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Abstract—We propose a new probabilistic coverage protocol
(denoted by PCP) that considers probabilistic sensing models.
PCP is fairly general and can be used with different sensing
models. In particular, PCP requires the computation of a single
parameter from the adopted sensing model, while everything
else remains the same. We show how this parameter can be
derived in general, and we actually do the calculations for two
example sensing models: (i) the probabilistic exponential sensing
model, and (ii) the commonly-used deterministic disk sensing
model. The first model is chosen because it is conservative in
terms of estimating sensing capacity, and it has been used before
in another probabilistic coverage protocol, which enables us
to conduct a fair comparison. Because it is conservative, the
exponential sensing model can be used as a first approximation
for many other sensing models. The second model is chosen
to show that our protocol can easily function as a determin-
istic coverage protocol. In this case, we compare our protocol
against two recent deterministic protocols that were shown to
outperform others in the literature. Our comparisons indicate
that our protocol outperforms all other protocols in several
aspects, including number of activated sensors and total energy
consumed. We also demonstrate the robustness of our protocol
against random node failures, node location inaccuracy, and
imperfect time synchronization.

I. INTRODUCTION

Sensor networks have been proposed for many applications
such as forest fire detection, area surveillance, and natural
habitat monitoring [1]. A common ground for all such ap-
plications is that every sensor can detect an event occurring
within its sensing range, and sensors collaborate in some way
to deliver events, or information related to these events, to
processing centers for possible actions.

In many of the previous works, the sensing range is assumed
to be a uniform disk of radius r,. The disk model assumes
that if an event happens at a distance less than or equal to
rs from the sensor location, the sensor will deterministically
detect this event. On the other hand, an event occurring at
a distance r5 + ¢ (¢ > 0) can not be detected at all, even
for very small € values (see Fig. 1(a)). The disk sensing
model is appealing, because it makes coverage maintenance
protocols, e.g., [2]-[4], less complicated to design and analyze.
It also makes analytical and asymptotic analysis, e.g., [5], [6],
tractable. However, it is unlikely that physical signals drop
abruptly from high, full-strength values to zero, as the disk
model assumes. This implies that there might be a chance
to detect an event occurring at distances greater than r4. By
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ignoring this extra sensing capacity, the disk model may not
fully utilize the sensing capacity of sensors, which may lead
to: (i) deploying more sensors than needed and thus incurring
higher cost, (ii) activating redundant sensors which increases
interference and wastes energy, and ultimately (iii) decreasing
the lifetime of the sensor network.

Several studies [7]-[11] have argued that probabilistic sens-
ing models capture the behavior of sensors more realistically
than the deterministic disk model. For example, through
experimental study of passive infrared (PIR) sensors, the
authors of [11] show that the sensing range is better modeled
by a continuous probability distribution, which is a normal
distribution in the case of PIR sensors. The authors of [7],
[8] use an exponential sensing model, where the sensing
capacity degrades according to an exponential distribution
after a certain threshold, as shown in Fig. 1(b). Whereas the
authors of [10] propose a polynomial function to model the
probabilistic nature of the sensing range, as shown in Fig. 1(d).
Furthermore, the authors of [9] assume that the sensing range
can be modeled as layers of concentric disks with increasing
diameters, and each layer has a fixed probability of sensing,
as shown in Fig. 1(c). A probabilistic sensing model is more
realistic because the phenomenon being sensed, sensor design,
and environmental conditions are all stochastic in nature. For
instance, noise and interference in the environment can be
modeled by stochastic processes. Sensors manufactured by
the same factory are not deterministically identical in their
behavior, rather, sensor characteristics are usually modeled
using statistical distributions.

While more realistic, probabilistic sensing models introduce
new challenges for coverage protocols in sensor networks.
First, the sensing range of a sensor is no longer a nice regular
disk, and therefore, it becomes harder to define the notion
of overlapping between sensing ranges of different sensors.
This notion is critical in coverage protocols, e.g., OGDC [4],
that minimize overlapping between sensing ranges to activate
the minimum number of sensors while ensuring full coverage.
This implies that directly using probabilistic sensing models in
coverage protocols that assume disk sensing model may yield
incorrect functioning of these protocols, such as terminating
while some subareas are uncovered, or activating more sensors
than actually needed. Most of the current coverage protocols,
including CCP [2], PEAS [12], Ottawa [13], and OGDC [4],
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Fig. 1.

assume disk sensing model. Second, the traditional definition
of the coverage itself—which states that every point in the area
must be within the sensing range of at least one sensor—is no
longer valid because of the probabilistic nature of the sensing
range. Therefore, a new definition for coverage is needed when
probabilistic sensing models are considered.

In this paper, we propose a new probabilistic coverage
protocol (denoted by PCP) that considers probabilistic sensing
models. We design PCP keeping in mind that no single sensing
model (probabilistic or not) will accurately model all types
of sensors in all environments. It is expected that different
sensor types will require different sensing models. Even for the
same sensor type, the sensing model may need to be changed
in different environments or when the technology changes.
Designing, implementing, and testing a different coverage
protocol for each sensing model is indeed an extremely costly
process, if at all possible. To address this challenging task, we
design our protocol with limited dependence on the sensing
model. In particular, our protocol requires the computation
of a single parameter from the adopted sensing model, while
everything else remains the same. We show in this paper how
this parameter can be derived in general, and we actually do
the calculations for two sensing models: (i) the probabilistic
exponential sensing model [7], [8], and (ii) the commonly-used
deterministic disk sensing model. The first model is chosen
because it is conservative in terms of estimating sensing
capacity, and it has been used before in another probabilistic
coverage protocol (CCANS [8]). This enables us to compare
our protocol against CCANS, which is the only fully-specified
probabilistic coverage protocol that we are aware of. Also
because it is conservative, the exponential sensing model can
be used as a first approximation for many other sensing
models. The second model is chosen to show that our protocol
can easily function as a deterministic coverage protocol. In
this case, we compare our protocol against two recent de-
terministic protocols that were shown to outperform others
in the literature. Our comparisons indicate that our protocol
outperforms the other two in several aspects, including number
of activated sensors and total energy consumed. We also
demonstrate its robustness against random node failures, node
location inaccuracy, and imperfect time synchronization.

The rest of the paper is organized as follows. We summarize
the related work in Section II. In Section III, we formally
define the probabilistic coverage problem, and present the
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key ideas behind our new probabilistic coverage protocol. In
Section IV, we present the details of our new protocol, and
in Section V, we prove its correctness and provide bounds
on its convergence time and message complexity. We also
prove the condition on the communication range needed for
our protocol to provide connectivity in addition to coverage.
In Section VI, we evaluate our protocol and compare it against
other deterministic and probabilistic coverage protocols in the
literature. We conclude the paper in Section VIL

II. RELATED WORK

Coverage in sensor networks has received significant re-
search attention. The studies in [5], [6] conduct asymptotic
and analytical analysis to provide necessary and sufficient con-
ditions for coverage in various environments. In [14], optimal
deployment patterns for different ratios of the communication
and sensing ranges are proposed. While these studies provide
useful insights and guidelines, which we indeed benefited
from, they do not propose specific coverage protocols.

Several distributed coverage protocols have been proposed
for the disk model. For example, OGDC [4] tries to minimize
the overlap between the sensing circles of activated sensors,
while CCP [2] deactivates redundant sensors by checking that
all intersection points of sensing circles are covered. Other
earlier protocols include PEAS [12] and Ottawa [13]. We
compare our protocol against the more recent OGDC and CCP
protocols, because, according to the performance evaluations
in [2], [4], they outperform the earlier ones.

Probabilistic coverage with various sensing models has also
been studied in [8]-[10]. The work in [10] analytically studies
the implications of adopting probabilistic and disk sensing
models on coverage, but no specific coverage protocol is
presented. In [9], the sensing range is modeled as layers of
concentric disks with increasing diameters, where the proba-
bility of sensing is fixed in each layer. A coverage evaluation
protocol is also proposed. Although the authors mention
that their coverage evaluation protocol can be extended to a
dynamic coverage protocol, they do not specify the details of
that protocol. Therefore, we could not compare our protocol
with theirs. The closest work to ours is [8], where the authors
assume that the sensing capacity decreases exponentially fast
after certain threshold. The authors also design a probabilistic
coverage protocol (CCANS) based on that model. We use the
same sensing model in our coverage protocol and compare



it against CCANS. Unlike CCANS, our protocol can utilize
different probabilistic and deterministic sensing models.

Finally, a closely-related problem to coverage is connec-
tivity. k-connectivity (X > 1) means that there are at least
k disjoint paths between any pair of nodes in the network.
For the disk sensing and communication models, it has been
proven that if the communication range of sensors is at least
twice the sensing range and the monitored area is convex, then
k-coverage implies k-connectivity [2], [4], [8]. In this paper
we prove the conditions under which probabilistic coverage
ensures 1-connectivity.

III. PROBABILISTIC COVERAGE

In this section, we define the notion of probabilistic cov-
erage, and we discuss the key ideas behind our probabilistic
coverage protocol. We start by presenting some useful facts
on coverage using the disk sensing model. Then, we discuss
coverage using probabilistic sensing models.

A. Coverage using Disk Sensing Model

The disk sensing model simplifies the coverage problem. In
fact, optimal solutions for it can be obtained efficiently. As
mentioned in [14], covering an area with disks of same radius
(rs) can optimally be done by placing disks on vertices of a tri-
angular lattice, where the side of the triangle is \/grs. We can
use this triangular lattice idea in designing a coverage protocol
that activates a minimal subset of deployed sensors to ensure
coverage as follows. The protocol works by first activating
any sensor in the area. This sensor activates six other sensors
located at vertices of the hexagon centered at that sensor. Each
activated sensor in turn activates other sensors at vertices of its
own hexagon. This process continues till the activated sensors
form a virtual triangular lattice over the whole area. Activating
sensors in this way minimizes the overlap between the sensing
ranges of sensors. The above protocol is idealistic and many
practical issues need to addressed, as will be discussed later.

B. Coverage using Probabilistic Sensing Models

Under probabilistic sensing models, the sensing range is
no longer a disk. Furthermore, the overlap among sensing
ranges of different sensors is not clearly defined. Therefore,
the overlap minimization idea may not work with probabilistic
coverage protocols that seek to optimize the number of acti-
vated sensors. For such protocols, we propose a new method
for activating the minimum number of sensors while ensuring
the monitored area is probabilistically covered. We first state
two definitions that we use in the discussion.

Definition 1 (Probabilistic Coverage): An area A is prob-
abilistically covered by n sensors with threshold parameter
6 (0 <60 <1)if Plz) =1—T[,(1 = pi(z)) > 0 for
every point x in A, where p;(x) is the probability that sensor
1 detects an event occurring at x.

Note that P(x) in the above definition measures the col-
lective probability from all n sensors to cover point x, p;(x)
is specified by the adopted sensing model, and the coverage
threshold parameter 6 depends on the requirements of the

target application. If we set § = 1 and p;(z) as a binary
function that takes on either O or 1 in the above definition, we
get the commonly-used deterministic coverage definition with
the disk sensing model.

Definition 2 (Least-covered Point): A point z within an
area A is called the least-covered point of A if P(x) < P(y)
for all y # = in A.

The main idea of our probabilistic coverage protocol is to
ensure that the least-covered point in the monitored area has
a probability of being sensed that is at least 6. To implement
this idea in a distributed protocol with no global knowledge,
we divide the area into smaller subareas. For each subarea,
we determine the least-covered point in that subarea, and we
activate the minimum number of sensors required to cover the
least-covered point with a probability more than or equal to
0. To enable our protocol to work optimally under the disk
sensing model as well as probabilistic sensing models, we
divide the monitored area into equi-lateral triangles forming a
triangular lattice. Now we need to compute the location of
the least-covered point in each triangle. Then, we need to
compute the maximum length of the triangle side at which
the probability of sensing at the least-covered point is at
least 6. Knowing this maximum length, the coverage protocol
functions in the same manner as described in Section ITI-A: It
tries to activate nodes at vertices of the lattice triangles. Notice
that this is an idealistic version of our protocol to describe
the core idea. Practical considerations, such as inaccuracies in
node locations, are handled later in the paper. Notice also that
the main difference between the deterministic and probabilistic
coverage protocols is that the former tries to minimize the
overlap between sensing ranges, while the latter stretches
the separation between active sensors to its maximum while
ensuring that the coverage at the least-covered point exceeds
a given threshold 6.

We refer to the maximum length of the triangle side as
the maximum separation between any two active sensors, and
we denote it by s. Computing s depends only on the sensing
model used. In the next subsection, we derive s for two sensing
models: the exponential sensing model [7], [8], and the disk
sensing model. Computing s for other sensing models can be
done in a similar way. We should emphasize that the operation
of our probabilistic coverage protocol (PCP), described in
detail in Sections IV and V, does not change by changing the
sensing model. The only parameter that needs to be determined
and given to PCP is the maximum separation between any two
active sensors s, which is computed from the sensing model.

C. Computing Maximum Separation for Exponential and Disk
Sensing Models

This section presents the details of deriving the maximum
separation s between any two active nodes for two example
sensing models. s is the only required parameter that needs
to be computed from the sensing model for our coverage
protocol.

The first model that we derive s for is the exponential



sensing model, which is defined as:

1, for d < rg

p(d) = e—a(d—n)7 (1)

for d > rg

where p(d) is the probability of detecting an event happening
at a distance d from the sensor, r, is a threshold below which
the sensing capacity is strong enough such that any event will
be detected with probability 1, and « is a factor that describes
how fast the sensing capacity decays with distance. We call
« the sensing capacity decay factor. The exponential model is
shown Fig. 1(b). We consider this sensing model for two rea-
sons. First, it has been adopted before in [7], [8], which allows
us to conduct a fair comparison between our protocol and the
protocol in [8]. Second, it is conservative as it assumes that the
sensing capacity decreases exponentially fast beyond 74, which
means that the achieved actual coverage will be higher than
the estimated by the theoretical analysis. In addition, since the
exponential sensing model is conservative, it can be used as a
first approximation for other sensing models such as those in
[9]-[11]. Therefore, sensor network designers may not need to
compute the exact value of the maximum separation parameter
for mathematically complex sensing models, and instead use
the exponential sensing model.

The following theorem provides the maximum separation
between any two active nodes s for the exponential sensing
model. The sketch of the proof is given below.

Theorem 1 (Maximum Separation): Under the exponential
sensing model defined in (1), the maximum separation between
any two active sensors on the triangular lattice to ensure that
the probability of sesnsing at the least-covered point is at least
0 is v/3(rs — 7““1_(;/@)).

Proof: To prove this theorem, we need to find the location
of the least-covered point. Using some geometrical properties
of triangles, it is shown in [15] that this location is at the
center of the triangle, which is at a distance of s/ V3 from
each vertex. The probability of sensing at the least-covered
point is then 1 — (1 — e~ “(¥57"*))3 which should be greater
than or equal to #. Manipulating this inequality, we get the
maximum separation s = \/3(r, — @) [ |

To derive the maximum separation under the disk sensing
model, we notice that the exponential sensing model reduces
to the disk model when we set o« = oco. From Theorem 1, it
is easy to see that s = \/§r5 under the disk sensing model,
which is the same optimality condition proved in [4], [14].

IV. PCP: A PROBABILISTIC COVERAGE PROTOCOL

In this section, we present our new probabilistic coverage
protocol (PCP). We start with an overview of PCP where some
simplifying assumptions are made to clarify the presentation.
Then, we present more details on various aspects of PCP. In
the following section, we prove the correctness of the protocol
and analyze its complexity.

A. Overview of PCP

PCP is designed to achieve full coverage of a monitored
area. This is needed in many sensor network applications,

such as forest fire detection and habitat monitoring. PCP will
ensure (with probability at least #) that each point in the
area is monitored by at least one sensor. Therefore, an event
(e.g., increase in air temperature) happening at any point in
the area is captured by an active sensor. PCP, however, may
not be suitable for applications that require a coverage degree
more than one or depend on dynamic characteristics of the
event. For example, in an intruder detection and classification
system, multiple sensors need to detect the event in order to
differentiate between different objects (e.g., person or vehicle)
and to estimate the speed and direction of the object. Part of
our future work is to extend PCP to support such applications.

As mentioned in the introduction, environmental conditions
and other factors make the sensing ranges of sensors deviate
from the perfect disk model. PCP does not assume that
all sensors are deterministically identical. Rather, it uses a
probabilistic distribution to model the sensing range. This
probabilistic distribution accounts for variations in the sensing
ranges of different sensors deployed in the monitored area.

The idea of PCP is to activate a subset of deployed sen-
sors to construct an approximate triangular lattice on top of
the area to be covered. The lattice is approximate because
it is constructed in a distributed manner and is controlled
by sensor deployment. The initial sensor deployment is not
assumed to be on a lattice; it could be any distribution. In
our simulations we deploy sensors uniformly at random. The
maximum separations s between any pair of activated sensors
is computed from the adopted probabilistic sensing model and
the coverage threshold 6, as discussed in the previous section.
The choice of the sensing model only impacts s. After fixing
s at the appropriate value, the protocol should work the same
regardless of the adopted sensing model.

To simplify the presentation, we first describe our protocol
under the following assumptions. We address these assump-
tions in later sections.

o Single starting node. In the beginning of the protocol,
only one node starts as an activator. In Section IV-C, we
extend our protocol to handle multiple starting nodes.

o Nodes are time-synchronized at a coarse-grain level. In
the evaluation section, we verify that only coarse-grained
synchronization is needed and we study the robustness of
our protocol to clock drifts. In Section IV-D, we discuss
simple schemes to achieve this synchronization.

o Nodes know their locations. This is not hard to achieve in
practice given efficient localization schemes such as those
in [16], [17], any of them can be used with our protocol.
The protocols that we compare ours against [2], [4], [8]
also assume nodes know their locations. Note that our
protocol does not require accurate knowledge of global
positions, because the position information is used only
in local decisions to activate nodes, as will become clear
later. In the evaluation section, we analyze the robustness
of our protocol to inaccuracies in node locations.

o Sensing ranges of all sensors follow the same probability
distribution.

PCP works in rounds of R seconds each. R is chosen



to be much smaller than the average lifetime of sensors. In
the beginning of each round, all nodes start running PCP
independent of each other. A number of messages will be
exchanged between nodes to determine which of them should
be on duty (i.e., active) during the current round, and which
should sleep till the beginning of the next round. The time it
takes the protocol to determine active/sleep nodes is called the
convergence time, and it is desired to be as small as possible.
After convergence, no node changes its state and no protocol
messages are exchanged till the beginning of the next round.

In PCP, a node can be in one of four states: ACTIVE,
SLEEP, WAIT, or START. In the beginning of a round, each
node sets its state to be START, and selects a random startup
timer 7 proportional to its remaining energy level. The node
with the smallest T will become active, and broadcasts an
activation message to all nodes in its communication range.
The sender of activation message is called the activator. The
activation message contains the coordinates of the activator.
The activation message tries to activate nodes at vertices of the
hexagon centered at the activator, while putting all other nodes
within that hexagon to sleep. A node receiving the activation
message can determine whether it is a vertex of the hexagon
by measuring the distance and angle between itself and the
activator. If the angle is multiple of 7/3 and the distance is
s, then node sets its state to ACTIVE and it becomes a new
activator. Otherwise it goes to SLEEP state.

In real deployment, nodes may not always be found at
vertices of the triangular lattice because of randomness in node
deployment or because of node failure. PCP tries to activate
the closest nodes to hexagon vertices in a distributed manner as
follows. Every node receiving an activation message calculates
an activation timer 7, as a function of its closeness to the
nearest vertex of the hexagon using the following equation
(refer to Fig. 2): T, = 7,(d? + da2'y2), where d,, and d,
are the Euclidean distances between the node and the vertex,
and the node and the activator, respectively; ~ is the angle
between the line connecting the node with the activator and
the line connecting the vertex with the activator; and 7, is a
constant.! Notice that the closer the node gets to the vertex
the smaller the T;, will be. After computing 7, a node moves
to WAIT state and stays in this state till its 7, timer either
expires or is canceled. When the smallest 7}, timer expires, its
corresponding node changes its state to ACTIVE. This node
then becomes a new activator and broadcasts an activation
message to its neighbors. When receiving the new activation
message, nodes in WAIT state cancel their 7}, timers and move
to SLEEP state.

IThe intuition behind this formula is as follows. We need the activation
timer 7T, to rank points in terms of their deviation from the lattice vertex.
For each point, the timer has to be related to the number of points with
better positions. Since the number of points around the lattice vertex having
the distance of less than d,, is proportional to d2, the waiting should be
proportional to d2. In addition, the angle v is between 0 and 27 while the
scale of d, can change in different applications. Therefore, ~ is multiplied by
the distance between sensor and the activator d, to make it on the same scale
as dy. The number of points with better « inside a §-circle is proportional
to 2. Thus, the activation timer is formed by summation of d2 and scaled
angle (dqv)?.

J-circle

candidate node
for activation

Fig. 2. Choosing the closest node to a triangle vertex.

Further optimization is possible on top of the above dis-
tributed node activation method. For this optimization, we first
introduce the concept of J-circle in the following definition.

Definition 3 (§-circle): The smallest circle drawn anywhere
in the monitored area such that there is at least one node inside
it is called the d-circle, where ¢ is the diameter of the circle.

The diameter § is computed from the deployment distribu-
tion of nodes. In Section IV-B, we show how § is computed
for different deployment distributions.

Now the optimization is to minimize the number of nodes
in WAIT state, that is, nodes decide quickly to be either in
ACTIVE or SLEEP state. This saves energy because nodes in
WAIT state must have their wireless receiving modules turned
on, while all modules are turned off in SLEEP state. The
savings in energy are significant as shown in the evaluation
section. PCP achieves this optimization by making only nodes
inside d-circles near to the six vertices of the hexagon stay
in WAIT state, all others move to SLEEP state once they
determine they are outside of all J-circles. Nodes inside
0-circles compute activation timers, as described above, to
choose the closest node the vertex to be active. As shown in
Fig. 2, centers of J-circles are located at a distance of s —§/2
from the activator and at an angle that is multiple of /3.

As a final remark, during transition between rounds, active
nodes in the finished round stay active for a short period in the
new round while they are participating in the protocol. This
period is approximately equal to the expected convergence
time. After this short period, these nodes will move to states
determined by the protocol in the new round. This is done to
prevent any outages in coverage during transition.

B. Computing d-circles for Different Deployment Distribu-
tions

As mentioned in the previous section, node deployment
distribution determines the value of §, which is the diameter
of the smallest circle with at least one node inside it. In this
section, we computer § for two common deployment schemes:
grid and uniform distribution. ¢ for other schemes can be
derived in a similar way. We assume that there are n nodes to
be deployed on the monitored area, which is an [ x [ square.

For the grid distribution, nodes are deployed on a v/n x \/n
virtual grid. The spacing between any two adjacent grid points
is I/+/n. To compute J, consider any grid cell that is composed
of four nodes forming a small square of size /\/n x I/\/n.
Clearly, setting § larger than the diagonal of this small square



ensures that a J-circle drawn anywhere on the grid will contain
at least one node. Therefore, 6 = [1/2/n for grid deployment.

Next we consider the case when nodes are deployed accord-
ing to a uniform distribution in the range [0, 2)\], i.e., the mean
distance between adjacent nodes is A, whereas the maximum
distance does not exceed 2\. Using a similar argument as
in the grid distribution, § should be 22\, To uniformly
distribute n nodes over an [ x [ square, A should be I/\/n,
which results in 6 = 2/,/2/n. Note that randomness in the
deployment distribution results in larger ¢ values.

Our PCP protocol does not require that § to be static
throughout the lifetime of the sensor network. Rather, § can
be changed to account for node failures or decreasing node
density with time. For example, § can be doubled after certain
number of rounds of the protocol. This only requires that each
node to keep a counter on number of elapsed rounds.

C. Multiple Starting Nodes

In Section IV-A, we assumed that PCP starts with only one
node as an activator. For large-scale sensor networks, it may be
desired to have multiple starting nodes such that the coverage
protocol converges faster in each round. Faster convergence
means that nodes move quicker from START or WAIT state to
either SLEEP or ACTIVE state, which reduces the total energy
consumed in the network. This is because START and WAIT
are temporary states and they consume more energy than the
SLEEP state. Multiple starting nodes, however, could increase
the number of activated sensors because of the potential
overlap between subareas that are covered due to different
starting nodes. In this section, we show how PCP can be
configured to enable multiple starting nodes. In the evaluation
section, we study the impact of multiple starting nodes on
number of activated nodes, convergence time, and total energy
consumed in the network.

The number of starting nodes in a round can be controlled
by setting the range of the start up timer 7. Ty is chosen
randomly between O and a constant 75. Suppose that we want
to compute the value of 7, such that each round of PCP start
with k£ nodes on average. Let us assume that the average
convergence time of PCP is T;. Note that if the startup timer
T, of a node is less than T, this node will become a starting
node before the protocol converges. The expected number
of nodes with T, smaller than T, is k = (T./7s)n, which
yields 74 = nT./k. Finally, 75 is scaled by the inverse of
the normalized remaining energy level E, (0 < E, < 1)
of each node such that nodes with higher energy levels will
have higher chances for becoming starting nodes. Therefore,
Ts is set to nT,/kE, to allow, on average, k nodes with the
highest remaining energy levels to become starting nodes. In
the evaluation section, we show that our protocol consumes
node energy in a uniform manner, therefore, keeps more nodes
alive for longer periods and prolongs the network lifetime.

D. Time Synchronization

Our protocol requires nodes to start each round at roughly
the same time. As shown in the evaluation section, the protocol

only needs coarse-grained time synchronization. Any time
synchronization scheme can be used with our coverage proto-
col. However, the following simple scheme suffices. The first
activator puts the remaining time in the current round in the
activation message. When other nodes receive this activation
message, they can adjust their end-of-round timers accordingly
after subtracting propagation and processing delays. This
process is repeated for successive activators.

V. ANALYSIS OF THE PCP PROTOCOL

In this section, we proof the correctness of our PCP pro-
tocol, and provide bounds on its convergence time, message
complexity, and number of nodes activated in each round. We
also prove the condition under which the activated nodes form
a connected network.

Due to space limitations, the proofs of the theorems are
given in the technical report [15], which is available online.

A. Correctness and Complexity Analysis

We carry out our analysis in terms of the input parameters
0,0,s, and [, and the protocol parameter 7,, which is the
maximum value of the activation timer. ¢ is determined from
the deployment distribution of sensors as explained in Section
IV-B. The maximum separation between any two active nodes
s is computed from the adopted probabilistic sensing model
as explained in Section III-C. € is the probabilistic coverage
threshold, which is application dependent. [ is the length of
the area to be covered, which is assumed to be a square for
simplicity of the analysis. We assume that the area is large
compared to the sensing radius, and therefore, we ignore the
boundary effects. We further assume that a message transferred
between two neighboring nodes takes at most 7, time units,
which includes propagation and transmission delays.

The following theorem proves the correctness of PCP and
provides an upper bound on its convergence time. PCP is
considered correct if terminates with every point in the area
has a probability of being sensed at least 6. Convergence time
is defined as the time it takes PCP to decide for each node
whether it is in ACTIVE or SLEEP state. After convergence,
nodes do not change their states and no protocol messages are
exchanged till the beginning of the next round.

Theorem 2 (Correctness and Convergence Time): The
PCP protocol converges in at most (7,02 + 7,,,)/(s — 9)
time units with every point in the area has a probability of
being sensed at least 6, unless node density is not enough to
achieve coverage of the whole area.

The next theorem provides upper bounds on the number of
activated sensors, and number of messages exchanged by PCP
in a round.

Theorem 3 (Activated Nodes and Message Complexity):
The number of nodes activated by the PCP protocol is at
most [2/v/3(s — 6)2, which is the same as the number of
exchanged messages in a round.



B. Network Connectivity Analysis

So far in this paper, we have focused on the coverage
problem, which ensures that an event happening at any point in
the monitored area is detected. In order to transfer information
gathered by a node to any other node in the network or to
a processing center, there should be a communication path
between any pair of nodes in the network. That is, the network
should be connected.

Under the disk sensing model, previous studies [2], [4],
[8] have shown that if the communication range of sensors
is at least twice the sensing range and the surveillance area is
convex, then coverage implies that the network is connected.
These results do not hold in case of PCP, because it uses
probabilistic sensing models. The following theorem provides
the condition on the communication range to ensure that
PCP results in a connected network of activated sensors. The
theorem assumes that the communication range of nodes is a
circle with radius r..

Theorem 4 (Network Connectivity): The subset of nodes
activated by PCP will result in a connected network if the
communication range of nodes r. is greater than or equal to
the maximum separation between any two active nodes s.

VI. EVALUATION

In this section, we rigorously evaluate our protocol and
compare it against others in the literature. We first describe
our experimental setup. Then, we verify the correctness of
our protocol and validate the theoretical bounds derived in
Section V. Next, we study the robustness of our protocol
against node failures, inaccuracy in node locations, and clock
drifts. Then, we compare our protocol against a probabilistic
coverage protocol called CCANS [8]. Finally, we compare our
protocol versus two recent deterministic coverage protocols:
OGDC [4] and CCP [2].

Due to space limitations, only a sample of the results are
presented. All figures and results are available in the technical
report [15], which is available online.

A. Experimental Setup

We have implemented our PCP protocol in NS-2 [18] and
in our own packet level simulator in C++. The source code for
both implementations are available at [19]. Some results from
the NS-2 implementation (Figs. 3(a) and 3(b)) with reasonable
network sizes (up to 1000 nodes) are presented. Most results,
however, are based on our own simulator because it supports
much larger networks, which we need to rigorously evaluate
our protocol.

We use the following parameters in the experiments, unless
otherwise specified. We uniformly at random deploy 20, 000
sensors over a lkm X 1km area. Therefore, we have built
our own packet-level simulator. We use two sensing models:
The disk sensing model with a sensing range of ry = 15m;
and the the exponential sensing model with sensing capacity
decay factor & = 0.05 and we set r; = 15m as the threshold
value below which sensing is achieved with probability 1. We
employ the energy model in [12] and [4], which is based on the

Mote hardware specifications. In this model, the node power
consumption in transmission, reception, idle and sleep modes
are 60, 12, 12, and 0.03 mWatt, respectively. The initial energy
of a node is assumed to be 60 Jules, which allows a node to
operate for about 5,000 seconds in reception/idle modes.

When we compare various coverage protocols, we assume
that the wireless communication channel has a bandwidth of
40 kbps. Since the message sizes in all protocols are almost
the same, we assume that the average message size is 34
bytes, which is the same size used in [4]. We ignore the
propagation delay because it is negligible for the 1km x 1km
area considered in the simulation. This results in a message
transmission time 7,,, = 6.8ms.

We repeat each experiment 10 times with different seeds,
and we report the averages in all of our results. We also
report the minimum and maximum values if they do not clutter
figures.

B. Validation and Savings Achieved by PCP

In this section, we validate that PCP indeed achieves the
requested coverage level for all points in a monitored area
for deterministic as well as probabilistic sensing models. We
also study the potential gain of adopting probabilistic sensing
models.

Coverage and Connectivity. In the first experiment, we fix
the coverage threshold 6 at a specific value, run our protocol
till it converges, and measure the resulting coverage in the
whole area. To approximate area coverage, we measure the
coverage of all points of a very dense grid deployed on top
of the area. The dense grid points have spacing of 0.03r; =
0.5m. We conduct this experiment for different values of 6,
and the results are shown in Fig. 3(a). Notice that § = 1
denotes a deterministic (disk) sensing model. The y-axis of
the figure shows the fraction of the grid points meeting the
coverage degree indicated on the x-axis. As the figure shows,
in all cases, PCP ensured that 100% of the area is 1-covered.

In addition, we check the connectivity of the nodes activated
by PCP when the communication range varies from 15 to 40m.
The maximum separation s in this experiment is set to 34m.
We measure connectivity as the fraction of active nodes that
are connected. We plot the results in Fig. 3(b). We show the
minimum, average, and maximum values obtained from the ten
iterations. Confirming our analysis in Theorem 4, our protocol
achieves full connectivity when r. > s.

Savings Achieved by PCP. As mentioned in Section I, the
disk sensing model may activate more than necessary nodes to
ensure coverage, because it ignores sensing capacity beyond
the threshold r,. We conduct an experiment to assess the
potential savings in number of active nodes because of using
the (conservative) exponential sensing model instead of the
disk sensing model. Fig. 3(c) shows the results for different
values of the coverage threshold 6, and for a range of values for
the sensing decay factor «. The figure indicates that even for a
conservative value of a = 0.05 and for # = 0.99, a saving of
up to 30% in number of active nodes can be achieved, which
means less energy consumed and ultimately longer lifetimes
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for the sensor network. It is expected that the savings will
be higher for other probabilistic sensing models in which the
sensing capacity decays slower than exponential. In addition,
the savings can be increased if the coverage threshold 6 is
reduced, which is feasible in applications that can tolerate a
small probability of not detecting an event happening at a
point.

C. Robustness of PCP

In this section, we show that our protocol is robust against
many practical aspects, such as inaccuracy in node locations,
imperfect time synchronization, and node failures. We also
show that the protocol consumes the energy of nodes in a
uniform manner, and functions correctly when multiple nodes
start as activators, which is important for large-scale sensor
networks.

Location Inaccuracy. We use the same setup described in
Section VI-A, except that we add random errors to the (z,y)
coordinates of each of the 20,000 deployed nodes. The error
can be positive or negative, and it is chosen randomly in the
interval [0, erpqz]. We vary er,,q, between 0 and 20m, that is,
a node could have as much as 20m of error on any (or both) of
its coordinates. For every value of er,, ., we run our protocol
till it converges, and compute the fraction of the area covered.
We repeat the experiment 10 times and report the average.
As shown in Fig. 4(a), PCP achieved full coverage even in
presence of large location errors. This shows the robustness of
PCP against location inaccuracy. There is a slight cost, though,
for location inaccuracy. We compute the average number of
sensors activated by the protocol to maintain coverage. We
normalize this number by the number of sensors needed when

there are no location errors. The results are also shown in Fig.
4(a) (notice that some figures have two y-axes). As shown
in the figure, location inaccuracy could increase the number
of active sensors. This increase is not large in most practical
cases: There is less than 9% increase in number of active
sensors for location error of up to 10m.

Imperfect Time Synchronization. Exact, or fine-grained,
time synchronization of nodes in large-scale sensor networks
is costly to achieve in practice. In this experiment, we assess
the impact of the granularity of time synchronization on our
protocol. In our protocol, nodes need to know the start of
the round so that they begin executing the protocol. Nodes
will start at exactly the same time if their clocks are perfectly
synchronized. We let clocks of nodes drift with different
random values in the interval [0, dq.], Where dpqq is the
maximum clock drift. We vary d,,,., between 0 and 500ms.
For every value of d,, .., we run our protocol till it converges,
and compute the fraction of the area covered. We repeat the
experiment 10 times and report the average. As indicated by
Fig. 4(b), PCP is robust against clock drifts: It achieved full
coverage in all cases. In addition, for practical clock drifts
(up to 300ms), there is virtually no increase in the number
of activated sensors. For larger clock drifts, the cost is not
significant as shown in 4(b). Notice that PCP converges in
about 300ms on average. This explains why the number of
active sensors starts to increase for clock drifts beyond 300ms:
Some nodes with high clock drifts may start executing the
protocol after others have already terminated it (i.e., they are
either in SLEEP or ACTIVE states). Therefore, some of the
late nodes may become unnecessarily active.
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Random Node Failures. Nodes deployed in real fields might
get damaged, burned, or just fail at any time. We simulate
failures at arbitrary times during the lifetime of the network.
In particular, we randomly choose a fraction f of the nodes
to be failed during the first 100 rounds of the protocol. We
randomly schedule a failure time for each node. We change
f between 0% and 60%. For each value of f, we run our
protocol and we periodically check the coverage of the whole
area. The results are shown in Fig. 4(c). Even with high failure
rates, PCP maintained full coverage in almost all rounds.

Uniform Energy Consumption. In this experiment, we show
that our protocol distributes the load uniformly across all
deployed nodes. This is critical in order to keep nodes alive for
the longest possible period, and thus to prolong the network
lifetime and achieve more reliable coverage. We measure the
load on a node by the energy consumed by that node. Once
a node runs out of energy, it is assumed to be dead. We run
our protocol till all nodes are dead. After each round of the
protocol, we count the number of alive nodes. Again, we repeat
10 times, and we plot the average of the number of alive
nodes versus round number in Fig. 5. As the figure shows,
most of the nodes stay alive till round number 60. Then, they
gradually die. This means that the protocol did not over utilize
some nodes in early rounds, otherwise, they would have died
earlier. Notice that the energy of a node is enough for it to be
active in about only five rounds. In addition, Fig. 5 shows that
the coverage is maintained in most of the area throughout the
network lifetime.

Multiple Starting Nodes. Finally, we analyze the impact
of multiple starting nodes on the performance of the PCP
protocol. Multiple starting nodes are desired for large-scale
networks. We change the number of starting nodes & from 1
to 9 and we study the number of sensors activated by PCP to
ensure coverage normalized by the number of active sensors
when k£ = 1. We also study the normalized convergence time.
Our results indicate that increasing the number of starting
points increases the number of active sensors but makes the
protocol converges faster. From further analysis, we have
found that reducing the convergence time is more beneficial
for the network lifetime than reducing the number of active
sensors. This is because before convergence many nodes
are either in WAIT or ACTIVE state before the protocol
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converges, which consume more energy.

D. Comparing PCP versus another Probabilistic Coverage
Protocol (CCANS)

In this section, we compare our PCP protocol against the
probabilistic coverage CCANS, proposed in [8], in terms of
number of activated sensors, network lifetime, and energy
consumption. CCANS employs the exponential sensing model.
The idea of CCANS is to start all nodes in active mode then
iteratively deactivate nodes that are not needed for coverage.
A token is circulated among nodes in the network in a certain
manner. The node holding the token calculates the coverage
on the grid points around it. If coverage is achieved at these
points, it broadcasts a notification to its neighbors, passes the
token to another node, and deactivates itself. All redundant
nodes are deactivated when the token visits each node in the
network. We implemented CCANS in C++, and we validated
our implementation of CCANS by obtaining the same results
in [8].

In our comparison, we use the same sensing model for
PCP and CCANS. The parameters used for CCANS [8] are:
&n = 1 and t,,4; = Tin. The parameters used for PCP are:
Ta = Tm /02, and 7, = n/E,., where E, is the fraction of the
remaining energy in the node. § is computed from IV-B. For
a uniform distribution of 20, 000 nodes in a 1km x 1km area
we have § = 2 x 1000,/2/20,000 = 20m.

We plot in Fig. 6 the average number of nodes activated
by PCP and CCANS for different values of the sensing decay
factor v and the coverage threshold 6. As the figure shows,
PCP activates a much smaller number of nodes than CCANS,
while ensuring the same level of probabilistic coverage. This is
significant because it indicates that the sensor network could
last much longer using our protocol. To validate this claim,
we study the fraction of the remaining energy in nodes as the
time progresses from O to 1000 seconds. Our results show
that, because CCANS activates more nodes and exchanges
more messages than PCP, the node energy is depleted at a
much faster rate. For example, after 1000 seconds, the average
energy of a node is 60% of its original energy if the sensor
network uses CCANS to maintain coverage, while this average
is 90% if our PCP protocol is used.



>
200.95¢
()
=]
C 09
El
g 0.851
<
= 0.8
&
=075t
g 07
= Yvvy
2065/ _e -385 vy
= v OGDC ‘ ‘ ‘
0 200 400 600 800 1000
Time (s)
Fig. 7. Comparison between PCP, OGDC, and CCP.

E. Comparing PCP versus other Deterministic Coverage Pro-
tocols (OGDC and CCP)

This section shows that, in addition to its use as a prob-
abilistic coverage protocol, PCP can be used as an efficient
deterministic coverage protocol that outperforms previous de-
terministic coverage protocols.

We have implemented two recent coverage protocols:
OGDC [4] and CCP [2] that were shown to outperform others
in the literature. Both protocols are implemented in C++. We
validated our implementation of OGDC and CCP by obtaining
the same results in their respective paper. We use the disk
sensing model for all protocols. To conduct a fair comparison
and remove the overhead imposed by CCP and OGDC to
maintain connectivity, we assume that the communication
range is twice as the sensing range in all experiments for all
protocols. The round length is 100 seconds for both PCP and
OGDC. We set the parameters py in OGDC and 7,5 in PCP
such that both protocols have a single starting node.

We focus our comparison on the energy consumption of
deployed nodes under different coverage protocols. In Fig.
7, we plot the fraction of remaining energy in nodes as the
time progresses. The figure shows that our PCP protocol is
much more energy conserving than CCP and OGDC. This
is because our protocol activates fewer number of nodes,
converges faster, and exchanges fewer number of messages
than CCP and OGDC.

VII. CONCLUSION

In this paper, we considered coverage problems under prob-
abilistic sensing models, which are more realistic than the disk
sensing model used in many of the previous works. We showed
through simulation that a probabilistic sensing model may
result in significant savings in the number of activated sensors,
which reduces energy consumption and extends the network
lifetime. At a high-level, our results advocate the use of
probabilistic sensing models because of the potential savings.
We proposed and evaluated a fully distributed, probabilistic
coverage protocol. A key feature of our protocol is that it can
be used with different sensing models, with minimal changes.
We analyzed our protocol and showed that it converges fast
and has a small message complexity. We verified our analytical
results using simulations. We also implemented our protocol

and three other coverage protocols: one of them is probabilistic
(CCANS) and the other two are deterministic (OGDC and
CCP). Our extensive experimental study shows that our pro-
tocol activates less sensors than the others while maintaining
the same level of coverage, and consumes much less energy.
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