
0018-9162/05/$20.00 © 2005 IEEE52 Computer

R E S E A R C H F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Scaling Network
Services Using
Programmable
Network Devices

S ociety increasingly relies on the Internet
for communications, business transac-
tions, information lookup, and entertain-
ment, making it a critical part of our
everyday life. The Internet’s pervasiveness

and its large-scale user base have prompted busi-
nesses and institutions to conduct many of their
activities electronically and online, creating the
need for efficient and reliable management of huge
amounts of data.

A successful solution that has been adopted over
the past several years is the concentration of critical
computing resources in Internet data centers.1 An
IDC is a collection of computing resources typically
housed in one physical location: a room, a floor in
a building, or an entire building. Computing
resources include Web, application, or database
servers and network devices such as routers, fire-
walls, or load balancers. Large enterprises that rely
heavily on the Internet and e-commerce applications
typically operate their own IDCs, while smaller com-
panies may lease computing resources within an IDC
owned and operated by a service provider.

Computing resources in an IDC are typically
organized into tiers. For instance, an IDC can ded-
icate one set of servers for Web access (Tier 1), a
second set to run applications initiated by Web
requests (Tier 2), and a third set to store data (Tier
3). Each tier is optimized for its own task: A Web
server needs high-speed network access and the

capacity to handle many concurrent connections,
while a database server requires large storage capac-
ity and fast I/O operations.

A tiered architecture allows incremental scaling
of IDCs because the operator can independently
upgrade each level. For example, if an IDC runs low
on storage capacity, only the database server tier
needs to be upgraded.

In addition to tiered architectures, IDCs employ
other mechanisms to implement improved scala-
bility and cost-effectiveness. One such mechanism
is to offload especially expensive operations to
special-purpose devices. For example, compute-
intensive cryptographic engines often are used to
protect client-server communications in financial
transactions.

Instead of using expensive server cycles to per-
form cryptographic operations, highly optimized
and less expensive devices can provide that func-
tionality. These special-purpose Tier 0 devices,
which precede the first server tier, are placed in the
network before the end systems. Furthermore, the
services that these devices provide are denoted
as Tier 0 network services, or network services
for short.

In addition to their use in Internet data centers,
these network devices have been deployed in sev-
eral other environments including at the edge of
Internet service provider networks, in storage area
networks, and between tiers in server farms.

The NEon system offers an integrated approach to architecting,
operating, and managing network services. NEon uses policy rules
defining the operation of individual network services and produces a
unified set of rules that generic packet-processing engines enforce.

Christoph L.
Schuba
Jason
Goldschmidt
Michael F.
Speer
Sun Microsystems
Inc.

Mohamed
Hefeeda
Simon Fraser
University

Network services are functions that network
devices perform on packets before they reach their
intended destination. These functions include fire-
walling, load balancing, intrusion detection, virus
scanning, cryptographic acceleration, and service
differentiation. Network devices are implemented
using highly optimized software and custom hard-
ware,2 and they can be either standalone appliances
or blades plugged into a blade chassis.

Figure 1 shows the discrete approach of deploy-
ing multiple network devices that each provide only
one network service. However, as the number of
network services increases, the discrete approach
suffers from numerous scaling and manageability
problems, including the following:

• Fixed network service priorities. Since network
devices are physically cabled in a specific order,
dynamically changing the flow processing order
is difficult to accomplish. As network and busi-
ness processing conditions change, dynamic
alteration of priorities could provide new and
valuable benefits in terms of enterprise security,
competitiveness, and productivity.

• Redundant packet classifications. Each device
performs packet classification and processing,
essentially forcing a single flow to serially tra-
verse processing stacks of the individual
devices. Redundant processing is not only
wasteful but also increases end-to-end latency,
which has a negative impact on the user-per-
ceived quality of service.

• Multiple management consoles. Each device
requires a separate management console with
its associated user interface and replicated
administrative functions such as software
updates and patching.

• Lack of a feedback loop. Applications running
on servers may need to communicate with net-
work devices that are processing pertinent
packet flows. Such a feedback loop could sig-
nificantly improve the performance of the net-
work devices and the applications. However, it
is difficult to establish this feedback loop in the

discrete approach because an application would
have to communicate with several heterogeneous
devices, each with its own interface protocol.

The NEon architecture offers a novel approach
for implementing network services. NEon is a para-
digm shift away from special-purpose network
devices, offering an integrated approach to archi-
tecting, operating, and managing network services.
NEon employs new flow-handling mechanisms to
integrate heterogeneous network services into one
system.

NEON: AN INTEGRATED APPROACH
A NEon system accepts as input policy rules that

define the operation of various network services
and produces a unified set of rules that generic
packet-processing engines can enforce. NEon uses
rule unification (or crunching) to centralize the con-
trol of multiple network services. This centraliza-
tion offers several advantages over the discrete
approach for network services:

• Flexible and dynamic network service priori-
ties. NEon merges network services rules
together, with each rule possibly having a list
of actions. These actions are ordered based on
service priorities. Changing service priorities
is a matter of changing the order of actions in
the action list, which does not require recabling
and can be done at runtime.

• Single packet classification. Each packet is clas-
sified only once before it is dispatched to the
appropriate elements to perform the required
actions, achieving a significant reduction in the
packet processing delay.

• Centralized management. All supported net-
work services are managed through one con-
sole through which the administrator inputs
the rules and any configuration updates.

• Single feedback point. NEon servers tune the
performance of network devices and applica-
tions at a single place. In contrast, in the dis-
crete approach, applications are required to

April 2005 53

Figure 1. Network
services
deployment. The
discrete approach
implements network
services as
individual devices.
As the number of
network services
increases, the
discrete approach
suffers from
numerous scaling
and manageability
problems.

Service level
agreement

monitor

Firewall
Server 1

Server 2

Server 3

Tier 1+Tier 0: Network devicesInternet

Firewall

Virus
scanner

Virus
scanner

Load
balancer

Fan
out

54 Computer

interact with several devices with different
interfaces and communication protocols.

As Figure 2 shows, the NEon architecture’s com-
ponents are divided between two planes: control
and data, delineated by standards-compliant inter-
face layers.

The control plane policy manager (CPPM) is
concerned with network service policy rules and
metadata. The CPPM receives policy rules of dif-
ferent network services from system administrators
and from management applications representing
these network services. It integrates these rules into
a unified set of rules that collectively implements
the network services.

This unification of policies provides a virtualiza-
tion of network services while preserving the pol-
icy enforcement and mapping of service semantics
to physical hardware semantics. Rule unification is
the heart of the CPPM, and it is accomplished
through a rule-crunching algorithm.

The data-plane component, the programmable
rule enforcement device (PRED), is a programma-
ble classification and action engine that implements
high-speed packet processing.2 Packet processing
is performed according to the rules that the CPPM
prepares. Each rule consists of a filter and a list of
actions.

The PRED checks data packets against the rule
filters, and when a filter matches a packet, it applies
the associated list of actions to that packet. PREDs
use network processor technology to provide line-
speed packet processing and the flexibility of pro-
grammable processors. Furthermore, network
processors enable a PRED to support multiple net-
work services concurrently.

The NEon architecture components communi-
cate through interface layers that are designed to
be compatible with open standards being developed
by two industry-wide efforts: the Network Pro-
cessing Forum (www.npforum.org) and the IETF
Forwarding and Control Element Separation
(ForCES) working group (www.ietf.org/html.
charters/forces-charter.html). To further its efforts
to accelerate the adoption of network processor
technology in network devices, NPF publications
identify the key elements in network devices and
define standards for the hardware, software, and
benchmarking aspects of building network devices.
The ForCES working group defines a standard
communication protocol between the control and
data planes. The “Network Device Integration”
sidebar describes other efforts to integrate the man-
agement of multiple network devices.

Standards-based separation of the NEon com-
ponents offers a simplified management model and
allows independent evolution of individual com-
ponents. One interface layer resides between the
CPPM and the PRED. This interface layer requires
PREDs from different vendors to support a stan-
dard set of APIs that standards-compliant CPPMs
will use. The other interface layer transforms input
rules from various network services as well as appli-
cation and environmental agents into the standard
rule format that the CPPM supports. The NEon
architecture uses application agents and environ-
mental agents to enable dynamic adaptation and
performance tuning of network devices.

Application agents form the feedback loop
between applications running on the servers, in
Tiers 1-3, and network devices. These agents run
on servers and trap application-related events and
forward them to the NEon CPPM. Typical exam-
ples of events that application agents gather are the
number of connections opened, current CPU uti-
lization, and memory usage.

Environmental agents provide input to the
CPPM to adapt to environmental conditions such
as server outages and link failures. Environmental
agents allow NEon to dynamically steer the flow
of packets to provide dynamic and highly available
networked services.

NETWORK SERVICES INTEGRATION
The NEon approach integrates multiple net-

work services and implements them in a single
system.

The following are examples of features that dif-
ferent network services can have in common and
of how their individual functions can be integrated.

Figure 2. NEon
architecture
components.
Components
comprise a control
plane and a data
plane separated
by standards-
compliant
interface layers.

Administrator

Network
services

such as firewall,
load balancer,
virus scannerControl plane

policy manager
(CPPM)

Application
agent

Environmental
agent

Server 1

Server 2

Server n

Interface layer

In
te

rf
ac

e
la

ye
r

Programmable rule
enforcement device

(PRED)

Control plane

Data plane

Fat pipe

• Firewall. A firewall checks individual data
packets against preconfigured rule tables and
either discards them or allows them to enter
the network. An example of a rule in a firewall
rule table looks like this: <TCP, 123.123.
123.0/24, 0/0, 194.119.230.1/32, 80/16,
ALLOW>, where the last field (ALLOW) rep-
resents the action that needs to be enforced on
packets meeting the conditions specified in the
preceding fields. That is, the rule allows the
entry of TCP packets that come from the sub-
network 123.123.123.0/24 with any source
port number and are destined to the HTTP
server (port 80) running on the machine with
IP address 194.119.230.1.

• SLA monitor. A service level agreement (SLA)
monitor gathers statistics on the traffic flowing
through a network. Its objective is, for exam-
ple, to gather usage data for charging customers
for the bandwidth used by their traffic. A con-
figuration rule for an SLA monitor could look
like this: <UDP, 123.123.123.0/24, 0/0, 0.0.
0.0/0, 0/0, ACCT>, which means that statistics
are to be collected on all UDP traffic originated
from the subnetwork 123.123.123.0/24.

• Load balancing. A load balancer can be used
in front of a number of servers to spread the
load across them based on some criteria. The
criteria could be the source address, destina-
tion address, protocol, or a combination
thereof. A rule in the load balancer table may
have the form: <TCP, 0.0.0.0/0, 0/0, 194.
119.230.12/32, 23/16, LBGROUP1>, which
means forward all TCP packets whose destina-
tion IP address is 194.119.230.12 and the desti-
nation port is 23 to a server that belongs to load
balancing group LBGROUP1.

Rule virtualization
Systems administrators must encode the network

service semantics in the form of rules to communi-
cate them to the hardware. To virtualize the rules
of different network services, their semantics can
be mapped into a single instance of generic packet
processing hardware.

Most network services perform their functions
by enforcing a set of rules, with each rule taking
the form <Filter, ActionList>, where Filter defines
a class of packets on which operations that
ActionList specifies are to be performed.

A Filter is composed of several fields, each with
a Field Name and a Pattern. The Field Name iden-
tifies the header field in a protocol layer—for exam-
ple, the source address in the IP layer. The Pattern

is composed of a bit string that determines which
packets match this field.

The Pattern also specifies which bits in the string
should be considered in matching packets and
which bits can be ignored. One way to do that is
by using the mask length notion (/len), which is
commonly used in IP routing tables. For example,
a pattern for a 32-bit IP address could be 128.12.
30.0/24, which means that the leftmost 24 bits
(128.12.30) should match the corresponding bits
in packets, while the rightmost 8 bits can be
ignored.

April 2005 55

Network Device Integration
Previous efforts to integrate the management of multiple network

devices includes the Open Platform for Security (www.opsec.com),
which provides a standard framework for managing several indepen-
dent security devices such as firewalls, intrusion detection, and autho-
rization. However, OPSEC integrates the devices only at the
management level, whereas NEon integrates both the management and
enforcement (hardware) levels.

The rule-crunching algorithm has some similarities to high-speed
packet-classification algorithms.1 Packet classification means finding
which rule matches a given packet. If multiple rules match, a conflict
occurs and must be resolved so that only one rule applies. Rule conflicts
can occur in NEon, but they are handled differently: Rules are merged
or modified, and sometimes new rules are created.

An algorithm for detecting conflicts between two k-tuple filters cre-
ates a new filter when a conflict occurs; therefore, the total number of
rules increases exponentially as the number of conflicts increases.2 A
more scalable conflict detection algorithm builds binary tries for each fil-
ter field; each level of the trie is one bit of the field.3 The algorithm com-
putes a bit vector from this trie to aid in conflict detection.

The growth in the total number of rules is a critical issue in PREDs
with limited memory. Because our rule-crunching algorithm merges and
prioritizes the actions of conflicting rules, it does not incur exponential
growth. An efficient data structure for detecting rule conflicts that is
based on rectangle geometry works only for two-dimensional classifica-
tion.4 However, because classifying based on two fields is not sufficient
for many network services, our rule cruncher uses five fields. Finally, an
algorithm for removing redundant rules can be used as a preprocessing
step for the rule cruncher to eliminate unnecessary service rules.5

References
1. D.E. Taylor, Survey and Taxonomy of Packet Classification Techniques, tech.

report WUCSE200424, Dept. Computer Science and Eng., Washington Univ.,
2004.

2. A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter
Conflicts,” Proc. IEEE Infocom 00, IEEE Press, 2000, pp. 1203-1212.

3. F. Baboescu and G. Varghese, “Fast and Scalable Conflict Detection for
Packet Classifiers,” Computer Networks, Aug. 2003, pp. 717-735.

4. D. Eppstein and S. Muthukrishnan, “Internet Packet Filter Management and
Rectangle Geometry,” Proc. 12th ACM SIAM Symp. Discrete Algorithms
(SODA 01), ACM Press, 2001, pp. 827-835.

5. A. Liu and M. Gouda, Removing Redundancy from Packet Classifiers, tech.
report TR0426, Dept. Computer Sciences, Univ. Texas at Austin, 2004.

56 Computer

The simple mask length approach applies
only when bits that need to be matched are
contiguous. To support more complex pat-
terns such as those that match intermediate
bits, the field pattern should specify the full
bit mask (not only the length). To match a
rule, a packet must match all fields of the
rule’s filter. To check a data packet against a
specific field, the network device extracts the
corresponding bits in the packet. If all bits in
the field pattern match the extracted bits,

a field is matched.
The ActionList is a series of processing actions

that the network device performs on a packet.
Actions are, for example, dropping a packet, gath-
ering statistical information, controlling timer
functions, modifying or marking a packet with
metadata—such as inserting new fields or over-
writing existing fields—or passing the packet on
(doing nothing).

We can abstract the functioning of a network
service as follows:

NetworkService := < Rule > +
Rule := < Filter, ActionList >
Filter := < Field > +
Field := < FieldName, Pattern >
ActionList := < Action > +
Action := Drop | Allow | Mark |

Overwrite | ...

This abstraction allows combining rules from sev-
eral network services into a unified set of rules.
However, some network services such as stateful
services do not readily lend themselves to using the
algorithm for performing this unification.

Rule crunching
The rule-crunching algorithm uses service

abstraction to take rules from multiple services and
generates a consistent rule set that a PRED can
apply. Two concepts underlie this algorithm: rule
merging and rule enforcement order.

Rule merging. Because the NEon architecture inte-
grates multiple network services in one device, it
can apply several rules from different services to
the same packet. Rule merging occurs when two or
more rules would match the same packet. The rule-
crunching algorithm merges rules based on the set
of packets each rule influences.

Consider two rules r and r′ that belong to two
different services. We define S as the set of packets
that match rule r. Similarly, S′ is the set of packets
that match r′. Five relationships are possible

between S and S′: EQUAL, DISJOINT, SUBSET,
SUPERSET, and INTERSECT. Rule merging cre-
ates the following relationships:

• S = S′ (EQUAL). This relationship indicates
that r has the same filter as r′, but they may
have different actions. The result of merging
is one rule denoted by cr. Rule cr will have the
common filter and the concatenation (denoted
by the pipe symbol) of the actions of r and r′.
That is, cr.filter = r.filter = r′.filter, and
cr.ActionList = r.ActionList ❘ r′.ActionList.

• S ∩ S′ = φ (DISJOINT). This relationship
means that the two rules r and r′ are to be
applied on different, nonintersecting sets of
packets. In this case, no merging will happen,
and the two rules r and r′ are used in their orig-
inal format.

• S ⊂ S′ (SUBSET). In this case, packets in the set
S should be subjected to actions of rule r as well
as rule r′. Moreover, packets in the set S′ − S
should be subjected only to the action list of r′.
Merging creates two rules cr1 and cr2, where
(1) cr1.filter = r.filter and cr1.ActionList =
r.ActionList ❘ r′.ActionList; and (2) cr2 = r′.
Note that the device stores cr1 and cr2 in a way
that ensures that packets are checked against
cr1 before cr2. Therefore, cr2 will be applied only
to packets that do not match cr1 but match
cr2—that is, packets belonging to the set S′ − S.

• S ⊃ S′ (SUPERSET). This case is equivalent to
S′ ⊂ S (SUBSET) and handled accordingly.

• S ∩ S′ ≠ φ (INTERSECT). Merging in this case
results in three rules cr1, cr2, and cr3, where
(1) cr1.filter = r.filter ∩ r′.filter and
cr1.ActionList = r.ActionList ❘ r′.ActionList; (2)
cr2 = r; and (3) cr3 = r′. Again, cr1 should be
checked before both cr2 and cr3.

For each relationship, the algorithm creates
equivalent crunched rules whose filters match the
same set of packets as the original service rules.
Moreover, the crunched rules perform the same
actions as the original rules, and any existing ambi-
guity among them has been removed.

Rule enforcement order. A programmable rule
enforcement device checks every packet flowing
through it against the set of crunched rules stored
in its table. The order of checking rules against
packets is critical to the PRED’s correct operation
because a packet can match more than one
crunched rule when only one rule should be
applied. For example, a packet can match two
rules, one of which contains more specific filters

The NEon
architecture

can apply several
rules from different

services to the
same packet.

because it matches source IP address and port num-
ber rather than just the source IP address. Clearly,
the more specific rule—the first one—should be
applied.

The algorithm uses two approaches to determine
the order of checking rules against packets: ordered
precedence and longest prefix matching. Ordered
precedence matching places rules with more spe-
cific filters earlier in the rule table. Rules are con-
sidered one at a time in the order specified: The first
matching rule fires, and its action list is executed.
In longest prefix matching, the algorithm applies
the rule that shares the longest prefix with the cor-
responding fields in the packet.

Typically, the algorithm stores rules in a data
structure that facilitates longest prefix matching,
such as binary tries. Longest prefix matching
assumes matching contiguous bits.

Rule-crunching algorithm
The input to the rule-crunching algorithm is the

service rule database (srdb), a list of rules of indi-
vidual network services. The administrator assigns
a unique priority to each network service. All rules
of the same service get the same priority. The srdb
is ordered based on this priority, which ensures that
all rules of the same network service come after
each other. We illustrate this algorithm using high-
level pseudocode:

1. crdb ← r1; /* r1 is the first rule
in srdb. */

2. foreach r ∈ srdb — {r1} do
3. foreach cr ∈ crdb do
4. rel ← DetermineRel(r, cr);
5. if rel == DISJOINT
6. add r to crdb;
7. else
8. MergeRules(r, cr, rel, crdb);
9. return crdb;

The algorithm’s output is a unified set of rules:
the crunched rule database (crdb). The algorithm
subsequently removes rules from the srdb and adds
them to the crdb until there are no more rules to
move. A rule r in srdb is compared with every rule
cr in crdb for possible merging.

The DetermineRel() function invoked in line four
determines the relationship, rel, between the two
rules by comparing their corresponding field filters.
If the two rules cannot be applied on any packet
simultaneously—that is, their packet sets are DIS-
JOINT—no rule merging is performed, and r is
added to crdb. Otherwise, the MergeRules() func-

tion is invoked to merge the two rules based
on their relationship, rel. For example, if rel
= EQUAL, function MergeRules() adds the r
action list to the cr action list and adjusts the
priority of the modified cr. Note that rule r
itself is not added to crdb, which reduces the
total number of rules in crdb.

Algorithm analysis. As the discussion on rule
merging indicates, the DISJOINT, SUBSET,
and SUPERSET relationships do not add new
rules to the crdb; they merely move the ser-
vice rules from the srdb to the crdb and can
modify the rule’s filter or action lists.

If the EQUAL relationship occurs between
two rules, we add only one of them to the crdb—
that is, the number of rules is reduced by one. If the
INTERSECT relationship occurs between two
rules, we add three rules to the crdb, which
increases the total number of rules by one.

Our worst-case analysis assumes that no EQUAL
relationships occur. Therefore, the crdb’s final size
is equal to the number of the original service rules
(n) in addition to the maximum number of rules
created from all possible INTERSECT relation-
ships. To count the maximum number of INTER-
SECT relationships, the main factor in determining
the relationship between two rules is their IP source
and destination addresses because these fields can
use address range wild-carding (for example,
a.b.c.d/16 or a.b.c.d/24). Other fields will either
match or will not.

For two rules to intersect, their IP source (or des-
tination) addresses must share a common prefix,
while their other fields can differ. Since IP addresses
have a fixed number of bits k (k = 32 for IPv4), the
common prefix can range from 1 bit to a maximum
of k bits. In addition, crdb prefixes are unique
because if two rules have the same prefix, they must
have been merged in a previous iteration.

When the rule crunching algorithm compares
one rule from the srdb against all entries in the
crdb, there can be at most (k + k) × 2 × c = O(1)
INTERSECT relationships, where c is the number
of fields in the filter other than the IP addresses
(c = 3 in the 5-tuple rules). Because c fields may or
may not match in the INTERSECT relationship,
we must include the factor 2 × c. The factor 2
comes from the fact that there are two IP addresses:
source and destination. Therefore, each iteration
of the algorithm’s outer loop (line 2) will add a
maximum of O(1) rules to the crdb, which results
in a space complexity of n × O(1) + n = O(n).

The same arguments apply for determining the
algorithm’s time complexity. This is because the

April 2005 57

The rule-crunching
algorithm stores
rules in a data
structure that

facilitates longest
prefix or ordered

precedence
matching.

58 Computer

inner loop is invoked at most n times, the algo-
rithm’s overall time complexity is O(n2).

The rule-crunching algorithm is a part of the
CPPM, which operates in the control plane, not in
the performance-critical, high-speed data plane.
Moreover, the CPPM does not necessarily run on
the network device’s hardware. The CPPM can run
on a monitoring or management server that con-
trols several network devices.

The management server provides a single point
to feed and update rules for various network ser-
vices. It also performs the rule crunching once for
all attached network devices and then pushes the
crunched rules to each network device. Further-
more, because it has the crunched rules for all
devices, the management server can perform some
optimizations such as removing redundant rules.3

Example. Figure 3 illustrates the crunching of three
rules r1, r2, and r3 belonging to three different ser-
vices: firewalling, load balancing, and SLA moni-
toring, respectively. The color of each area in the
figure represents the set of packets that matches a
rule whose action is represented by the same color.
For instance, the green area represents the set of
packets on which the firewall performs the action
ALLOW. The word ALLOW in the action list of
the rules is also colored in green. Let S1, S2, and S3

represent packet sets that match rules r1, r2, and r3,
respectively. The figure shows various relationships
between the packet sets. For example, S1 is a
SUPERSET of S2 and S3, while the relationship
between S2 and S3 is INTERSECT.

The rules r1, r2, and r3 are initially stored in the
srdb, and the crdb is empty. Line 1 of the algorithm
moves r1 to the crdb. Then, it merges r2 with r1.
Since S2 ⊂ S1, r2 is added to the crdb after concate-
nating the action list of r1 to its action list, r2 will

have <ALLOW, LBGROUP1> as its action list and
it will be inserted before r1 in the crdb. Then, r3 will
be merged with the modified r2. This is an INTER-
SECT relationship.

The merging produces a new rule with the filter
<TCP, 2.2.2.0/24,0/0, 1.1.1.7/32, 80/16>, which is
the intersection of the r2 and r3 filters. The new rule
has the action list <ALLOW, LBGROUP1, ACCT>.
In the final step, r3 is merged with r1, which modi-
fies r3 by concatenating the action list of r1 to r3’s
before adding r3 to the crdb.

The resultant crunched rules are shown in the bot-
tom part of Figure 3. Figure 3 also demonstrates the
flow of sample packets P1 to P4 through the discrete
network devices and the NEon system. The NEon
system performs exactly the same actions on each
packet that the discrete network devices perform. For
example, packet P3 matches the three rules r1, r2, and
r3 of the discrete devices and at the same time matches
cr1, which has the same actions as r1, r2, and r3.

PROTOTYPE SYSTEM
To validate the NEon concept, we developed a

complete prototype system. The prototype has been
tested with commercial hardware devices using syn-
thetic data traffic as well as configuration files from
operational network devices.

CPPM code
The CPPM code is implemented in Java and has

two main parts: a service listener and a rule
cruncher.

The service listener receives policy rules of indi-
vidual network services from the administrator and
from the software agents representing network ser-
vices. It is implemented as a pool of threads, one
for each active network service. The service listener
stores the received rules and rule updates in the
srdb. Rules in the srdb are ordered based on their
defined network service priorities.

The rule cruncher applies the rule-crunching
algorithm to the srdb to create the crunched rule
database crdb. The rule cruncher can be invoked
periodically (every few minutes or seconds), upon
a rule update (insert, delete, or modify a rule), or
explicitly by the administrator. The automatic and
periodic invocation of the rule cruncher allows fast
propagation of updated configurations to the
enforcement devices.

PRED
Because there are currently no commercially

available generic PREDs that can apply rules from
multiple network services, for our prototype we

Figure 3. Rule
crunching in NEon.
The algorithm
merges the input
service rules for
firewalling, load
balancing, and
service level
agreement
monitoring into a
set of four crunched
rules allowing
different actions on
incoming packets.

Firewall Load balancer SLA monitor NEon system

Rule r1 Rule r2 Rule r3 Crunched rules

Packet P1

Packet P2

Packet P3

Packet P4

S1

S2

S3

cr4

cr3

cr1

cr2

Discrete appproach Integrated
approach

The input service rules are
r1 = <TCP, 0.0.0.0/0, 0/0, 1.1.1.0/24, 80/16, [ALLOW]>
r2 = <TCP, 0.0.0.0/0, 0/0, 1.1.1.7/32, 80/16, [LBGROUP1]>
r3 = <TCP, 2.2.2.0/24, 0/0, 1.1.1.0/24, 80/16, [ACCT]>

The resultant crunched rules are
cr1 = <TCP, 2.2.2.0/24, 0/0, 1.1.1.7/32, 80/16, [ALLOW, LBGROUP1, ACCT]>
cr2 = <TCP, 0.0.0.0/0, 0/0, 1.1.1.7/32, 80/16, [ALLOW, LBGROUP1]>
cr3 = <TCP, 2.2.2.0/24, 0/0, 1.1.1.0/0, 80/16, [ALLOW, ACCT]>
cr4 = <TCP, 0.0.0.0/0, 0/0, 1.1.1.0/24, 80/16, [ALLOW]>

modified two different hardware products to serve
as PREDs.

We have tested our prototype on PolicyEdge, a
network processor chip emulator from FastChip,
and on the Sun Fire Content Load Balancer Blade
(B10n) from Sun Microsystems. Successfully mod-
ifying these devices to run the NEon prototype
demonstrates that the integrated approach for net-
work services is both feasible and viable.

The B10n is a networking product that provides
content load balancing for blade servers and hori-
zontally scaled systems. The B10n operates at
the data center edge, uses user-specified rules to
classify client-side inbound traffic at wire speed,
and applies load balancing actions on the data
traffic.

The B10n was designed to provide only content
load balancing—that is, only one action is associ-
ated with each rule. We have augmented the
firmware and the data structures to support multi-
ple actions for each rule.

The B10n’s rule matching technique is based on
two fields: IP source address and source port. In
NEon, we use 5-tuple rules to represent a wider
range of network services. We have changed the
rule structure to support five layer-4 fields: source
IP, destination IP, source port, destination port, and
protocol. In addition, any field can be either fully
specified or wild-carded.

Results
Several NEon system parameters were tested

including the rule-crunching algorithm’s runtime,
the relationship between the number of crunched
rules versus the number of raw service rules, and
the number and type of merging relationships
occurring among rules.

To perform the experiments, we used configura-
tion files from deployed network services, hand-
crafted scenarios, and generated data. The
configuration files had a small number of unique
service rules—63 on average, which is typical for
many Internet data centers. The crunching algo-
rithm took about 6 milliseconds on a Sun Fire
Ultrasparc 240 server-class machine and produced
148 crunched rules on average.

We also verified that the INTERSECT relation-
ship, which increases the size of the crdb, does not
occur frequently between rules: only 9.9 percent of
the merging relationships were INTERSECT. More
than 87 percent of the relationships were DIS-
JOINT, with the small remaining percentage dis-
tributed among EQUAL, SUBSET, and SUPERSET
relationships.

To test the scalability of the approach, we simu-
lated various combinations of network services
with a large number of rules. The rule filters were
generated randomly within the appropriate ranges.
For example, the transport protocol field was cho-
sen randomly from either TCP or UDP. Random
generation of rules stresses the rule-crunching algo-
rithm because it produces more INTERSECT rela-
tionships than in typical configuration files;
therefore, it pushes the running time and the size
of the crunched rule database toward their worst
cases.

Figure 4 shows the rule cruncher’s average run-
ning time as the number of service rules increases
from 0 to 10,000. The total number of service rules
was divided among the simulated number of net-
work services. For example, if we simulate 8,000
rules and 10 network services, each network ser-
vice will have, on average, 800 rules. The algorithm
terminates in less than one minute for up to
approximately 4,000 rules. For larger numbers of
rules, the running time is still on the order of min-
utes. This is acceptable given that the rule cruncher
is not invoked frequently: It is needed initially and
when rules or rule sets are modified.

T he NEon integrated approach offers numer-
ous advantages over the current practice of
implementing network services as discrete

devices, including

• flexibility of dynamically changing service pri-
orities;

• single packet classification, which leads to
shorter end-to-end delay;

• centralized management; and
• a single point for applications to establish a

feedback loop with network devices.

April 2005 59

Figure 4.Rule
cruncher runtime.
The rule cruncher
algorithm
terminates in less
than one minute for
up to approximately
4,000 rules.

0 10
Thousands of service rules

Av
er

ag
e

ru
nn

in
g

tim
e

(s
ec

on
ds

)

100

200

300

400

500

600

700

800

900

1,000

1 2 3 4 5 6 7 8 9

 15 network services
 10 network services
 6 network services
 3 network services

60 Computer

Testing a NEon prototype architecture with com-
mercial hardware devices and data collected from
operational network devices demonstrates that this
system offers a feasible and viable approach for
implementing sophisticated network services.

This work can be extended in several directions.
The rule-crunching algorithm reconstructs the
entire crunched rule database upon the modifica-
tion of any service rule. Currently, this is not a
major concern because rule updates are infrequent
and occur on a time scale of hours or days.
However, in the future, more dynamic environ-
ments in which service rules can be updated on a
shorter time scale will pose a challenge for the rule
cruncher. One possible solution is to design a dif-
ferential rule cruncher, which performs the mini-
mum amount of work to adjust the crunched-rule
database to reflect changes in service rules.

Another future direction that would broaden the
scope and applicability of the NEon approach is to
extend the rule unification mechanism to accom-
modate more network services such as stateful ser-
vices, services that access data beyond packet
headers (application data), and services such as the
network address translator that can change a
packet’s identity.

A complete test bed is needed to thoroughly com-
pare NEon with the discrete approach. Such a test
bed would contain several network devices con-
nected in the traditional discrete way and an equiv-
alent NEon system. It would be interesting to
measure performance parameters such as average
packet processing time, the time needed to recon-
figure the network devices, and how quickly the
system can propagate rule updates to the rule-
enforcing hardware. ■

Acknowledgments
We appreciate the insightful discussions, sugges-

tions, and support from Robert Bressler, Danny
Cohen, Cindy Dones, Kevin Kalajan, Lisa Pavey,
and Raphael Rom. We also thank Ahsan Habib,
Nan Jin, Sumantra Kundu, Santashil PalChaudhuri,
George Porter, Ioan Raicu, and Aaron Striegel for
their contributions to the NEon project during their
summer internships at Sun Microsystems, Inc.

References
1. M. Arregoces and M. Portolani, Data Center Fun-

damentals, Cisco Press, 2003.
2. D. Comer, Network Systems Design Using Network

Processors, Prentice Hall, 2004.

3. A. Liu and M. Gouda, Removing Redundancy from
Packet Classifiers, tech. report TR0426, Dept. Com-
puter Sciences, Univ. Texas at Austin, 2004.

Christoph L. Schuba is a senior staff engineer in
the Security Program Office at Sun Microsystems
Inc. His research interests include network and
computer system security, high-speed networking,
and distributed systems. Schuba received a PhD in
computer science from Purdue University. He is a
member of the Internet Society and Usenix. Con-
tact him at christoph.schuba@sun.com.

Mohamed Hefeeda is an assistant professor in the
School of Computing Science at Simon Fraser Uni-
versity, Canada. His research interests include com-
puter networks, multimedia networking, peer-
to-peer systems, and network security. Hefeeda
received a PhD in computer science from Purdue
University. He is a member of the IEEE and the
ACM Special Interest Group on Data Communi-
cations. Contact him at mhefeeda@cs.sfu.ca.

Jason Goldschmidt is a technical staff engineer,
Network Systems Group, Sun Microsystems Inc.
His research interests include network processing,
protocols, and scalable architectures. Goldschmidt
received a BS in computer science and engineering
from Bucknell University. Contact him at jason.
goldschmidt@sun.com.

Michael F. Speer is a senior staff engineer, Netra
Systems and Networking, Sun Microsystems Inc.
His research interests include scalable network sys-
tems and services architectures for network deploy-
ments. He received a BS in computer engineering
from the University of California, San Diego. He
is a member of the IEEE Computer Society, the
ACM, and Usenix. Contact him at michael.
speer@sun.com.

