers to introduce new gameplay
elements or narrative sequences precisely when engage-
ment begins to decline [25]. Third, they support personal-
ized matchmaking systems that can maintain optimal skill-
challenge balances across different player segments [26],
[27]. Fourth, they enable intelligent resource allocation in
cloud gaming environments, where streaming quality and
latency significantly impact user engagement [28]. By iden-
tifying highly engaging gameplay moments, cloud gaming
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providers can dynamically allocate more bandwidth and pro-
cessing resources to maintain quality during critical periods,
similar to how video providers optimize streaming quality to
maximize user engagement [29]. Beyond individual player
optimization, our metrics can reveal engagement patterns
across different game features, scenarios, play sessions, and
platforms, enabling developers to identify which specific
game elements consistently drive or diminish engagement.
The measurement approach we propose provides several
key features: temporal granularity (detecting engagement
fluctuations within individual matches), contextual awareness
(understanding engagement in relation to specific gameplay
contexts), scalability (processing data from thousands of
concurrent players), and actionability (producing metrics that
directly inform design decisions). Unlike post-hoc analysis,
these real-time capabilities enable proactive interventions
that can significantly impact player retention and satisfac-
tion.

The rest of this paper is organized as follows. Sec-
tion II covers the background science on engagement and
Flow Theory, and also looks at the related work in player
engagement measurement, while Section III describes the
proposed framework and problem formulation. In Section
IV we present the proposed solution, while in Section V we
discuss the PUBG case study and analyze the performance
evaluation results. The paper is concluded in Section VI.

II. BACKGROUND & RELATED WORK
A. Background
1) Player Engagement
Player engagement is a multidimensional construct encom-
passing cognitive, emotional, and behavioral aspects of
gameplay [3]. It extends beyond mere interaction to include
the player’s immersion, motivation, and overall satisfaction
with the gaming experience [4], [5]. It can be understood
as a mosaic of complementary aspects [30], as illustrated
in Figure 1. The engagement process typically begins with
motivation, which can be intrinsic (e.g., curiosity) or ex-
trinsic (e.g., social pressure) [31], [32]. As players become
involved with the game, they experience immersion - a state
of cognitive absorption characterized by audiovisual stimula-
tion, deep concentration, and spatio-temporal distortion. This
immersion can lead to engrossment, marked by emotional
attachment and a sense of presence in the game [33]–[35].

The pinnacle of engagement is often described as flow,
a state of optimal experience where players’ skills are well-
matched with the game’s challenges [36], [37]. Flow is char-
acterized by clear goals, balanced challenge-skill ratio, and
immediate feedback. This engaging experience can extend
beyond a single session through the concept of endurability
[38], [39], where positive experiences reinforce the desire to
play again. Figure 1 illustrates these interconnected aspects
of engagement as a continuous process. As Flow Theory is
an important aspect of our design, we take a more detailed
look at it in the next subsection.

    Intrinsic
    (curiosity)

Extrinsic
(social pressure)

Audio-visual          
stimulation          

Spatio-temporal 
distortion

Involvement

Deep concentration

Skill-Challenge Balance

Immediate feedback

Clear goals       

        Presence

   Cognitive
   absorption

Engrossment         

Engagement

Motivation Immersion

Flow
FIGURE 1: Conceptual framework of player engagement
components and their interactions.

2) Flow Theory
Flow Theory, introduced by Csikszentmihalyi [17], states
that optimal engagement occurs when a player’s skill level
is well-matched with the game’s challenge. This concept
has been widely adopted in game design and engagement
studies [40]. Several models have been developed to apply
Flow Theory in gaming contexts, including the Quadrant
Model [41], the Experience Fluctuation Model (EFM) [42],
and the Flow Channel Model. These models, illustrated in
Figure 2, provide different perspectives on the relationship
between skill, challenge, and engagement.

While each of the above models offers valuable insights,
they have limitations for real-time engagement estimation in
complex gaming environments. Our work draws inspiration
from these existing models to develop a novel approach
for engagement measurement. We focus particularly on the
relationship between skill and challenge as key determinants
of player engagement, aligning with the core principles
of Flow Theory. By combining this theoretical foundation
with machine learning-assisted measurement techniques and
empirical data, our approach aims to capture the nuances
of engagement in dynamic multiplayer online games while
remaining computationally feasible for real-time estimation.

3) Engagement Across Gaming Scenarios
Player engagement manifests differently across various gam-
ing scenarios, each requiring appropriate measurement con-
siderations. In single-player games, engagement primarily
derives from narrative immersion, progression systems, and
the balance between preset challenges and player skill [43].
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FIGURE 2: Conceptual models relating skill and challenge in Flow Theory.

Local multiplayer introduces social dimensions where en-
gagement features include interpersonal dynamics and imme-
diate social feedback [44]. Online multiplayer presents the
most complex scenario, combining individual performance
metrics with social engagement indicators [45].

Our framework, while validated primarily in online mul-
tiplayer environments, is designed with sufficient flexibility
to address these varied contexts. In PUBG specifically, our
approach captures engagement across multiple interactive
dimensions: player-versus-player (competitive team combat),
player-versus-environment (survival against shrinking play
zones), and cooperative team dynamics (squad coordination).
The telemetry signals we leverage, such as combat statis-
tics, movement patterns, and resource management, have
analogues in most gaming contexts—combat performance
in single-player games, collaborative actions in local mul-
tiplayer, or competitive metrics in online play. The un-
derlying Flow Theory principles regarding skill-challenge
balance remain applicable across all gaming modalities,
though the specific telemetry sources and proxies would
need appropriate adaptation. Our emphasis on non-intrusive
measurement makes the framework particularly valuable for
online multiplayer environments where direct observation
is impractical and interruption-based measures disrupt the
experience.

B. Related Work
1) Skill and Challenge Estimation
Measuring player skill and game challenge is crucial for
understanding player engagement. Previous works have ex-
plored various approaches to quantify skill and challenge.
For instance, Aponte et al. [46] used reinforcement learning
to train virtual agents and measure challenge based on
the agents’ pass rates. Wheat et al. [47] analyzed level
characteristics in 2D games to model challenge. For skill
estimation, Diah et al. [48] used heuristics like the number of
enemies defeated in MOBA games. While these approaches
provide valuable insights, they often lack generalizability and
struggle to capture the dynamic nature of multiplayer online

games. Our telemetry-based framework addresses these lim-
itations by measuring skill through relative competitive per-
formance and challenge through immediate survival threats.
This generalizable approach enables real-time measurement
across various competitive games, as we will demonstrate in
section V with an actual use case in PUBG.

2) Engagement Estimation
Recent advancements in engagement estimation have ex-
plored various methodologies. Chen et al. [49] introduced
facial expression-based models for non-intrusive engage-
ment estimation. Fortin et al. [50] developed models using
physiological measures and game events. However, these
approaches often face limitations in real-world applications.
Facial expression-based methods, for instance, require we-
bcam footage, which is not always available or practical in
gaming environments. Our work overcomes these limitations
by focusing exclusively on game telemetry data, which is
readily available and non-intrusive.

3) Telemetry Data Analysis in Games
Game telemetry data has been increasingly used to under-
stand player behavior and experience. Melhart et al. [51]
used in-game events to model player experience, while
Reguera et al. [52] explored using gameplay session data
as a proxy for engagement. A notable study by Melhart et
al. [53] demonstrated the power of gameplay features in
predicting engagement, albeit from a different perspective.
Their work on PUBG used telemetry data to predict moment-
to-moment viewer engagement on Twitch streams. By ana-
lyzing the relationship between in-game events and viewer
chat frequency, they achieved prediction accuracies of up
to 80% on average. This study underscores the potential of
telemetry data as a powerful predictor of engagement. But
not all games will have viewers or chats available, so our
work extends telemetry data usage by deriving quantitative
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FIGURE 3: The considered model for gaming systems.

skill and challenge measures from gameplay data, mapping
these to engagement states via Flow Theory.

4) Ground Truth Establishment
Establishing reliable ground truth for engagement estimation
remains a significant challenge in the field, particularly in
the context of multiplayer online games where the difficulty
dynamically changes based on competing opponents. Various
methods have been employed in previous studies, including
self-report questionnaires [54], continuous annotations [55],
observational methods [56], and proxy measures such as
conation (the desire to continue playing) [57], [58]. Each
of these methods has its strengths and limitations, often
facing issues such as recall bias in post-game surveys [15]
or potential disruption of gameplay in real-time reporting.

Our work addresses these challenges through a hierar-
chical validation framework that systematically evaluates
each component of the engagement estimation pipeline.
We first establish an empirical upper bound by analyz-
ing self-reported skill-challenge-engagement relationships.
Then, we validate our telemetry-based proxies against these
self-reports to ensure alignment with player perceptions.
Finally, we evaluate our real-time estimation system end-
to-end by comparing its predictions against post-game sur-
vey responses. This enables systematic validation from raw
telemetry data to final engagement predictions.

III. SYSTEM MODEL & PROBLEM DEFINITION
In this section, we specify the considered model for gaming
systems and formally define the player engagement problem.

A. System Model
Our engagement estimation framework operates within a
general gaming environment, as illustrated in Figure 3. The
Game Server authenticates players and matches them in
games. Players send actions to the Game Engine, which
renders the game and maintains the game state. The Game
Engine also logs telemetry events containing details about
shots fired, weapons used, locations of the attacker and
victim, etc. The Telemetry Processor aggregates these raw
events into meaningful features. Consider, for example, a
combat scenario where a player attacks an opponent. The
Telemetry Processor converts combat events into metrics

like damage dealt and accuracy rates and movement events
into distance traveled. It also converts inventory events
into resource utilization patterns. These processed features
capture both player skill (through combat performance and
resource management) and challenge levels (through damage
taken and threat proximity). Finally, the Engagement Esti-
mator analyzes the high-level telemetry features to measure
player engagement. It can be integrated directly within the
Game Engine for immediate state updates or implemented
as an external module when handling complex multiplayer
scenarios requiring additional processing capacity.

To illustrate with a practical example from our PUBG
case study: when a player engages in combat, the Game
Engine logs raw events such as ”Player A fired a weapon,”
”Player A hit Player B,” and ”Player B took X damage.”
The Telemetry Processor aggregates these into meaningful
features including accuracy (hits/shots), damage per minute,
and combat efficiency (damage dealt/damage taken). Simul-
taneously, movement events like ”Player A moved to posi-
tion (x,y,z)” are transformed into metrics such as distance
traveled, rotation frequency, and positioning relative to safe
zones. Consider a specific in-game scenario where a player
engages an opponent at medium range using an assault rifle.
The Telemetry Processor would capture combat performance
(e.g., 60% accuracy, 90 damage dealt), positioning con-
text (e.g., partial cover utilization, high ground advantage),
resource management (e.g., ammunition consumption rate,
healing item usage), and threat assessment (e.g., proximity to
other teams, position relative to play zone boundary). These
processed features would then feed into the Engagement
Estimator to determine the player’s current skill expression
and challenge level during this combat interaction.

This flexible architecture supports various deployment
scenarios, from single-player games with local processing to
distributed multiplayer environments. In online multiplayer
games, clients connect to game servers that aggregate player
interactions and state updates, allowing the engagement
estimator to operate at the server level to account for inter-
player dynamics. The system assumes reliable telemetry data
collection and low-latency processing capabilities to enable
real-time engagement estimation.

To capture meaningful interactions in games, we represent
the game state at time t as a dynamic graph G(t) =
(V (t), A(t)), where A(t) represents the adjacency structure.
The vertices V (t) represent game entities (players, non-
player or AI characters, interactive objects, or environmental
elements), while the adjacency structure encodes relevant
relationships between these entities. These relationships can
be defined flexibly based on game-specific interaction met-
rics such as spatial proximity, direct interaction, strategic
relevance, or causal relationships.

For each vertex v ∈ V (t), we maintain a feature vector
xv(t) that captures its current state. This graph representation
is versatile and can model various game scenarios: com-
petitive or cooperative interactions between human players,
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FIGURE 4: Overview of the proposed engagement estimation framework. Game telemetry data flows through the GCN
and Transformer networks to predict the skill and challenge metrics, which are used to estimate engagement Ê(t).

interactions with AI-controlled enemies or environmental
challenges, relationships between team members, or interac-
tions between a player and game-generated entities in single-
player games.

This system model is adaptable to various gaming sce-
narios. In single-player games, the graph representation
simplifies as interactions occur primarily between the player
and game-generated entities (environment, AI characters,
objectives). Local multiplayer scenarios can be modeled
with stronger emphasis on direct player-to-player interac-
tions, often with richer adjacency structures reflecting phys-
ical proximity and shared interfaces. In online multiplayer
contexts, as demonstrated in our PUBG case study, the
model captures complex player-to-player interactions across
potentially large networks, team-based dynamics, and player-
environment interactions. The graph structure can flexibly
represent competitive relationships (as negative edges or
repulsive forces), cooperative alliances (as positive edges or
attractive forces), or neutral interactions based on proximity
or shared objectives. This flexibility enables our engage-
ment estimation framework to accommodate diverse gam-
ing modalities while maintaining a consistent mathematical
formulation and measurement approach.

B. Problem Definition
Given a multiplayer online game environment, as described
in the above system model, we consider the problem of
estimating player engagement in real time.

Formally, at any time t during gameplay, for each player
p, we aim to estimate their current engagement level Ep(t)
based on the historical telemetry data available up to time t,
denoted as Htele(t). This telemetry includes player actions,
game states, and interaction patterns captured through stan-
dard game logs.

To concretize this problem definition, consider a player
in a PUBG match at time t = 5 minutes into the game.
The historical telemetry data Htele(t) would include all
player actions and game states up to that moment, such
as the player’s weapon acquisition sequence, early-game
positioning decisions, initial resource gathering efficiency,
and any early combat encounters. Our framework aims to

estimate their current engagement level Ep(t) based on these
observable telemetry patterns before key gameplay outcomes
materialize. For instance, the framework might detect declin-
ing engagement when a player’s movement patterns become
erratic after failing to find adequate equipment, allowing
for potential interventions (such as nearby loot spawns)
before the player becomes fully disengaged. Importantly, this
estimation occurs without requiring any explicit feedback
from the player, relying solely on behavioral signals captured
through standard game logs.

This formulation advances beyond traditional engagement
estimation approaches by emphasizing predictive capabilities
- estimating engagement before critical gameplay moments
materialize, rather than retroactively analyzing completed
sessions. It also acknowledges the temporal nature of engage-
ment, treating it as a dynamic measure that evolves through-
out gameplay rather than a static post-game metric. While
this real-time constraint introduces additional complexity, it
enables practical applications in dynamic game adaptation.

In addition, our formulation does not require any intrusive
physiological measurements or post-game questionnaires. It
only utilizes standard telemetry data, which ensures broader
applicability across existing game infrastructures and main-
tains non-intrusive monitoring of player experiences.

IV. PROPOSED SOLUTION
This section first specifies the design goals of the proposed
framework and presents an overview of how it functions. It
then describes the details of each component.

A. Design Goals and Solution Overview
The proposed framework is designed to achieve the follow-
ing goals.

• Relative Engagement Scale: By comparing current
engagement levels to an established baseline Ē, we en-
able the detection of meaningful engagement variations
while maintaining computational efficiency.

• Flow Theory-Based Quantification: Engagement is
quantified through the relationship between player skill
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and game challenge, requiring only standard telemetry
data while maintaining theoretical grounding.

• Non-Intrusive Instrumentation: The framework ex-
clusively utilizes game telemetry data available through
standard logging systems, enabling scalable deployment
without additional hardware requirements.

• Hybrid Measurement Approach: The framework
combines theoretical foundations with machine
learning-assisted measurement techniques, enabling
both interpretable and accurate engagement
measurement while maintaining flexibility for different
game genres and contexts.

Figure 4 presents an overview of the proposed framework
for real-time player engagement estimation. The frame-
work comprises three main components: input processing,
player interaction modeling, and engagement classification.
At a high level, telemetry data is first processed to extract
representative features characterizing both player behavior
and game state. A dynamic player interaction network is
constructed, where edges can represent various types of
relationships such as spatial proximity, direct interactions,
team affiliations, or shared object interactions. This network,
along with the processed features, is then enriched through
a hybrid neural architecture combining GCNs for modeling
player interactions and Transformer networks for capturing
temporal patterns. The enriched features are used to measure
player skill and game challenge levels, which are then
mapped to binary engagement states using a Random Forest
classifier.

We provide the details of each component in the following
subsections. First, we describe the input processing module
that handles various types of telemetry features and con-
structs the player interaction network. Then, we elaborate
on the player interaction modeling component that enriches
these features through graph-based and temporal processing.
Finally, we present the engagement classification module
that estimates skill and challenge levels to determine player
engagement states.

B. Input Processing
Building upon the telemetry processing system described in
Section A, our framework transforms the real-time stream of
raw telemetry events into three types of high-level features.
These features are computed and sampled at fixed intervals
(e.g., every 10 seconds) to create consistent temporal snap-
shots of the gameplay state.

• Player Features (Xp(t) ∈ RT×N×dp): These features
characterize individual player performance and behav-
ior patterns. For each player, we aggregate telemetry
events into meaningful metrics capturing combat per-
formance (e.g., accuracy, damage dealt), mobility (e.g.,
distance traveled, position changes), resource utilization
(e.g., item usage, inventory management), and spatial
awareness (e.g., proximity to threats, zone positioning).

Here, T represents the sequence length, N is the
number of players, and dp is the feature dimension.
These metrics serve as proxies for player skill and
adaptability.

• Game State Features (Xg(t) ∈ RT×dg ): These fea-
tures capture the evolving match context and environ-
mental conditions that affect all players. By tracking
match progression metrics such as elapsed time, re-
maining players, and zone states, we can contextualize
individual player behaviors and better estimate the
current challenge level. The dimension dg represents
the game state feature space.

• Categorical Features (Xc(t)): Discrete contextual in-
formation such as game mode and phase information is
encoded through embedding layers. These features pro-
vide essential context for interpreting player behaviors
and performance metrics, as similar actions may have
different implications across different game modes or
phases.

C. Player Interaction Modeling
The player interaction modeling component processes the
input features through a hybrid neural architecture designed
to capture both spatial and temporal relationships in game-
play. Following the graph-based game state representation
defined in subsection A, we first construct a dynamic player
network where nodes represent players and edges represent
their relationships. The edge weights wij between players
i and j can encode various types of interactions such as
spatial proximity, direct combat engagement, or team-based
cooperation.

This player network is processed through a GCN consist-
ing of multiple layers with decreasing dimensionality to learn
compact representations that capture the structural properties
of player interactions. The GCN architecture employs skip
connections between layers to preserve individual player fea-
tures while learning interaction-based representations. The
GCN outputs are then combined with the original player
features through concatenation to create enriched represen-
tations:

Henriched(t) = [GCN(Xp(t));Xp(t)] (1)

To capture temporal dependencies, we employ a multi-
layer Transformer encoder with multiple attention heads.
Before processing, the game state features Xg(t) are ex-
panded along the player dimension to enable element-wise
operations with the player-specific features in Henriched(t).
The Transformer processes these combined features through
self-attention mechanisms, enabling the model to identify
relevant temporal patterns and long-range dependencies in
player behavior. The multi-head attention architecture allows
the model to capture different aspects of temporal relation-
ships simultaneously:

Htemp(t) = Transformer(Henriched(t), Xg(t)) (2)
Hpool(t) = Pool(Htemp(t)) (3)
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The categorical features are processed through embedding
layers that map each discrete feature to a lower-dimensional
dense representation Hcat(t) = Embed(Xc(t)). All pro-
cessed features are then combined through a multi-layer
perceptron (MLP) with specialized output heads for skill and
challenge measurement:

Z(t) = MLP([Hpool(t);Hcat(t)]) (4)

This hierarchical processing enables our framework to
capture complex player interactions at multiple scales while
maintaining the temporal context necessary for engagement
measurement.

D. Engagement Classification
The final component produces engagement measures through
a two-step process that explicitly models the relationship
between player skill and game challenge. First, from the
processed features Z(t), we measure skill and challenge
levels through separate prediction heads:

Ŝ(t) = fskill(Z(t)) (5)

Ĉ(t) = fchallenge(Z(t)) (6)

The activation functions for these measures are chosen
based on the nature of the underlying skill and challenge
proxies. For example, when using normalized ranking as
a skill proxy, we employ a sigmoid activation for fskill
to bound the output between 0 and 1. In contrast, when
using metrics like damage received as challenge proxies, we
utilize Rectified Linear Unit (ReLU) activation for fchallenge to
handle unbounded positive values. This choice of activation
functions can and should be adapted based on the specific
proxies used in different game contexts.

The measured skill and challenge levels are then mapped
to binary engagement states through a Random Forest clas-
sifier:

Ê(t) = fclassify(Ŝ(t), Ĉ(t)) (7)

where engagement is defined relative to a baseline Ē:

Ebinary(t) =

{
1 if E(t) > Ē (High Engagement)
0 if E(t) ≤ Ē (Low Engagement)

(8)

The baseline Ē is established through a one-time cali-
bration process using self-reported engagement levels from
player surveys. This calibration is crucial for inherently
engaging game genres, such as competitive multiplayer
games, where most players maintain some baseline level of
engagement. In such contexts, the baseline helps distinguish
subtle variations in engagement levels rather than merely
detecting obvious disengagement. While our implementation
uses survey responses for baseline calibration, alternative ap-
proaches such as expert annotations or behavioral indicators
could be used depending on the available data and specific
game context.

The choice of Random Forest for the final classification
aligns with the non-linear nature of the skill-challenge re-
lationship in Flow Theory. It can capture complex deci-
sion boundaries between engagement states while providing

interpretable feature importance scores that help validate
the relative impact of skill and challenge on engagement
predictions.

V. EVALUATION
We evaluate our engagement estimation framework through a
systematic validation process, focusing both on component-
level performance and end-to-end effectiveness. Our evalu-
ation employs PlayerUnknown’s Battlegrounds (PUBG) as
a case study, leveraging its rich telemetry data and diverse
gameplay mechanics to thoroughly assess our framework’s
capabilities in a real-world setting. Throughout this eval-
uation section, all reported uncertainties (±) represent one
standard deviation of the corresponding metric.

A. Experimental Setup
1) Framework Implementation
We implement our framework for PUBG, a battle royale
game where approximately 100 players compete in teams
across large maps, starting with no equipment and scav-
enging for resources while avoiding elimination. The game
naturally segments into distinct phases as the playable area
progressively shrinks, with each phase typically lasting 2-3
minutes. For skill and challenge quantification, we define:

Sp(t) =
number of players eliminated before p

total number of players - 1
(9)

Cp(t) = total damage taken by player p in phase t (10)

Our implementation samples telemetry data at 10-second
intervals. The feature dimensions are:

• Xp(t) ∈ RT×N×35 for player features
• Xg(t) ∈ RT×4 for game state features
• Xr(t) includes map identifier, team size, and phase

index

The player interaction graph G(t) is constructed with edge
weights:

wij = max(0, 1− dij
dmax

)·[(1−σ(θ))·⊮enemy+σ(θ)·⊮teammate]

(11)
where dij is the Euclidean distance between players

(capped at dmax = 100 meters), θ is a learnable team weight
parameter, and ⊮enemy, ⊮teammate are binary indicators
for enemy/teammate relationships.

While we demonstrate our framework using PUBG as
our primary case study, the approach is designed to be
genre-agnostic. We specifically selected PUBG because it
represents a highly complex gaming environment that spans
multiple genres (shooting, combat, scavenging, multiplayer,
survival), providing an exceptionally challenging test sce-
nario that is also commercially popular and realistic. If our
framework can effectively measure engagement in PUBG’s
complex environment with its varied gameplay elements,
it should be adaptable to less complex gaming scenarios
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across different genres including sports games, racing games,
strategy games, and more. For instance, in sports games,
skill could be measured through performance metrics like
scoring efficiency or ball possession, while challenge might
be quantified through opponent defensive pressure. In racing
games, skill could be measured via lap times or overtaking
maneuvers, while challenge might be represented by track
difficulty or competitor performance. This flexibility allows
our engagement measurement approach to extend beyond
combat-focused games to virtually any interactive gaming
experience that generates telemetry data.

When calculating skill based on player ranking, we main-
tained the natural composition of PUBG matches, including
both human players and AI-controlled bots. This approach
preserves the authentic gameplay experience, as players
typically don’t distinguish between human and AI opponents
during combat. While bots are present in the environment,
our skill and challenge validation metrics were evaluated
specifically on human player data, ensuring the framework’s
effectiveness for measuring human engagement.

2) Dataset
Our evaluation utilizes two complementary datasets: a skill-
challenge estimation dataset for model development and a
survey dataset for engagement validation. Both datasets share
the same underlying structure, capturing game telemetry at
10-second intervals.

For the skill-challenge estimation dataset, we implemented
a systematic sampling strategy starting with five seed players
(professionals, streamers, community members), expanding
to 1,684 unique players through their recent match his-
tories. Players were categorized into five tiers based on
lifetime match count using IQR-based outlier removal and
quantile-based discretization, ranging from Rookies (< 374
matches, avg. 146±95) to Masters (> 6, 369 matches, avg.
10,345±4,034), with Amateur (374-1,161 matches), Veteran
(1,161-2,780 matches), and Elite (2,780-6,369 matches) tiers
in between.

For efficient data collection, we selected four players from
each tier, resulting in a balanced sample of 20 players.
We monitored their battle royale matches (solo, duo, and
squad modes) over a two-week period, collecting complete
telemetry data for 2,673 matches. After preprocessing and
phase-based segmentation, this yielded 20,030 data points,
which we split into training (16,267), validation (1,866), and
testing (1,897) sets.

For engagement validation, we conducted a data col-
lection experiment involving 31 players. The experiment
was approved by University of Ottawa’s Office of Research
Ethics and Integrity, file Number H-07-23-9439. Participants
registered with their PUBG username and demographic
information in our web application, then submitted post-
match experiences through a structured questionnaire de-
rived from the Game Experience Questionnaire (GEQ) [14].

For engagement measurement, participants rated their level
from ”Disengaged” (feeling bored, unfocused) to ”Highly
Engaged” (losing track of time, fully immersed), with in-
termediate levels of ”Slightly,” ”Moderately,” and ”Fairly”
engaged. Each level included descriptive examples to ensure
consistent interpretation.

Our data collection workflow prioritized ecological va-
lidity - participants played PUBG matches normally, then
immediately reported their skill level, perceived challenge,
and engagement on 5-point Likert scales to minimize re-
call bias [15]. We aligned survey responses with telemetry
data by matching submission timestamps with corresponding
match data retrieved via the PUBG API using participants’
usernames. We processed the telemetry data using the same
phase-based approach, resulting in 120 labeled data points.
To address measurement uncertainty in self-reported engage-
ment, we transformed the Likert responses into binary clas-
sifications using the mean reported engagement (3.58) as the
threshold and employed group-stratified cross-validation to
account for person-specific reporting tendencies. These self-
reported scores provided ground truth labels for framework
validation. Table 1 summarizes the overall dataset statistics.

TABLE 1: Dataset Statistics Summary

Dataset Matches Datapoints Labels
Skill-Challenge 2,673 20,030 -

Train 2,173 16,267 -
Validation 250 1,866 -
Test 250 1,897 -

Survey 31 120 31

3) Training Configuration
For PUBG implementation, we configured the framework
with 6 temporal snapshots per sequence (1 minute of game-
play) and 35 player features. The categorical embeddings
were dimensioned specifically for PUBG’s feature cardinal-
ity: team size (3→2), map ID (12→6), and phase index
(11→4).

The GCN implementation uses two convolutional layers
(64 and 16 output units) to process the player interaction
graph. The Transformer encoder was configured with two
layers, two attention heads, and a hidden dimension of 128.
We maintained pre-layer normalization for stable training
with the game’s variable player counts.

Training proceeded with the AdamW optimizer (learn-
ing rate: 3e-4, weight decay: 0.01) using cosine annealing
schedule. The model trained for maximum 50 epochs with
early stopping (patience: 5), using batches of 128 sequences.
To handle PUBG’s variable player counts per match, we
implemented masked loss computation for active players
only.
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The engagement classifier was calibrated using our PUBG
survey dataset (n=31). We addressed the granularity mis-
match between phase-level predictions and match-level sur-
veys by aggregating phase estimates using final normalized
ranking for skill and mean damage across phases for chal-
lenge. High engagement thresholds were determined using
mean reported engagement scores (3.58±0.56). This notably
high baseline engagement aligns with PUBG’s status as a
competitive battle royale game, where the inherent match
stakes and elimination mechanics naturally foster high player
investment.

B. Results & Analysis
1) Framework Validation
We evaluate our engagement estimation framework through
a hierarchical validation approach that progresses from the-
oretical foundations to practical implementation. Beginning
with survey-based engagement prediction as an upper bound,
we systematically validate our telemetry-based proxies be-
fore assessing the complete end-to-end framework, as illus-
trated in Figure 5.

The first stage, shown in the top of the figure, employs
Clf1, an AdaBoost classifier (empirically selected for op-
timal performance on survey data) that maps self-reported
skill and challenge to self-reported engagement. This es-
tablishes our empirical baseline for engagement prediction
from explicit player feedback. We configured AdaBoost with
SAMME boosting algorithm specifically because of its effec-
tiveness with categorical features and resilience to overfitting
on small datasets like our survey responses. This stage
establishes the theoretical ceiling for engagement prediction
accuracy using explicit skill-challenge relationships.

The second stage, shown in the middle of the figure, evalu-
ates our telemetry-based proxies using Clf2, a Random For-
est classifier (chosen for its superior performance on game
statistics) operating on match completion statistics—final
ranking for skill and average damage taken per phase for
challenge. While this stage requires complete match data,
it serves to validate our proxy selection methodology. This
intermediate validation stage is crucial for demonstrating that
our selected telemetry proxies can approach the performance
of explicit player feedback, proving the viability of non-
intrusive measurement. It validates that game-derived metrics
can effectively replace traditional survey methods while
maintaining accuracy.

Our proposed end-to-end framework, represented by the
third stage shown at the bottom of the figure, combines
skill-challenge measurements from the GCN-Transformer
model with Clf2. We implement a forward-sliding cross-
validation scheme that holds out five survey responses in
each fold, maintaining complete separation between training
and testing data. This real-time validation approach repre-
sents the framework’s primary innovation: providing engage-
ment estimates during gameplay rather than retroactively.
By successfully approximating match-level predictions using

only partial gameplay data, our framework enables adaptive
game mechanics that can respond to fluctuating engagement
levels within a single match. During real-time operation, the
framework processes each phase independently: measuring
current skill from performance up to the current phase, mea-
suring the challenge level for the current phase, and applying
the appropriate fold-specific classifier to these phase-level
measures.

Given the granularity mismatch between phase-level mea-
sures and match-level ground truths, we average phase-level
skill Ŝ(t) and challenge Ĉ(t) measures before engagement
classification. This approach demonstrates our framework’s
potential for real-world deployment across varying time
scales, from moment-to-moment gameplay adaptation to
session-level analytics. Game designers can leverage these
multi-resolution engagement signals to optimize both imme-
diate mechanics and broader game progression systems. We
specifically avoid averaging phase-level engagement mea-
sures Ê(t) since Clf2 was trained on match-level skill and
challenge scores, so averaging engagement would incorrectly
assume linear composition across phases, contradicting flow
theory [17].

2) Training Dynamics
The learning curves (Figure 6) demonstrate stable conver-
gence for both skill and challenge estimation. While the total
validation loss shows some fluctuation early in training, it
stabilizes around epoch 15, indicating robust model gener-
alization. The skill component converges more quickly and
shows minimal gap between training and validation perfor-
mance, suggesting effective learning of ranking patterns. The
challenge component exhibits a larger training-validation gap
but maintains consistent improvement throughout training.

3) Phase-wise performance
As shown in Figure 7, our GCN-Transformer model’s accu-
racy varies significantly across game phases. Skill estimation
error (blue line) demonstrates a consistent improvement
pattern, with RMSE decreasing steadily from 0.235 in phase
0 to 0.024 in phase 9. This trend reflects the model’s
increasing ability to more accurately measure player skill
as more gameplay data becomes available.

Challenge estimation (red line) exhibits a different pattern,
with high initial error (RMSE 0.703-0.747 in phases 0-
1) followed by a sharp improvement in phase 2 (RMSE
0.294). The model achieves its best challenge predictions
in phase 5 (RMSE 0.166), coinciding with mid-game player
confrontations as the playable area constricts. However, both
skill and challenge predictions show increased error in the
final phases (9-10), likely due to reduced player count and
heightened end-game volatility.

These results indicate that our model’s accuracy is phase-
dependent, performing optimally during mid-game phases
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FIGURE 5: Validation framework for engagement estimation.

TABLE 2: Classification Performance Across Different Input Sources

Evaluation Stage Model Metric Low High Macro Avg ROC AUC accuracy

Clf1 (Survey Responses) AdaBoost
precision 0.64 ± 0.44 0.79 ± 0.22 0.71 ± 0.23

0.75 ± 0.32 0.73 ± 0.17recall 0.55 ± 0.40 0.88 ± 0.16 0.72 ± 0.22
f1-score 0.53 ± 0.35 0.80 ± 0.13 0.66 ± 0.22

Clf2 (Post-match Proxies)
Random
Forest

precision 0.72 ± 0.30 0.81 ± 0.19 0.76 ± 0.16
0.76 ± 0.16 0.72 ± 0.12recall 0.68 ± 0.30 0.77 ± 0.24 0.73 ± 0.12

f1-score 0.63 ± 0.19 0.75 ± 0.13 0.69 ± 0.14

Clf2 (Avg. of Real-time Estimates)
Random
Forest

precision 0.63 ± 0.19 0.87 ± 0.23 0.75 ± 0.16
0.83 ± 0.17 0.73 ± 0.14recall 0.88 ± 0.21 0.66 ± 0.23 0.77 ± 0.12

f1-score 0.71 ± 0.15 0.73 ± 0.19 0.72 ± 0.15

where player interactions are most structured and pre-
dictable.

4) Sequence-Length Sensitivity
We systematically evaluated model architectures trained with
different sequence lengths (1-10 timesteps at 10-second
intervals) to determine the optimal temporal window for
engagement measurement. As shown in Figure 8, all perfor-
mance metrics peak at sequence length 6, with ROC-AUC
reaching 0.83±0.17, achieving an accuracy of 0.73±0.14 and
an F1-score of 0.71±0.15. This indicates that one minute
of gameplay data is sufficient for reliable measures, which
is particularly important given the short duration of game
phases in PUBG.

Models trained with longer sequences not only show
degraded performance but also exhibit increased variance, as
evidenced by the widening standard deviation bands beyond
length 7. To handle variable-length sequences in practice,
our implementation employs padding when the available
sequence is shorter than the target length (e.g., due to early
player elimination), while longer sequences are trimmed.

This approach ensures consistent input dimensionality while
maintaining temporal relevance of the features.

The ability to make accurate predictions with just one
minute of data enables responsive engagement measurement
within the typical duration of game phases, making our
framework practical for real-time applications.

5) Engagement Classifier
We evaluated several classification algorithms including Ran-
dom Forest, AdaBoost, and Support Vector Machines (SVM)
for engagement classification. While both Random Forest
and AdaBoost demonstrated competitive performance, their
relative effectiveness varied based on the input features
used. The Random Forest classifier emerged as the optimal
choice for telemetry-based proxies, achieving an ROC-AUC
of 0.83±0.17 and accuracy of 0.73±0.14.

Training on different input sources revealed distinct
patterns in feature importance. With survey-based inputs,
AdaBoost showed a clear bias toward challenge scores
(0.622±0.062) over skill scores (0.378±0.062). In contrast,
the Random Forest trained on telemetry-based proxies exhib-
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ited remarkably balanced feature importance between skill
(0.502±0.029) and challenge (0.498±0.029). The minimal
standard deviation (±0.029) across cross-validation folds
indicates robust stability in this balanced relationship.

The contrast between survey-based and proxy-based fea-
ture importances reveals an interesting psychological aspect:
while players may be more consciously aware of challenge
levels during gameplay, our telemetry-based proxies cap-

ture a more balanced representation of the skill-challenge
relationship. This finding suggests that objective gameplay
metrics may better reflect the theoretical engagement model
than subjective player assessments, possibly due to reporting
biases or varying interpretations of skill and challenge across
players.

6) Ablation Study
To assess the individual contribution of skill and challenge
components, we conducted isolated evaluations using single-
feature classifiers. The results are summarized in Table 3.

TABLE 3: Component-wise Classification Performance

Component ROC-AUC Accuracy

Skill-only 0.57 ± 0.20 0.63 ± 0.15
Challenge-only 0.69 ± 0.14 0.61 ± 0.16
Combined 0.83 ± 0.17 0.73 ± 0.14

The challenge-only classifier achieved higher ROC-AUC
but lower accuracy compared to the skill-only variant, sug-
gesting that challenge levels may be more discriminative but
less reliable for binary engagement classification. However,
the combined approach significantly outperformed both indi-
vidual components, with improvements of 20.3% and 16.7%
in ROC-AUC over skill-only and challenge-only classifiers,
respectively. This substantial performance gain validates
our framework’s theoretical foundation in flow theory and
demonstrates the synergistic relationship between skill and
challenge in engagement measurement.

We also conducted extensive ablation experiments to eval-
uate the contribution of different feature categories, model
architecture components, and assess the individual impact of
skill and challenge components on the framework’s perfor-
mance.

To validate our hybrid architecture design, we compared
the full GCN-Transformer model against a Transformer-
only variant that excludes the graph convolutional compo-
nent. The hybrid architecture (accuracy: 0.73±0.14, ROC-
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AUC: 0.83±0.17) outperforms the Transformer-only model
(accuracy: 0.67±0.19, macro F1: 0.65±0.21), suggesting
that the GCN’s ability to model player interactions pro-
vides valuable information for engagement measurement.
The Transformer-only model shows stronger precision for
high engagement states (0.80±0.28) but suffers from reduced
recall (0.63±0.25) compared to the hybrid approach.

Table 4 presents the impact of removing different feature
categories on both skill-challenge estimation and end-to-end
engagement measurement. The baseline model, utilizing all
features, achieves the best performance across most metrics.
Removing player features significantly degrades skill estima-
tion (RMSE increases from 0.163 to 0.319) and end-to-end
accuracy (73% to 55%). Similarly, excluding game features
impairs challenge estimation (RMSE increases from 0.541 to
0.604) and reduces end-to-end accuracy to 61%. Categorical
features show the least impact, with marginal changes in
skill-challenge estimation and moderate degradation in end-
to-end performance.

TABLE 4: Impact of Feature Removal on Model Perfor-
mance

Features Skill Challenge Acc. ROC-
Removed RMSE RMSE (%) AUC

none 0.163 0.541 73±14 83±17
player 0.319 0.707 55±15 59±21
game 0.343 0.604 61±14 56±16
categorical 0.172 0.535 57±18 72±18
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FIGURE 9: Correlation between model estimates and player
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7) Robustness to Perceptual Variability
Figure 9 examines the relationship between our telemetry-
based estimates and players’ self-reported perceptions
through Spearman’s rank correlation analysis. Our skill es-

timates show a significant moderate correlation with self-
reported skill (ρ = 0.39, p = 0.03), suggesting our ranking-
based proxy effectively captures aspects of player-perceived
skill. Interestingly, our challenge estimates show limited cor-
relation with self-reported challenge (ρ = 0.07, p = 0.70).
Given the strong predictive power of our challenge proxy
demonstrated in the ablation study (ROC-AUC 0.69 for
challenge-only classifier), this finding suggests that effective
engagement measurement may not require direct alignment
with players’ subjective challenge perceptions. Instead, our
telemetry-based challenge metric appears to capture game-
play patterns that, while distinct from players’ self-reported
experiences, provide valuable signals for engagement esti-
mation.

8) Cross-Domain Validation
To assess our framework’s generalizability beyond PUBG,
we conducted extensive validations across two distinct game
genres: FIFA’23, a sports game, and Street Fighter V, a
2.5D fighting game. This cross-domain study involved 39
participants across 900 gaming sessions. These games were
specifically selected for their structured difficulty systems -
6 levels in FIFA’23, 8 in Street Fighter V - providing clear
challenge metrics, and their distinct gameplay mechanics al-
lowing robust assessment of skill-challenge dynamics across
genres.

For this cross-domain validation, we focused on testing
the core theoretical relationship between skill, challenge,
and engagement rather than implementing full telemetry
extraction systems. Natural gameplay segments defined ses-
sion boundaries—between goals or halftimes in FIFA’23,
and between rounds in Street Fighter V—which helped
mitigate recall bias by allowing engagement measurement
immediately after short, meaningful gameplay segments. We
collected and processed three key measurements:

• Skill Measurement: We assessed initial skill levels
through self-reported game familiarity using a 5-point
Likert scale questionnaire with game-specific prompts:
”How familiar are you with 2.5D fighting games (like
Street Fighter)?” and ”How familiar are you with FIFA
games?”. Each participant’s reported familiarity with
the corresponding game genre was used as their skill
level for that specific gameplay session.

• Challenge Measurement: We utilized the preset diffi-
culty settings available in each game as objective chal-
lenge metrics. For Street Fighter V, this ranged from
levels 1 to 8, while FIFA’23 offered six difficulty tiers:
”Beginner”, ”Amateur”, ”Semi-Pro”, ”Professional”,
”World Class”, and ”Legendary”. To standardize these
metrics across games, we normalized each difficulty
setting by dividing by the maximum available level
(e.g., difficulty 3 in FIFA ”Semi-Pro” was normalized
to 0.5 by dividing by 6).
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• Engagement Measurement: After each gameplay ses-
sion, participants reported their engagement on a 5-
point Likert scale. Following our methodology from
the PUBG study, we binarized these responses using
the mean reported engagement score (2.87) as the
threshold, classifying the lowest three levels as ”Low
Engagement” and the upper two levels as ”High En-
gagement”.

Although we did not extract actual telemetry data as
part of this study, our framework could theoretically be
implemented using game-specific metrics. For FIFA, these
could include successful pass rate, possession time, yellow
and red cards, fouls committed, and shots on goal as player
features. Skill proxies in this context could be calculated
from score differences in past matches, while challenge
proxies could be derived from the opponent’s possession
statistics or shots on goal. Similarly, for Street Fighter V,
while it does contain combat elements like PUBG (e.g., dam-
age, health points), the gameplay mechanics, perspectives,
and skill requirements differ substantially, demonstrating the
framework’s adaptability to varied combat paradigms.

TABLE 5: Classification Performance Across Game Genres

Metric Low High Accuracy Macro Avg
Precision 0.43 ± 0.16 0.77 ± 0.08 0.66 ± 0.06 0.60 ± 0.08
Recall 0.45 ± 0.14 0.75 ± 0.08 0.66 ± 0.06 0.60 ± 0.07
F1-score 0.43 ± 0.12 0.76 ± 0.05 0.66 ± 0.06 0.59 ± 0.08

As shown in Table 5, our framework as is and without
applying transfer learning, maintains robust performance
across these diverse game contexts. Using a Random Forest
classifier with 7-fold stratified group cross-validation (en-
suring participant-level separation), the model achieves 66%
accuracy (±6%) with particularly strong performance in de-
tecting high engagement states (precision: 0.77±0.08, recall:
0.75±0.08). These results demonstrate that our framework’s
fundamental premise — engagement as a function of skill-
challenge balance — generalizes effectively across game
genres when provided with appropriate skill and challenge
metrics.

Notably, the framework’s performance remains stable
despite the significant differences in gameplay mechanics,
session duration, and competitive dynamics between the test
domains. This robustness suggests that our approach captures
fundamental aspects of player engagement that transcend
specific game mechanics, supporting its potential application
across diverse gaming contexts. Performance is expected
to further improve by applying transfer learning to our
model for the specific game at hand, as demonstrated by the
application of transfer learning to models in other domains
[59].

For this validation, we focused on the core theoretical
relationship between skill, challenge, and engagement rather

than implementing full telemetry extraction systems. We
collected three key measurements: initial skill level (self-
reported genre familiarity), challenge level (normalized game
difficulty), and post-session engagement (5-point Likert
scale, binarized at mean reported engagement 2.87). While
implementing comprehensive telemetry extraction for these
games was beyond the scope of this study, our framework
could theoretically be extended to utilize sports-specific
metrics in FIFA (e.g., possession percentage, shots on goal)
or fighting-game metrics in Street Fighter V (e.g., combo
execution rates, defensive reactions).

VI. CONCLUSION
This paper introduces a framework for real-time player
engagement estimation that advances the state-of-the-art
through its predictive capabilities and non-intrusive nature.
By combining GCNs for player interaction modeling with
Transformer networks for temporal processing, our frame-
work successfully predicts skill and challenge levels before
their manifestation in gameplay. Our analysis revealed sev-
eral interesting findings: phase-specific predictions can be
effectively made using one minute of gameplay data, player
features proved most critical for accurate estimation, and
objective gameplay metrics may better reflect engagement
than subjective player assessments, possibly due to reporting
biases.

Our results empirically demonstrate the effectiveness of
Flow Theory’s skill-challenge relationship in quantifying
engagement within modern multiplayer games, particularly
during structured mid-game interactions where our frame-
work showed peak performance. This work provides game
developers with a powerful tool for understanding and op-
timizing player engagement without disrupting the gaming
experience, marking a significant step toward more engaging
and adaptive multiplayer online games.

Importantly, our cross-domain validation demonstrates
that the framework extends well beyond combat games,
with robust performance observed in sports games (FIFA’23)
and fighting games (Street Fighter V), suggesting broad
applicability across the gaming industry regardless of genre.

This work provides game developers and researchers
with a practical, non-intrusive instrument for analyzing and
monitoring player engagement using existing telemetry data.
The framework’s predictive capabilities enable proactive
game adjustments and more efficient resource allocation in
cloud gaming [28], [60]. Its scalability makes it suitable for
large-scale deployment across various gaming platforms and
genres, with experimental validation demonstrating robust
measurement performance across different game types in-
cluding sports games and fighting games. By detecting subtle
variations in engagement levels relative to an established
baseline, our measurement approach offers more nuanced
insights than traditional binary engagement classifications
while maintaining the natural flow of gameplay [61].
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